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2.1 Introduction

Discussion of radiative transfer requires an efficient language that can be used to describe the concepts un-
derlying the physical processes. Two well established languages exist that are focused on the propagation of
electro-magnetic radiation. These are radiometry and photometry. The primary difference between the two

15



16 Chapter 2. Radiometric Foundation of Photon Mapping

systems is that photometry is concerned with the visible region of the EM spectrum (as detectable by the
human eye) while radiometry is applicable for a much broader spectrum (usually limited to the ultraviolet
through long infrared region). While the field of spectral water studies is largely interested in the visible
region of the spectrum, there is definite benefit in examining wavelengths outside this region (e.g. mapping
of suspended sediments using infrared radiation [Li et al., 2003]). For this reason, along with notation sim-
plification and consistency with existing work, we choose to use radiometry as the language to describe this
work. The sections that follow start by presenting standard Le Système International d’Unités (SI) units and
then build upon these basic quantities to develop a complex conceptual description of radiative transfer in
media.

2.2 SI Base Units

All of the terms that we will use to describe the radiometry underlying the photon mapping methods can be
derived from three of the seven base SI units plus the two supplementary derived, “dimensionless” SI units
relating to angle measurement [Bur. Intl. Poids et Mesures, 1991].

Base Quantity Name Symbol
length meter m
mass kilogram kg
time second s

plane angle radian [angle]r or rad
solid angle steradian sr

The attached diagram (Figure 2.1 and accompanying text (a handout from Taylor [1995]) puts these units
into context along with the other base and fundamental derived SI units. Note that the supplementary derived
units (steradian and radian) are shown on the lower right-hand side of the diagram.

2.3 Rays and Photons

One of the building blocks of modern physics is knowledge of the wave/particle duality of light. This dual
nature is essential for explaining the behavior of light in different circumstances. For the purposes of propa-
gating light in a synthetic scene, it is convenient to always think of light as bundles of energy. These bundles
(or quanta) travel in straight lines (rays). By tracing rays through a scene from detector to light sources and
handling all of the interactions along the way, we can build up an image of the scene. This is the essence of
ray tracing. We will also use this conceptual view of light as rays/particles to derive the necessary radiometric
units that follow.

The traditional name for the bundle of energy associated with light is the photon. A photon carries a discrete
amount of energy, q, that is related to the wavelength, λ, by

qλ =
hc
λ

[ joules], (2.1)
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      The diagram above shows graphically how the 22 SI derived units with special names and symbols are related to the seven SI base units. In 
the first column, the symbols of the SI base units are shown in rectangles, with the name of the unit shown toward the upper left of the 
rectangle and the name of the associated base quantity shown in italic type below the rectangle. In the third column the symbols of the 
derived units with special names are shown in solid circles, with the name of the unit shown toward the upper left of the circle, the name of the 
associated derived quantity shown in italic type below the circle, and an expression for the derived unit in terms of other units shown toward 
the upper right in parenthesis. In the second column are shown those derived units without special names [the cubic meter (m3) excepted] that 
are used in the derivation of the derived units with special names. In the diagram, the derivation of each derived unit is indicated by arrows that 
bring in units in the numerator (solid lines) and units in the denominator (broken lines), as appropriate. 
      Two SI derived units with special names and symbols, the radian, symbol rad, and the steradian, symbol sr (bottom of the third column of the 
diagram), are shown without any connections to SI base units – either direct or through other SI derived units. The reason is that in the SI, the 
quantities plane angle and solid angle are defined in such a way that their dimension is one – they are so-called dimensionless quantities. This 
means that the coherent SI derived unit for each of these quantities is the number one, symbol 1. That is, because plane angle is expressed as 
the ratio of two lengths, and solid angle as the ratio of an area and the square of a length, the SI derived unit for plane angle is m/m = 1, and the 
SI derived unit for solid angle is m2/m2 = 1. To aid understanding, the special name radian with symbol rad is given to the number 1 for use in 
expressing values of plane angle; and the special name steradian with symbol sr is given to the number 1 for use in expressing values of solid 
angle. However, one has the option of using or not using these names and symbols in expressions for other SI derived units, as is convenient. 
      The unit “degree Celsius,’’ which is equal to the unit “kelvin,” is used to express Celsius temperature t. In this case, “degree Celsius’’ is a special 
name used in place of “kelvin.’’ This equality is indicated in the diagram by the symbol K in parenthesis toward the upper right of the °C circle. 
The equation below “CELSIUS TEMPERATURE’’ relates Celsius temperature t to thermodynamic temperature T. An interval or difference of Celsius 
temperature can, however, be expressed in kelvins as well as in degrees Celsius. 
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Figure 2.1: Relationships between SI units (unaltered from the NIST Manual [Taylor, 1995] and included
for convenience. Usage in this text is consistent with the NIST disclaimer: http://www.nist.gov/public affairs/
disclaim.htm)
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where h is Planck’s constant (6.6256·10−34 joules·sec) and c is the speed of light in a vacuum (2.9979·108 m
s ).

This work uses a technique known as photon mapping [Jensen, 2001]. In contrast to real, physical photons,
the photons in photon mapping usually represent discrete bundles of power ([watts]), which describes the
rate at which photons are emitted from the source or are traveling through a medium. In order to distinguish
between the two concepts in this document, physical photons (i.e. ones that have energy given by Equation
2.1) will always be written in italics.

2.4 Spectral Notation

All of the yet to be derived radiometric terms will be defined as being dependent on wavelength. The de-
pendence will be denoted by a subscript λ (ex. Φλ, Lλ). This notation might be interpreted as “per unit
wavelength interval,” but it is, perhaps, more accurately introduced as a differential term. For instance, the
spectral flux (Φλ) is equivalent to

Φλ = lim
∆λ→0

∆Φ

∆λ

=
dΦ
dλ
. (2.2)

∆λ refers to a range (or band) of wavelengths and ∆Φ is the integrated value of the flux at each wavelength
within the band. Thus, at the limit when ∆λ approaches zero, a spectral quantity represents the value at a
single wavelength. In order to emphasize the spectral nature of the radiometric terms, we will use a µm−1 in
the units for a spectral quantity rather than m−1.

Practical measurement of any spectral quantity involves making an estimate of the differential quantity. De-
tectors collect photons that have wavelengths within a certain bandwidth of values (by diffraction or filtering,
for instance). Ignoring differential spectral sensitivity within a band, the estimate could just be an average
over the bandwidth. Using flux as an example and characterizing a band by its central wavelength, λ0, and
bandwidth, ∆λ,

Φλ0 # Φ∆λ =
1
∆λ

∫ λ0+
∆λ
2

λ0− ∆λ2
Φλdλ, (2.3)

where Φ∆λ is the mean flux in the band. Again, this equation assumes that there will always be equal spectral
sensitivity to all wavelengths within the band. Nonetheless, if we consider the bandwidth,∆λ, as the full width
at half max (FWHM) of the spectral sensitivity curve of the detector, then this is a fairly good approximation.
For the purposes of this model we will assume that Φλ0 = Φ∆λ. This assumption allows us to characterize the
entire band with a single value such that

∫ λ0+
∆λ
2

λ0− ∆λ2
Φλdλ = ∆λ · Φλ0 . (2.4)
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The validity of this assumption is stronger when the bandwidth is small and the in-band values are smoothly
varying. As the bandwidth increases, the potential for non-linear variability within the wavelength range
becomes more likely so that the value at the central wavelength is less likely to be representative of the
average.

2.5 Radiometric Terms

Radiometry is used in a wide variety of disciplines to describe the propagation of Electro-Magnetic (EM)
energy from a source through space. Consequently, there are inconsistencies between various authors as
to the proper names, and occasionally definitions, of radiometric quantities. The radiometric terms that
follow are based in part on the definitions and symbols presented in Schott [1997], which are consistent
with the standards adopted by the Commission Internationale de l’Eclairage (CIE), the SI, the International
Commission on Radiation Units and Measurement (ICRU), the American Illuminating Engineering Society
(IES), and the Royal Society of London (RSL), as well as many other organizations. The “Fundamental
Theorem of Radiometry,” (constancy of radiance through and interface) and the Spectral Radiation Density,
µλ, are less common radiometry terms and their derivations are based on Wyatt [1978] and Tatum [2004],
respectively.

2.5.1 Spectral Flux, Φλ

Flux describes the rate at which energy is propagated over time and is equivalent to power. Accordingly, the
units of flux are [watts] (i.e. [ joules/sec]). Since we will be interested in the amount of flux at particular
wavelengths, we will denote the spectral flux as Φλ and define it as

Φλ =
dqλ
dt

[
W
µm

]
, (2.5)

Note that flux does not give any information about the location/direction of the energy. For that reason, flux
is usually given in context. Examples might include the flux emitted from an isotropic radiator or the amount
of flux incident on a detector.

It is potentially useful to translate flux into the number of photons per second. Using the wavelength associ-
ated with the flux and Equation 2.1,

# of photons per second =
Φλ

qλ
=
Φλ · λ

hc

[
Hzµm−1

]
, (2.6)

where h and c have been defined previously.

2.5.2 Spectral Radiant Intensity, Iλ

Radiant intensity describes the amount of energy propagated in a direction defined by a differential solid
angle, dΩ(θ, φ). θ and φ correspond to spherical zenith and azimuth angles, respectively. Generally, θ is
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measured from the global “up” (ẑ) vector (which is the traditional definition of zenith) and can be any value
in the range [0, π] radians. The azimuthal angle is measured from the global x̂ vector (clockwise looking in
the −ẑ direction) and is a value in the range [0, 2π] radians. The differential solid angle is defined as

dΩ(θ, φ) = lim
∆A→0

∆A
r2 =

dA
r2 [sr], (2.7)

where r is the radius of a sphere which contains a differential surface area, dA, in direction (θ, φ). The solid
angle of a sphere would therefore be

Ωsphere =
Asphere(r)

r2 = 4π [sr]. (2.8)

The radiant intensity is defined as

Iλ(θ, φ) =
dΦλ

dΩ(θ, φ)

[
W
µm·sr

]
. (2.9)

The directional dependency of Iλ does not need to be written explicitly, and not doing so greatly simplifies
the notation. The total spectral flux emitted by an anisotropic radiator can be calculated as

Φλ =

∫ 2π

0

∫ π

0
Iλsin(θ)dθdφ

[
W
µm

]
. (2.10)

If the intensity is isotropic, this reduces to 4π · Iλ
[

W
µm

]
.

2.5.3 Spectral Irradiance, Eλ

Irradiance describes the amount of flux that is incident on a differential area, dA, normal (perpendicular) to
the direction of the flux,

Eλ(x, y) = lim
∆A→0

∆Φλ

∆A
=

dΦλ
dA

[
W
µm·m2

]
. (2.11)

The parameters [x, y] denote a position on surface dA0. The positional dependency of Eλ does not need to
be written explicitly and not doing so greatly simplifies the notation. If all rays are propagating parallel to
directional vector %ω and the surface dA has normal vector %n then the flux is incident onto an effective area,
dAe f f , perpendicular to %ω. dAe f f is proportional to dA by the projection of %n onto %ω,

dAe f f = dA · %ω · %n = dA cos(θ)
[
m2
]
, (2.12)
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where θ is the angle between %n and %ω (equal to acos(%n · %ω)). The amount of flux onto the effective area, dAe f f ,
is related to the amount of flux that would be normally incident onto dA by

dΦλ,dA

dΦλ,dAe f f

=
dA

dAe f f
=

1
cos(θ)

,

dΦλ,dAe f f = dΦλ,dA cos(θ)
[

W
µm

]
. (2.13)

Plugging the effective flux into Equation 2.11, the directionally dependent irradiance is Eλ,Ae f f = Eλ,A · cos(θ)[
W
µm·m2

]
. The concept of irradiance can also be used to describe the flux being emitted from a source, in which

case it is called exitance and is written symbolically as Mλ.

2.5.4 Spectral Radiance, Lλ

Radiance combines the two concepts of intensity and irradiance by describing the amount of flux incident on
an effective differential area, dA cos(θ), from a direction defined by differential solid angle, dΩ,

Lλ(x, y, θ, φ) =
d2Φλ

dA cos(θ)dΩ

[
W

µm·m2·sr

]
. (2.14)

Radiance can also describe the flux emitted from a differential area in a direction defined by a differential
solid angle. In contrast to the situation in Equation 2.12, we are not rotating the differential area, but instead
changing the direction from which the incident (or exitant) light is coming from.

The total radiance emitted into a solid angle, %ω, is equivalent to the irradiance onto the surface area defined
by that solid angle. When the solid angles represent the “upper” or “lower” hemispheres, the irradiance is
labeled upwelled (Eu(λ)) or downwelled (Ed(λ)), respectively, as in

Eu(x, y, λ) =

∫ 2π

0

∫ π
2

0
Lλ(x, y, θ, φ)|cos(θ)|sin(θ)dθdφ, (2.15)

Ed(x, y, λ) =

∫ 2π

0

∫ π

π
2

Lλ(x, y, θ, φ)|cos(θ)|sin(θ)dθdφ, (2.16)

assuming that vector [0, 0, 1] is “up.”

2.5.4.1 Constancy of Radiance Along a Ray in a Vacuum

The ability of radiance to take into account both position and direction leads to its most useful quality. A ray
can be defined as a beam of energy that propagates in a straight line bounded by two differential areas. Take a
differential area, dA1, and propagating flux, dΦ1, into a solid angle, dΩ1, defined by another differential area,
dA2, at a distance, r, away. The radiance being emitted at the first area element (dA1) is
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L1 =
d2Φ1

dA1 · dΩ1
=

dΦ1

dA1 · dA2
r2

[
W

µm·m2·sr

]
. (2.17)

Conversely, the radiance incident on area element, dA2, from solid angle dΩ2 (defined by dA1 and r), and
carrying flux, dΦ2, is

L2 =
d2Φ2

dA2 · dΩ2
=

dΦ2

dA2 · dA1
r2

[
W

µm·m2·sr

]
. (2.18)

Differential area elements dA1 and dA2 define a ray of length r. Since dΦ1 and dΦ2 must be equal according
to the definition of a ray (assuming no losses/gains due to the medium),

L1 = L2. (2.19)

This means that the radiance is constant along a straight line in a vacuum. Classical ray tracing takes advan-
tage of this property to ignore inter-geometry distances by assuming that air is equivalent to a vacuum. And,
as long as we take into account gains and losses while propagating, we can use the same techniques within
(participating) media. In circumstances where the ray crosses between different media we have to take into
account the effect of the change in refractive index on the solid angle.

2.5.4.2 Fundamental Theorem of Radiometry

The so-called “Fundamental Theorem of Radiometry” [Wyatt, 1978] is a corollary to the constancy along
a ray property of radiance discussed in the previous section. It describes the change in radiance as it is
propagated from one medium to another. Each medium is characterized by its index of refraction,

nm =
c

vm
, (2.20)

where m denotes the medium and vm is the speed of light in that medium. If a ray (which represents a wave
of light) is incident on the boundary between two mediums (characterized by n1 and n2), Snell’s Law relates
the incident and exitant angles by

n1 sin(θ1) = n2 sin(θ2). (2.21)

The angles, θ1 and θ2, are measured from a double-sided boundary normal such that 0 ≤ θ1, θ2 ≤ π2 . We will
define a differential area element, dA, on the boundary surface through which flux passes from one medium
to the other. The flux incident on dA from solid angle, dΩ1, in the first medium emerges from the boundary
travelling into solid angle, dΩ2, or in terms of radiance,
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Figure 2.2: Illustration of parameters used to derive Equation 2.28

Φ1 = L1dΩ1dA cos(θ1), (2.22)
Φ2 = L2dΩ2dA cos(θ2). (2.23)

This situation is illustrated in Figure 2.2. For the purposes of this derivation we will assume that all flux
incident on the boundary is propagated to the other side, so that

Φ1 = Φ2. (2.24)

Rewriting dΩ in terms of spherical coordinates (dΩ = sin(dθ)dθdφ) and equating Equations 2.22 and 2.23,

L1 sin(θ1)dθ1dφ1dA cos(θ1) = L2 sin(θ2)dθ2dφ2dA cos(θ2),
L1

L2
=

sin(θ2) cos(θ2)dθ2
sin(θ1) cos(θ1)dθ1

. (2.25)

This relationship can be simplified by first taking the derivative of Equation 2.21 with respect to θ,

d
dθ1

n1 sin(θ1) =
d

dθ2
n2 sin(θ2),

n1 cos(θ1)dθ1 = n2 cos(θ2)dθ2, (2.26)
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and then multiplying this expression by Equation 2.21,

(n1 cos(θ1)dθ1) (n1 sin(θ1)) = (n2 cos(θ2)dθ2) (n2 sin(θ2)) ,
n2

1 cos(θ1) sin(θ1)dθ1 = n2
2 cos(θ2) sin(θ2)dθ2,

n2
1

n2
2
=

cos(θ2) sin(θ2)dθ2
cos(θ1) sin(θ1)dθ1

. (2.27)

Plugging Equation 2.27 into Equation 2.25 yields

L1

L2
=

n2
1

n2
2
, (2.28)

or the “Fundamental Theorem of Radiometry” (also known as the n-squared constancy of radiance). In prac-
tice, the assumption made at the beginning of the derivation (that the flux incident on the boundary is com-
pletely transmitted through it) is not generally valid. Aside from the fact that flux will often be reflected from
the boundary itself, attenuation (absorption and scattering) along the beam will change the flux. Nonetheless,
it is a useful relationship for modeling the flux passing through an infinitesimal region on either side of a
boundary or for smooth transitions. We could also include the effects of transmittance at the boundary by
simply saying that

L2 =
n2

2

n2
1

L1τ, (2.29)

where τ is the effective transmittance (i.e. one minus the reflectance) of the surface for the particular set
of angles in question. Of course, when both media are the same, Equation 2.28 shows that the transmitted
radiance is equal to the incident radiance. Alternatively, equation 2.29 can be written in terms of the relative
refractive index, n2,1 =

n2
n1

, to yield the easier to read expression: L2 = n2,1L1τ

2.6 Volumetric Additions

While the fundamental radiometric terms introduced above are sufficient for describing radiative transfer at
most surfaces, a few specialized, volumetric terms are presented here to facilitate the development. These are
constructed for convenience and are nothing more than shorthand for concepts that will be used frequently
(just as all the radiometric terms above are shorthand terms for various types of flux density). They are also
not considered standard radiometric terms and do not necessarily have measurable corollaries.

Spectral irradiance, as discussed in Section 2.5.3, is beneficial for describing the total, integrated output of
sources such as the sky or the sun. It also provides a summary term for the entire, integrated flux at a point
that is either surface-centric (the cosine weighted term above), or volume-centric. The volume-centric version
of irradiance, otherwise known as the scalar irradiance and denoted with a subscript “o” (Eo), computes the
irradiance by effectively rotating the collection area such that it is always perpendicular to the incident flux
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i Loss Elastic scattering out of the beam
ii Loss Inelastic scattering out of the beam
iii Loss True absorption
iv Gain Elastic scattering into the beam
v Gain Inelastic scattering into the beam
vi Gain True Emission into the beam

Table 2.1: Sources of radiance loss and gain along a beam

(it “sees” the full, as opposed to projected, source). This is essentially a mathematical construct, since it can’t
be measured directly and it is computed as

Eo(x, y, λ) =

∫ 2π

0

∫ π

0
Lλ(x, y, θ, φ)sin(θ)dθdφ, . (2.30)

Analogous versions of the upwelled and downwelled irradiance can be constructed by changing the limits of
the integral. Eo is useful for describing the volumetric light field at a point since it does not give preferrential
directional weighting. It will be used primarily in the validation of the model in Chapter 7.

Of more immediate concern is the need to be able describe the amount of radiance that is lost or gained along
a ray in a volume. We will want to know the change in radiance for a given section of a ray, i.e. ∆Lλ(x,y,θ,φ)

∆r .
This concept is known as the incremental path radiance and we will follow the example of Mobley [1994]
and use an asterisk to differentiate a path radiance from the concept already given (L∗). This concept will help
us construct the radiative transfer equaiton in the next section and also derive the photon mapping concept.

2.7 Radiative Transfer Equation

The goal of this section is to develop a mathematical description of the gains and losses to radiance along
a beam. This equation is known as the Radiance Transfer Equation (RTE) or, sometimes, as the “volume
rendering equation” in computer graphics (we will use RTE to be consistent with water literature). There are
three sources of radiance gain (illustrated in Figure 2.3 and three sources of loss as shown in Table 2.1. We
will describe each of these terms below and then find the general RTE that includes them all. This particular
derivation of the RTE is based on Mobley [1994].

Before establishing the differential equations that describe these losses and gains along a beam, we need
to introduce several optical properties that will be used to describe these terms. Because the properties are
characteristic of the medium and are independent of the light source or light field in the medium, they are
called inherent optical properties.

2.7.1 Inherent Optical Properties

A certain amount of flux, Φi, traveling in a direction, %ω, is passing through a volume element, ∆V , with
thickness, ∆T , in %ω, as shown in Figure 2.4. Φi represents a bundle of photons in a beam, all of which are
subject to one of three fates. Along the path ∆T a photon can be absorbed (converted to non-radiant energy),
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Figure 2.3: Illustration of the three sources of radiance along an in-water beam
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Figure 2.4: Setup for IOP discussion

scattered (change in direction), or allowed to pass through unchanged. The amount of flux corresponding to
each of these fates will be denoted as Φa, Φs, Φt, respectively. Because the total amount of energy must be
conserved, they are related to the initial flux by

Φi = Φa + Φs + Φt
[

W
µm

]
, (2.31)

where the µm has been added to show the spectral dependency of flux. The fraction of the initial flux corre-
sponding to each of these terms will be referred to as the absorptance

(
Φa
Φi

)
, A, the scatterance

(
Φs
Φi

)
, B, and the

transmittance
(
Φt
Φi

)
, τ. These quantities are functions of wavelength and are denoted by A(λ), B(λ), and τ(λ)

(though τ will not be used directly again).

The term Inherent Optical Property (IOP) refers to properties of a medium that are entirely independent of the
light field within the medium. The first three IOPs that we will need to know are related to the absorptance
and scatterance. Instead of allowing ∆T to be an arbitrary thickness, we will now consider it as a differential
quantity and define the spectral absorption coefficient, a(λ), as

a(λ) = lim
∆T→0

A(λ)
∆T

[
m−1
]
. (2.32)

Similarly, the spectral scattering coefficient, b(λ), is defined as

b(λ) = lim
∆T→0

B(λ)
∆T

[
m−1
]
. (2.33)

In both cases, the absorption and scattering coefficients describe a property of the medium at a point along a
path. We additionally define a third IOP that describes the losses due to both absorption and scattering. This
spectral beam attenuation coefficient, c(λ), is given by
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c(λ) = a(λ) + b(λ)
[
m−1
]
. (2.34)

While c(λ) is simply the composition of two other IOPs, we call it an inherent optical because it is still
independent of the the light field. The coefficients defined above describe losses from a beam. In each case,
we do not know explicitly what happens to the energy after it leaves the beam. We can assume that absorbed
energy has been converted to another form, such as heat, which is not relevant to our calculations. Scattering
is a bit more complicated. Light scattered from a beam travels in a particular direction, possibly being
absorbed or scattered again. The particular direction that it travels in can be described as a random variable
with a particular probability density function that is dependent on the particles (their size and distribution)
in the medium. The scattering coefficient does not give us any information about this probability density
function so we need to introduce a new quantity that will. The spectral volume scattering function, β(θ, φ, λ),
is analogous to b(λ) except that is has a strict directional dependence:

β(θ, φ, λ) = lim
∆T→0

lim
∆Ω→0

B(θ, φ, λ)
∆T∆Ω

, (2.35)

where ∆Ω is a solid angle in the direction defined by [θ, φ] measured from the original direction. β(θ, φ, λ) is
related to b(λ) by

b(λ) =
∫ 2π

0

∫ π

0
β(θ, φ, λ)sin (θ) dθdφ. (2.36)

We can additionally define component forward and backward scattering coefficients b f (λ) and bb(λ), respec-
tively, as

b f (λ) =

∫ 2π

0

∫ π
2

0
β(θ, φ, λ)sin (θ) dθdφ, (2.37)

bb(λ) =

∫ 2π

0

∫ π

π
2

β(θ, φ, λ)sin (θ) dθdφ, (2.38)

b(λ) = b f (λ) + bb(λ).

As expected, the total energy scattered into all directions is equal to the total energy scattered out of the beam
(technically speaking, the scattered energy can remain in the beam if β(0, 0, λ) > 0.0, which is often the case).
Instead of allowing β(θ, φ, λ) and b(λ) to contain redundant information, we isolate the directional distribution
from the magnitude of scattering and use it as a fourth IOP. The spectral volume scattering phase function,
β̃(θ, φ, λ), is essentially a normalized version of β(θ, φ, λ),

β̃(θ, φ, λ) =
β(θ, φ, λ)

b(λ)
, (2.39)
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Symbol Units Description
a(%x, t, λ)

[
1
m

]
absorption coefficient

b(%x, t, λ)
[

1
m

]
scattering coefficient

c(%x, t, λ)
[

1
m

]
attenuation coefficient

β̃(%x, t, %ω, %ω′ → %ω, λ)
[

1
sr

]
scattering phase function

n(%x, t, λ) dimensionless index of refraction

Table 2.2: Summary of inherent optical properties

so that the integral of β̃(θ, φ, λ) is equal to one. Thus, β̃(θ, φ, λ) provides a directional Probability Density
Function (PDF) for scattering. Since the scattering phase function describes the contribution of radiance from
one direction, %ω′, into another, %ω, we will hereafter change the notation slightly to reflect that, β̃(%ω′ → ω, λ).
We also define a useful characteristic property of the scattering phase function known as the average cosine,

µs(λ) =

∫ 2π

0

∫ π

0
β̃(θ, φ, λ)cos(θ)sin(θ)dθdφ. (2.40)

To the four IOPs we just defined (a(λ), b(λ), c(λ), and β̃(%ω′ → ω, λ)) we need to add the property of index
of refraction already discussed in section 2.5.4.2. The final five IOPs are summarized in Table 2.2 and have
been given in a more complete form, additionally taking into account position, %x, and time, t. There are
several other standard IOPs that could be derived based on the ones we have defined. However, we will find
it sufficient to use these five quantities exclusively to describe the inherent properties of any medium.

2.7.2 The Integro-Differential Form of the RTE

In this section we will consider the gains and losses due to to the six factors listed in Table 2.1 in terms
of the directional derivative of radiance at point, %x, time, t, and direction, %ω. We will use the notation,
(%ω ·∇) Lλ(%x,t,%ω,λ)

n(%x,t)2 , to represent this derivative, where ∇ is the gradient operator and we have explicitly shown the
dependence on index of refraction derived in Equation 2.28. Using the IOPs defined previously, we can write
the individual contributions as shown in Table 2.3. The superscript e, i, and s stand for elastic, inelastic, and
source (emitted), respectively. The table contains a number of terms that have not been introduced thus far,
mostly relating to inelastic scattering. These will be discussed later in Chapter 5 since they are not essential
to our discussion of the RTE at present.

For the moment, we will reduce the components in the table to a much simpler, combined form in order to
continue with the development of the RTE. Dropping function parameters for brevity and rewriting terms
yields

(%ω · ∇)L∗ + cL∗ = Le
∗ + Li

∗ + Ls
∗, (2.41)

where c = be + ai
∗ + ae is the total attenuation coefficient, Le

∗ is the contribution from elastic scattering, Li
∗ is

the contribution from inelastic scattering, and Ls
∗ is the contribution from emission. The index of refraction
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i (%ω · ∇) Lλ(%x,t,%ω)
n(%x,t)2 = - be(%x, t, λ) Lλ(%x,t,%ω)

n(%x,t)2

ii (%ω · ∇) Lλ(%x,t,%ω)
n(%x,t)2 = - ai

∗(%x, t, λ)
Lλ(%x,t,%ω)
n(%x,t)2

iii (%ω · ∇) Lλ(%x,t,%ω)
n(%x,t)2 = - ae(%x, t, λ) Lλ(%x,t,%ω)

n(%x,t)2

iv (%ω · ∇) Lλ(%x,t,%ω)
n(%x,t)2 = + be(%x, t, λ)

∫
Ω
β̃e(%x, t, %ω′ → %ω, λ)Lλ(%x, t, %ω′)d%ω′

v (%ω · ∇) Lλ(%x,t,%ω)
n(%x,t)2 = + bi(%x, t, λ′ → λ)

∫
Ω

∫
Λ
β̃i(%x, t, %ω′ → %ω, λ′ → λ)Lλ′ (%x, t, %ω′)dλ′d%ω′)

vi (%ω · ∇) Lλ(%x,t,%ω)
n(%x,t)2 = + S o(%x, t, %ω′)β̃s(%x, t, %ω, λ)

Table 2.3: Table of contributions to the directional derivative of radiance for the RTE

dependence
(

1
n2

)
is implicit since, in most cases, we can safely ignore it within a medium. We can further

simplify the equation by noting that a derivative in direction %ω is equivalent to a one-dimensional derivative
along an arbitrary axis, r. Thus, we can rewrite Equation 2.41 as an Ordinary Differential Equation (ODE)

d
dr

L∗ = Le
∗ + Li

∗ + Ls
∗ − cL∗.

d
dr

L∗ + cL∗ = Le
∗ + Li

∗ + Ls
∗. (2.42)

Noting that this is of the form

d
dx

y(x) + a(x)y(x) = b(x), (2.43)

we can now use the ordinary differential equation solution to find the integral form of the RTE (which is what
we need for integrating along a ray).

2.7.3 Solution of a Linear First Order ODE

Given an equation of the form

d
dx

y(x) + a(x)y(x) = b(x), (2.44)

we can begin to solve for y(x) by constructing a new equation

d
dx

(α(x)y(x)) = β(x). (2.45)

Integrating both sides with respect to x and solving for y(x) results in
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∫
d
dx

(α(x)y(x))dx =

∫
β(x)dx

α(x)y(x) =

∫
β(x)dx + K

y(x) =

∫
β(x)dx + K
α(x)

. (2.46)

Using the product rule, the constructed equation is also equal to

d
dx

(α(x)y(x)) = β(x)

α(x)
d
dx

y(x) + y(x)
d
dx
α(x) = β(x)

d
dx

y(x) + y(x)
d
dxα(x)
α(x)

=
β(x)
α(x)
, (2.47)

which is equivalent to Equation 2.44 where

a(x) =
d
dxα(x)
α(x)

∴ α(x) = e
∫

a(x′)dx′ (2.48)

b(x) =
β(x)
α(x)

∴ β(x) = b(x)e
∫

a(x′)dx′ . (2.49)

Plugging in to our solution,

y(x) =

∫ x
0 b(t)e

∫ t
0 a(t′)dt′dt + K

e
∫ x

0 a(t)dt

=

∫ x

0
b(t)e

∫ t
0 a(t′)dt′dt · e−

∫ x
0 a(t′)dt′ + Ke−

∫ x
0 a(t)dt

=

∫ x

0
b(t)e

∫ t
0 a(t′)−

∫ x
0 a(t′)dt′dt + Ke−

∫ x
0 a(t)dt

=

∫ x

0
b(t)e−

∫ x
0 a(t′)−

∫ t
0 a(t′)dt′dt + Ke−

∫ x
0 a(t)dt

=

∫ x

0
b(t)e−

∫ x
t a(t′)dt′dt + Ke−

∫ x
0 a(t)dt, (2.50)

where K is a constant to be determined.
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2.7.4 The Integral Form of the RTE

Now that we know the solution to the ODE we can go ahead and state the integral form of the RTE

L∗(rb) =

∫ rb

ra

(
Le
∗(r) + Li

∗(r) + Ls
∗(r)
)

e−
∫ rb

r c(r′)dr′dr + L∗(ra)e−
∫ rb

ra
c(r)dr, (2.51)

where the constant was found by considering the case when ra = rb. Using the complete terms in Table 2.3
while maintaining the simplified one-dimensional notation, we have

Lλ(rb, t, %ω)
n(rb, t)2 =

∫ rb

ra

(
1

n(r, t)2 be(r, t, λ)
∫

Ω

β̃e(r, t, %ω′ → %ω, λ)Lλ(r, t, %ω′)d%ω′

+
1

n(r, t)2 bi(r, t, λ′ → λ)
∫

Ω

∫

Λ

β̃i(r, t, %ω′ → %ω, λ′ → λ)Lλ′ (r, t, %ω′)dλ′d%ω′)

+
1

n(r, t)2 S o(r, t, %ω′)β̃s(r, t, %ω, λ)
)

e−
∫ rb

r (be(r′)+ai
∗(r′)+ae(r′))dr′dr

+
Lλ(ra, t, %ω)

n(ra, t)2 e−
∫ rb

ra (be(r)+ai
∗(r)+ae(r))dr. (2.52)

While we will delay a detailed discussion of it until Chapter 5 (eventually), it is easy to use this exact same
equation when considering polarized light. Essentially, each radiance term needs to be replaced by it’s po-
larized representation (a Stokes vector) and each scattering phase function must be replaced by a scattering
matrix (composed of a Mueller matrix and rotation matrices).

2.7.5 Practical Form of the RTE

The preceding section introduced an integral form of the radiative transfer equation that can only be solved
numerically except in special, and not particularly useful, cases. For practical purposes, we would like to
use a numerical form that is well suited for ray tracing application. As it stands, the form of Equation 2.52
integrates the radiance along an entire ray at once and encompasses all of the variations in the IOPs, in-
scattered radiance and emitted radiance. The customary simplifying transformation is to break up the ray into
small sections and iteratively calculate the contributions from each segment to the total radiance along the ray
(as seen in Figure 2.5). This method is sometimes called “ray marching.” Within each section, the IOPs and
radiance contributions are assumed to be constant. Additionally, we assume that the length of the segment,
∆r, is much smaller than the path along which we are integrating. We can make the following approximation
for the radiance leaving the ith segment with a center point, ri,
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Figure 2.5: Segmentation of the integral

Lλ
(
ri +

∆ri
2 , t, %ω

)

n
(
ri +

∆ri
2 , t
)2 ≈ 1

n (ri, t)2

(
be (ri, t, λ)

∫

Ω

β̃e (ri, t, %ω′ → %ω, λ
)

Lλ
(
ri, t, %ω′

)
d%ω′

+bi (ri, t, λ′ → λ
)
∫

Ω

∫

Λ

β̃i (ri, t, %ω′ → %ω, λ′ → λ
)

Lλ′
(
ri, t, %ω′

)
dλ′d%ω′

+S o
(
ri, t, %ω′

)
β̃s (ri, t, %ω, λ

))
∆ri

+
Lλ
(
ri − ∆ri

2 , t, %ω
)

n
(
ri − ∆ri

2 , t
)2 e−(be(ri)+ai

∗(ri)+ae(ri))∆r. (2.53)

We were able to eliminate the troublesome e−
∫ rb

r (be(r′)+ai
∗(r′)+ae(r′))dr′ term by recognizing that

e−
∫ rb

ri
(be(r′)+ai

∗(r′)+ae(r′))dr′ ≈ e
−
∫ rb

ri+
∆ri
2

(be(r′)+ai
∗(r′)+ae(r′))dr′

, (2.54)

when the equation is used to calculate the radiance due to the entire ray, from ra to rb. Selecting N segments of
arbitrary length, the final radiance at distance rb is calculated recursively where the last term can be rewritten
as

Lλ
(
ri − ∆ri

2 , t, %ω
)

n
(
ri − ∆ri

2 , t
)2 =

Lλ
(
ri−1 +

∆ri
2 , t, %ω

)

n
(
ri−1 +

∆ri
2 , t
)2 . (2.55)

These ideas are illustrated in Figure 2.6.
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Figure 2.6: Illustration of the practical form of the RTE.

2.8 Computation of the RTE Components

Computation of the majority of the RTE components is fairly straightforward. The initial radiance at ra is
usually a reflected or source radiance previously or recursively calculated using standard ray tracing tech-
niques. The inherent optical properties (absorptance, scatterance, and refractive index) at each point can be
derived from models or measurements and are discussed further in Chapter 5. The source radiance (the S o
term) can be treated in a similar way, i.e. treating spontaneous emission of radiation by the volume as an
inherent property of the medium related to the physical components of the IOPs (e.g. the concentration of
bioluminescent chlorophyll).

Once the above terms are accounted for, we are left with an unknown quantity—the radiance coming from
every direction %ω′ (whether the computed radiance is at the current wavelength (the elastic Lλ) or at another
wavelength (the inelastic Lλ′ )). The computation of this component and, more importantly the entire spherical
integral of contributions to in-scattered radiance, is not straightforward. The following chapter describes the
problems associated with this calculation and discusses the solution (photon mapping) that will be used by
this work.
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3.1 Introduction

In this chapter we discuss “photon mapping”—a technique that will allow us to efficiently solve the in-
scattered component of the Radiance Transfer Equation (RTE). We present and derive both the traditional
concept of volumetric photon mapping as well as extensions that will enable us to effectively apply the same
techniques for littoral modeling. Unbiased generation of photons from a DIRSIG modeled atmosphere is
described in detail and we give an overview of the propagation process. The novel search algorithm that
enables us to efficiently search for photons is presented and we show how to construct the density estimate
and apply it to the RTE. Finally, we discuss the inherent susceptibility of photon mapping to bias errors and
discuss efficient compensation algorithms.

3.2 In-Scattered Components of the RTE

Returning to the numerical solution to the radiance transfer equation derived in Section 2.7.5, we will examine
the calculation of the in-scattered radiance portions (iv and v in Table 2.3). While the techniques to be
discussed are applicable for both elastic and inelastic scattering, the simpler elastic form of the expression
will be considered. The development will be simplified further by eliminating the time dependence of the
component terms. Thus, the expression for in-scattered radiance leaving a segment centered at point rc and
of length ∆rc can be written as

Lλ
(
rc +
∆rc

2
,ω

)
=

(
b (rc, λ)

∫

Ω

β̃
(
rc,ω

′ → ω, λ) Lλ
(
rc,ω

′) dω′
)
∆rc. (3.1)

We have assumed that the index of refraction does not change significantly from rc to rc +
∆rc
2 .

Assuming that the inherent optical properties are known at point rc and at wavelength λ, the only unknown
in the equation is the radiance coming from direction ω′. Since, in the integral, ω′ will cover the full range of
possible directions represented by the sphere Ω around the point, the entire light field must be known at point
rc in order to accurately calculate the in-scattered radiance. Calculation of Lλ (rc,ω′) is not a trivial task.

3.2.1 Calculating the in-scattered radiance

Conceptually, the easiest way to calculate Lλ (rc,ω′) would be to use the same backwards ray tracing process
that is used to calculate the contribution to the detector. That is, for every direction, ω′, a new ray could be
sent out and the radiance contribution could be calculated. Of course, since there are an infinite number of
directions in Ω, the integral would either have to be solved using standard numerical techniques or using a
Monte Carlo type approach (Chapter 4 examines Monte Carlo techniques for different problems). Within a
volume, every new ray that would be produced to calculate the integral would also need to do a ray marching
integration along its own path. This would result in more rays being generated to calculate the in-scattered
radiance, which, in turn, would generate their own rays...ad infinitum.

Practically speaking, after a few generations of rays, diminishing returns would limit the effectiveness of
sending out numerous new rays and the contributions of following generations could be approximated or ne-
glected. In any case, the number of operations increases approximately exponentially as each new generation
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Figure 3.1: Illustration of rays generated by a single scattering path

of rays attempts to calculate the in-scattered radiance. Even with a moderate number of samples, a limited
number of scattering generations, and large integration step sizes, the calculation is infeasible for any prac-
tical application. Figure 3.1 shows some of the rays generated by a single scattering path and gives a visual
indication of the complexity.

3.2.2 Getting to the source

Even if it was possible to efficiently calculate multiple generations of radiance contributions to the integral
via backwards ray tracing, one would still be faced with yet another efficiency problem. For natural (littoral)
scenes, the primary illumination source is the sun. This is not to say that the down-welled radiance from the
entire sky dome plays an insignificant role, but the phenomena often of interest to littoral modeling is highly
dependent on direct illumination from the sun (lensing effects from the wave surface, for instance). In normal
ray-tracing situations, when the ray and illumination source exist in the same medium, prior knowledge of
the locations of important illuminants enables the user to ensure inclusion of those illuminant contributions in
the integral by explicitly sending rays to them. For multiple media with boundaries of arbitrary geometry in
between them, efficiently predicting the direction of a ray that will eventually intersect the primary illuminants
is a difficult task under natural conditions.

Briefly, it is possible to naively avoid the exponential growth of backwards ray tracing by reversing the direc-
tion of the rays and trace from the sources to the detector (forward ray-tracing). Unfortunately, this approach
faces the same pitfalls in that we cannot efficiently ensure that we are tracing “important” rays, that is, rays
that will eventually reach the detector. Somewhat surprisingly, this forward ray-tracing technique is com-
monly used for Monte Carlo solutions that deal with very simplistic scenarios such as a Light Amplification
by Stimulated Emission of Radiation (LASER) device on a light table. It is beyond the scope of this thesis
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to discuss whether this is a useful approach in those specific situations, but it shall be sufficient to state that
such techniques are not appropriate for complex environments.

3.2.3 Photon mapping

For these and other reasons, it is impractical to do purely forward (rays from sources) or purely backwards
(rays from the detector) calculations for multiple scattering situations. Instead, we will use a hybrid approach
called photon mapping that computes the integral along the ray using a two-pass technique. The photon map-
ping approach was developed by Henrik Wan Jensen [Jensen, 2001] in order to efficiently produce synthetic,
ray-traced images using Monte Carlo methods, primarily for Computer Graphics Industry (CGI) applications.
The “photon map” is a collection of discrete bundles of energy (the “photons”) that are organized in some
way that conveniently expresses the spatial relationships between the energy bundles (the “map”). Within a
particular scene, the photon map is a static entity which contains information about energy that interacts with
the volume. When ray-tracing a scene, scattering contributions are measured using local density estimates
obtained by querying the photon map. These calculations are very efficient, especially compared to equivalent
Monte Carlo techniques for evaluating in-scattered radiance.

Generally, the photon mapping discussed in this chapter refers to volumetric photon mapping. By far, the
most common variety of photon mapping is surface photon mapping which applies similar techniques to
estimate the contributions of reflected radiance. While these techniques are very useful and will be used
as part of the overall solution (as surface radiometry solvers), we are primarily concerned with developing
volumetric photon mapping for littoral modeling and this chapter will focus on that application.

3.2.4 Radiometric derivation of Photon Mapping

The contribution to radiance due to elastic in-scattering along a ray is expressed as the path function

LE
∗(%x; ξ̂; λ) ≡ L∆r(%x; ξ̂; λ)

∆r
, (3.2)

where L∆r(%x; ξ̂; λ) is the radiance scattered into direction ξ̂ within the ray segment ∆r. The scattered radiance
is found by considering the local light field at point %x. Specifically, the flux traveling in direction ξ̂′ and
normal to an area element ∆A′ that is available to be scattered at %x can be described by an incident irradiance,
Ei(%x; ξ̂; λ). Figure 3.2 shows a conceptual sketch of this setup. By definition, the radiance generated along ∆r
by this irradiance being scattered into direction ξ̂ is given by the volume scattering function:

β(%x; ξ̂′ → ξ̂; λ) ≡ I∆r(%x; ξ̂; λ)
Ei(%x; ξ̂; λ)∆V

=
L∆r(%x; ξ̂; λ)

Ei(%x; ξ̂; λ)∆r
. (3.3)

Plugging into Eq. 3.2 and replacing the irradiance with the equivalent flux equation yields an expression for
the path radiance from a particular direction, ξ̂′, in terms of the scattering function and a directed flux density:

LE

∗,ξ̂′ (%x; ξ̂; λ) = β(%x; ξ̂′ → ξ̂; λ)Φ(%x ∈ ∆A′; ξ̂′; λ)
∆A′

. (3.4)
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Figure 3.2: Illustration of some of the quantities used in deriving the photon mapping contribution.

The flux expression in this equation, Φ(. . .), decribes the total flux (i.e. time-averaged photons) passing
through a small area, ∆A′ from the direction, ξ̂′ that is perpendicular to ∆A′. In order to solve LE

∗(%x; ξ̂; λ)
using the Photon Mapping approach, four additional approximations will be made.

1) The incident irradiance, Ei, is estimated from the local volume, rather than the local area. Regardless of
the structural representation of the light field that will be used, the fact that the flux is naturally distributed
in a volume along the path suggests that an area density may be difficult to compute directly. Instead, the
directed flux density will be based on a volume, V , around %x. Although it would be possible to extrude ∆A′
along a perpendicular segment ∆r′, V is defined to be independent of ξ̂′. The flux density in V is assumed to
be representative of the flux density at %x.

2) The contributed radiance will be computed explicitly for a discrete solid angle. For computation, the path
direction (ξ̂) is the representative sample of a solid angle, ∆Ω = ω. In general, it is usually sufficient to use
the continuously differentiated value of the scattering function for the sample. In natural waters, however, it
is likely for the value of the volume scattering function to change dramatically within a very small solid angle
(e.g. the forward region of the Petzold functionPetzold [1972]). Under these conditions, it is advantageous to
calculate the point estimate based on the particular solid angle, ω, involved.

3) By construction, the flux density will be estimated exclusively from flux that will be scattered. If the total
flux in V is replaced by the subset of the flux that will be scattered within V , denoted as Φs(%x ∈ V; ξ̂′; λ), then
it is only necessary to know the directional distribution of the scattered flux. The volume scattering function,
β, can be replaced by the normalized volume scattering phase function, β̃.

4) The spectral dependence is explicitly defined by the mean value of a bandpass spectral response function.
It is assumed that it is sufficient to compute the path radiance at a particular wavelength, λi, that is the
wavelength obtained by finding the detector response weighted average of the ith bandpass.

Applying these approximations to Eq. 3.4 leads to an equation for the estimated path radiance contribution
from a single direction, ξ̂′:
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Figure 3.3: The two collection control parameters, V and ω, shown for an arbitrary search volume (the actual
search volume used is not a sphere and will be introduced later). Note that ω is in the direction of light travel
along the collection ray.

LE

∗,ξ̂′ (%x; ξ̂; λRi ) ≈



∫
ω
β̃(%x; ξ̂′ → ξ̂ω; λRi )dξ̂ω

ω


 ×

[
Φs(%x ∈ V; ξ̂′; λRi )

V

]
. (3.5)

In this equation, β̃(%x; ξ̂′ → ξ̂ω; λRi ), is a locally defined property of the medium, Φs(%x ∈ V; ξ̂′; λRi ) will be
found from the yet to be determined expression of the light field, and two “control” parameters, V and ω,
describe the local region and subset of directions from which the radiance will be estimated. For clarity, the
two control parameters, V and ω, are shown in Figure 3.3.

3.2.5 Representation of the light field

In Photon Mapping, the light field is expressed as an aggregate of time-averaged photon bundles which are
usually referred to as “photons,” despite having units of flux (watts) and representing the power generated by
many photons. For clarity, the symbol “ !! ” will be used to represent a time-averaged photon bundle within
this description.

Each bundle, !! , has an associated flux and three other properties suggested by the flux component of Eq.
3.5. A 3-tuple, %x is needed to localize the flux in space. A normalized vector or pair of angles is used to
represent the direction, ξ̂′, of the bundle before scattering. Finally, a spectral identity can be described by
the representative wavelength, λRi , or simply the bandpass index, i. Assuming a representative distribution of
!! s in V , the total in-scattered path radiance at %x can be found as the discrete sum,

LE
∗(%x; ξ̂; λ) =

1
ωV

∑

!"∈V Φ !" ∫
ω
β̃(%x !" ; ξ̂′!" → ξ̂ω; λ !" )dξ̂ω (3.6)
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The !! s are organized in a “map” that facilitates finding all%x !" in volume V . The classic map structure[Jensen,
2001] is a k-dimensional (or k-d) binary treeBentley [1975] where k = 3. The k-d tree can optimally segment a
space based on splitting the dimension with the greatest point distribution variance. k-d trees are useful, if not
ideal, for a nearest-neighbor search since it involves traversing a well balanced binary tree and neighboring
points are found nearby in the tree.

Photon Maps were primarily intended to be used for the estimation of irradiance at a surface point where the
necessary flux is located in a symmetric region around the hit point (i.e. on a plane that is arbitrarily oriented).
While the Photon Mapping techniques were adapted for in-scattered path radiance estimation, these methods
have inherited the nearest-neighbor focused map structure that is no longer ideal for collecting !! s along a
ray. A novel volumetric map structure is introduced in Section 3.5 that can potentially be orders of magnitude
faster than methods based on stepwise nearest-neighbor searches. The following section describes how the
map is built from the illumination conditions during a prelimary pass.

3.3 The First Pass – Propagation

The purpose of the first pass of the photon mapping approach is to build a representation of the scattered
light field within the scene. In doing so, we mimic the natural process of generating photons at sources and
propagating them through the scene. Of course, our concept of a photon is slightly different from the physical
variety and we will use the notation presented in Chapter 2 and write physical photons in italics and photon
map photons using the normal font. The propagation process is equivalent to established forward Monte
Carlo techniques (see, for instance, Mobley [1994]).

3.3.1 The photon

This section describes the conceptual composition of a photon before we address the actual data structure.

3.3.1.1 Basic components

Traditionally, a photon is defined by

• A location in space [x, y, z]

• A direction of propagation at the storage point [θ, φ]

• A key value (used internally to structure the map)

• An associated flux [watts] ([ joules/sec])

This representation is all that is needed to do basic photon mapping (as presented in Jensen [2001]). For our
application, it will be necessary to add a few additional components (and to remove some as well).

3.3.1.2 Spectral component

Since we are interested in doing spectral calculations using the map, it is possible to add an associated
wavelength, λ. This wavelength is completely independent from the photon’s flux and actually corresponds
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to the center wavelength of a spectral band and is assumed to represent the spectral character of the entire
band. The bandpass list used for a simulation corresponds to the the sensitivity of the detector used. Each
band center has a corresponding index that is used to store the wavelength in the photon. The number of
photons of a particular wavelength index should be proportional to the aggregate weight of that index due to
the complex interaction of source illumination and IOPs.

The choice to use a single wavelength index rather than a full spectrum is related to storage constraints that
are discussed below in Section 3.3.2. Additionally, the wavelength index may be used explicitly or implicitly
(which will be explained below, as well).

3.3.2 Photon storage

If we assume for the moment that, in general, more photons give a better density estimate and that memory
is a limited resource, it is important to store each photon as efficiently as possible. Consequently we will
favor implicit storage over explicit storage. When data is explicitly stored, each photon structure will provide
storage for the data. The memory requirement of that data is therefore equal to the number of photons
multiplied by the storage size of the explicit data element. In contrast, implicit storage ensures that the value
of a particular data element within a particular group is constant so that the data only needs to be stored once
for each group. “Groups” usually consist of independent photon maps. Storage of each photon component is
described below. Approximate memory requirements are given for each component and these are intended to
be used as relative guides since practical memory management requires discrete blocks of certain sizes.

3.3.2.1 Photon storage: Location

The location of each photon is a point in 3-space. The location of the photon will be used in order to find the
distance from the search location. The direction is characteristic of individual photons and must be stored for
each photon.

Compression of the location via quantization might be possible, but we choose to leave it uncompressed so as
not to force photons into effectively large discrete voxels (and thus change the photon’s location significantly).
Of course, it is not feasible to store values of arbitrary precision in memory so some degree of compression
exists due to data type precision. We will assume that a float (4 bytes) is sufficient to represent each directional
element of the location (double precision is probably not necessary).

Storage Requirement: Three 4 byte data elements

3.3.2.2 Photon storage: Direction

The direction of the photon is used in conjunction with the Scattering Phase Function (SPF) to determine
“how much” of the bundle of flux is scattered into the ray along which we will be integrating. The direction
is characteristic of individual photons and must be stored for each photon.

In cartesian coordinates a direction is a 3-element vector analogous to the location. However, since all
direction vectors have a length of one, we can write the same vector in spherical coordinates using a zenith
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and an azimuth angle (measured relative to arbitrary basis vectors). In contrast to the location, we will
compress the direction values by assuming that the SPF is slowly varying so that minor errors in the direction
are not significant. Following Jensen’s lead, we therefore represent each angle as a single character (1 byte).

Storage Requirement: Two 1 byte data elements

3.3.2.3 Photon storage: Key

The key value is used to traverse the k-dimensional binary tree used by the map to store the photons. Again,
following Jensen, we are using a specialized version of the k-d tree that makes each element of the map a
node of the tree (rather than placing the elements at the “leaves” of the tree). The key represents the direction
in which the k-space was split for a particular node (k = 3 for our purposes). Since the novel search method
presented later will eliminate the use of the k-d tree, we can safeley remove this from the photon storage
requirements.

Storage Requirement: none (not needed)

3.3.2.4 Photon storage: Flux

The flux (or power) of each photon in the map is chosen to be implicit and constant across all photon maps
that are generated from the same source illuminants (spectral information is derived from relative population
size, not variable weighting). This is an important feature because it ensures that each photon in the map has
equal weighting. Given the fact that the number of photons used to construct the map is limited by the amount
of storage space available, it is important that this limited space is not filled with photons that will have an
insignificant contribution to the density estimates. By maintaining photons of equal flux, no photon in the
map is less important than any other (assuming equal probabilities of usage). This is the optimal distribution
of the available space.

As mentioned previously, if every photon in the map has the same flux, it is not necessary to explicitly store
the associated flux in the photon construct and therefore, we save a significant amount of memory. It should
be noted, however, that numerous variations on the basic photon map do not maintain this constancy. Variable
flux is usually used in order to deal with scene specific optimizations that require changing the flux during
propagation.

Storage Requirement: none (implicit)

3.3.2.5 Photon storage: Wavelength index

Using the spectral density estimate that will be explained later, the choice to make the wavelength index
implicit or explicit depends on whether storage or speed is more important and how many spectral bands are
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being modeled. An explicit implementation entails adding an additional storage requirement to the photon
data structure in the form of a single byte used to store the wavelength index for the photon. Of course, if
there were more than 256 wavelengths, it would be necessary to use a larger data type, but we will assume
for most cases that 256 is sufficient and allow for additional storage space if necessary. If we were using
the traditional method of tracking the splitting key, the storage requirement for the wavelength index can be
further reduced (to nothing) by embedding the index in the variable used to store the key. The modified key
variable can then be calculated by

keymod = key + 3 · indexλ, 0 < indexλ ≤ 84. (3.7)

The key and wavelength index can then be extracted from the modified key. Unfortunately, this method
significantly limits the number of spectral bands allowed in the simulation (to 85). Additionally, it requires
significantly altering the core search algorithm and will slow down each search (due to the cost of extracting
the keys).

We could store an arbitrary number of wavelength indices without the aforementioned disadvantages by
simply constructing a new photon map for each. According to Jensen [2001] (originally Friedman et al.
[1977]), the time needed to find n nearest neighbors in a basic photon map–which would include the explicit
spectral index storage since we do not search on the wavelength–is on the order of O(n + logN), where N is
the total number of photons in the map. Storing the wavelength index implicitly and constructing s photon
maps that each represent one of s spectral indices. Assuming that we want to find an equal number of photons
for each index, the operation now has complexity roughly equal to O(n + s log(N/s)). This change (increase)
in operational complexity is significant, especially when the number of spectral bands is high. In this model,
we will choose to store the spectral index within the photon.

Storage Requirement: a single 1 byte data element

3.3.3 Generating Source Samples

Every photon that will be propagated through the scene needs to start at a source. The sources in a scene
can represent a wide range of flux contributions, spectral distributions, polarizations and physical sizes. This
means that we need to find a way to appropriately sample the sources such that the sampled photon distribu-
tion reflects these weights. One of the most straight forward means of doing this is to sample each dimension
of variability independently using one-dimensional importance sampling. This technique is sometimes called
“Russian Roulette,” but we will abstain from using this rather dramatic moniker.

3.3.3.1 One-Dimensional Importance Sampling

One-Dimensional importance sampling is a straight forward process. The steps are illustrated in Figure 3.4.
Given an arbitrary number of elements, ei, with associated weights, W(ei), the weights are converted to
probabilities, P(ei), by dividing by the sum of all of the weights (! and "),



3.3. The First Pass – Propagation 45

Figure 3.4: Steps used in one-dimensional importance sampling

P(ei) =
W(ei)∑
i W(ei)

. (3.8)

The probability elements are ordered so that the largest probability comes first in the probability vector (#),
which helps optimize the next step when the the probabilities vary. In step $, a uniformly distributed random
number r ∈ [0, 1] is pulled from a generator and the value is iteratively compared – this is why we put the
larger probabilities first – to the cumulative probability of the vector elements. The sampled element is the
one corresponding to the location of the random number in the vector (element E in the example). One-
Dimensional importance sampling is implemented via the CDVectorSampler class, which is included in the
code as part of the CDSampleGen library that is described in Chapter 4.

3.3.3.2 Source Sampling: Atmosphere

Once we have the means to sample any arbitrary set of weighted elements (one-dimensional importance
sampling), we can address the problem of sampling the entire sky. For simplicity, we will assume that the
same sky is seen from any point within a horizontal section of the scene.defined by a bounding box that
encompasses the entire area of interest (a more robust method is reserved for future work, see Section 9.7).
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1

Figure 3.5: Illustration of sampling the atmosphere

The bounding box should be padded to ensure that border samples with large zenith angles can interact with
the scene. The effective direction of atmospheric photons is determined by sampling the section first and then
determining the origin.

The sky dome (which is a source of down-welled radiance) is broken into quads, each of which is assumed
to homogeneous (i.e. the radiance coming from any point within a quad is the same as any other point in the
same quad). Quads are implemented via a sphere section sampler and the weight is equal to the integrated flux
coming from the quad (using the area of the current section). All of the quads have equal area and, therefore,
define equal solid angles. The sun and moon disks are constructed using a disk sampler and oriented according
to ephemeris tables for the current date and time. The weight of the solar/lunar disk(s) is the total integrated
flux coming from the solid angle defined by the disk. Figure 3.5 shows how the atmosphere is divided. The
zenith, θ, and azimuth, φ, angles are shown.

A few more steps are necessary to generate the final sample. The entire process of generating photons is
summarized in the list below (this approach assumes that the photons do not interact with anything until they
pass through the top of the bounding box discussed earlier).

% Initialize a count of “shot photons” to zero

& Initialize the photon map with the pre-determined number of photons to be stored The number of
photons defined in the preceding two steps are independent from each other

' For each photon, until the photon map is filled, perform the following steps:
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! Sample spatially within the horizontal section using the techniques discussed in Chapter 4
The probability of selecting any point within a section is equal to the probability of selecting any
other point within the same section

" Record the sampled point, SectionSample
SectionSample will be used to determine the direction of the atmosphere sample

# Use one-dimensional importance sampling (CDVectorSampler) to select an element of the at-
mosphere (a sky quad or a solar/lunar disk)
Weighting is based on the amount of flux produced by each element

$ Sample spatially within the element using the techniques discussed in Chapter 4 – specifically,
Section 4.12.1 for the sky quad and Section 4.11 for the solar/lunar disk.

( Record the sampled point, PhotonOrigin
PhotonOrigin defines the initial position of the photon

) Calculate the initial direction of the photon from point to point,
AtmosphereSample→ SectionSample = PhotonDirection

* Use one-dimensional importance sampling (CDVectorSampler) to select the wavelength of the
photon. Weighting is based on the amount of flux contributed by each bandpass for the flux
associated with the atmosphere element

+ Propagate the photon through the scene and possibly storing in the photon map as it is either
absorbed, reflected, or scattered This step is discussed in the following sections

, Increment the count of shot photons The photon count must be incremented regardless of the fate
of the photon

- Calculate the flux associated with each photon by dividing the total flux passing through all of the
sections by the number of photons that were “shot” This is not the number of photons stored in the map

3.3.3.3 Source Sampling: Additional Sources

Any other type of source object can be used to generate photons in a manner analogous to that used for the
atmosphere. In Chapter 4 we discuss a means of uniformly sampling arbitrary geometry that can be defined
in terms of triangular facets. This technique can be used to provide the spatial sampling needed to generate
the initial location of photons and other importance sampling techniques can be used to determine the spectral
content, directional distribution, etc..

3.3.4 Propagation Distance

We can find the distance traveled by a photon in a homogeneous medium by first examining the losses along
our beam due to the total attenuation coefficient, c, as discussed in Section 2.7. This loss is described as

(ω · ∇)L∗ = −cL∗, (3.9)

or, more conveniently, if we consider the one-dimensional simplification,
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d
dr

L∗(r) = −c(r)L∗(r), (3.10)

where the spatial dependency has been made explicit and the ∗ once again is used as a reminder that this
is a path radiance. First, we will restrict ourselves to consider a homogeneous medium such that c(r) = c.
This assumption makes the following mathematics tenable, but is not particularly realistic. Re-Arranging and
integrating both sides of Equation 3.10 yields

dL∗(r)
L∗(r)

= −cdr,
∫ L∗(r)

L∗(0)

1
L∗(r)

dL∗(r) = −c
∫ r

0
dr′,

ln(L∗(r)) − ln(L∗(0)) = −cr,
L∗(r)
L∗(0)

= e−cr. (3.11)

The quantity cr is often rewritten as the optical depth, +, and we will use this convention here. The fractional
radiance remaining after propagating an optical depth of + is exponentially decreasing. The equation

L∗(r)
L∗(0)

= e−+ (3.12)

can be interpreted as a probability density distribution if we consider the following: An arbitrary bundle of
photons headed along r; At any optical depth, +, the number of photons remaining is given by the product of
the initial amount and the function exp−+, which is the fraction of photons remaining. Thus, the probability
of a single photon remaining in the beam at optical depth + is given by

p(+) = e−+. (3.13)

This function is an appropriate probability density function (pdf) since it is non-negative and

∫ ∞

0
p(+)d+ = 1. (3.14)

The cumulative distribution function,

P(+) =

∫ +

0
e−+

′
d+′, (3.15)
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describes the probability that a photon will have been lost at optical depth +. As expected, when + = ∞,
P(∞) = 1.

In order to sample the distance that the photon travels, the cumulative probability is assumed to be a uniform
random variable in the range [0, 1], corresponding to the possible values of the integral of the pdf. If we plug
a random variable, ξ, into the equation for the cumulative distribution function and solve forthe optical depth
corresponding to this random variable we get

P(+) =

∫ +

0
e−+

′
d+′,

ξ =

∫ +

0
e−+

′
d+′

= 1 − e−+,
+ = − ln(1 − ξ), (3.16)

or, equivalently,

r = − ln(1 − ξ)
c

. (3.17)

Thus, the distance that a photon travels in homogeneous waters (media) is a simple equation dependent only
on the attenuation coefficient. In cases when we know that the optical properties are changing along the
photon’s path (by comparing the beginning and end), we attempt to use a linear model to describe the change.
The inversion of the linear optical depth is slightly more complicated, but it ends up being a matter of just
solving a quadratic equation. Most natural waters do not have linear distributions of constituent materials,
but this approxiamtion is assumed to be sufficient.

3.3.5 Event Types

At the end of the distance traveled by the photon, the photon “exits” the beam. The process by which the
photon exits is defined by the components of c (as given in Section 2.7) and usually can be characterized as
either absorption or scattering. The type of event that occurs can be found by constructing a one-dimensional
importance sampler (see Section 3.3.3.1) where the weights are the relative contributions to c.

3.3.6 Photon Storage

Regardless of the type of event, the position, direction and any other relevant explicit properties of the photon
are stored in the photon map prior to beginning the exit process. Since the maximum number of photons in
the map is usually limited by the user, storage can trigger the end of the propagation process. The end point
is dictated by the aggregate of a series of random events, so it is imperative that the generation of photons be
an unbiased process (as was shown in Section 3.3.3).
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3.3.7 Continued Propagation

If the photon is absorbed, or is otherwise converted to non-radiant energy at the same wavelength, the propa-
gation of the photon ends. If the photon is scattered then the propagation continues, usually in a new direction.
This direction is found by sampling the scattering phase function (see Chapter 4 for sampling methods and
Chapter 5 for specific scattering phase function models). Once a new direction is found, propagation starts
again.

3.3.8 Limiting Propagation

Under certain circumstances where the absorption coefficient is very low or the scattering coefficient is very
high, it is possible for a single photon to continue scattering well beyond any reasonable scattering order (i.e.
the number of scattering events). It is usually advantageous to limit the number of scattering events and to
prematurely end the propagation cycle of photons which go beyond the limit. This limit can either be set
by the maximum number of scattering events allowed or by using a cumulative probability threshold that
selectively propagates important (more probable) photon through more scattering events than less important
(less probable) ones. The former limitation method is better suited to the user interface while the latter is an
internal optimization

Propagation of photons into the scene during the first pass.
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3.4 The Second Pass – Collection

The second pass of the Photon Mapping method is based on general surface ray tracing methods where
radiance transfer is computed from rays traced from detector to source exploiting the reciprocal nature of
photon travel. The exact method used for surfaces is not important, and could incorporate any of the many
techniques that are available, including Monte Carlo sampling and surface-based Photon Mapping. The
important addition is that each ray that passes through a participating medium must incorporate full radiative
transfer. The integrated radiance over a full ray segment from ra to rb assuming no inelastic scattering or
source terms is:

L(rb; ξ̂; λ) =

∫ rb

ra

∫

Ω

β(%x(r);%ξ′ → %ξ; λ)L(%x(r); ξ̂′; λ)dξ̂′dr

+L(ra; ξ̂; λ)e−
∫ rb

ra
c(%x(r);λ)dr,

≈
n∑

i=1

Φ !"
ωVi

∑

!"∈Vi

∫

ω

[
β̃(%x !" ; ξ̂′!" → ξ̂ω; λ !" )dξ̂ω] ·

∆rie
−
∫ rb

ri
c(%x(ri);λ)dr

+L(ra; ξ̂; λ)e−
∫ rb

ra
c(%x(r);λ)dr, (3.18)

where ray segment [ra, rb] has been divided into n subsegments with widths ∆ri, centers ri, 1 ≤ i ≤ n, and
corresponding volume, Vi. Though we have ignored them for brevity, inelastic and source terms could be
added to Eq. 3.18 with no loss of generality. The process of sub-segmenting the ray won’t be discussed here
because the novel search method introduced in Section 3.5 will render it inconsequential.

Up to this point we have been treating the photon map as arbitrary storage for the photons that generate
events as they are being propagated through the scene. In this section, we examine one of the important
contributions of Jensen’s work–the integration of a k-dimensional binary tree to facilitate searching for stored
photons around a local position. We use this concept to look at using the photon map to generate an estimate
of the local scattered light field. Finally, we use this context to present a novel search algorithm that is better
suited for volumetric ray calculations and can be orders of magnitude faster than volumetric searches using
the traditional k-d tree. The k-d is still a very useful storage structure which is the motivation for covering it
in moderate detail here.

3.4.1 K-Dimensional Binary Tree

We will eventually need to be able to calculate the density of photons around an arbitrary point. Given the
fact that there will probably be millions of photons in the photon map, efficiently finding the n closest photons
to the query point is not a trivial matter. In order to process these types of associative searches as quickly as
possible, Jensen organized photons into a type of binary tree known as a k-d tree [Bentley, 1975], where k
is the number of keys (attributes/dimensions). The k-d tree used is balanced so that the longest path to any
record in the tree is equal to LOG2N, where N is the total number of records in the tree (photons in our case).
The balancing process results in a k-d tree that is “left-balanced,” which means that any extra records (i.e.
ones that do not complete a full row of nodes) will be filled in from the “left” side of the tree. By balancing
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the k-d tree in this way, the nodes can be arranged in a set pattern in memory so that pointers are not needed
to connect each node to its neighbors Friedman et al. [1977].

Each photon in the map becomes either a terminal or non-terminal node in the k-d tree. Each non-terminal
node has two child nodes. Normally, each non-terminal node would include pointers to these child-nodes,
but by left-balancing the tree, we eliminate this requirement. Each non-terminal node splits the subspace in
order to form two new subspaces. Thus, the first node (or root node) splits the entire k-space into two new
subspaces. The key (dimension) along which the space is split is determined by finding the key with the
largest spread. For computational considerations, a simple distance measurement (Equation 3.19) is used to
determine the spread (rather than a variance calculation). In order to balance the tree, each space must be split
into two subspaces containing the same number of photons. This is done by finding the median key value
of the enclosed photons and using the corresponding photon as the node. In the case of an even number of
photons, the larger of the two median values is used.

3.4.2 Example k-d tree construction

Figure 3.6 shows a 2-dimensional space containing 16 random points labeled 1-16 (in the order that they were
generated). Each point has two properties (keys): an x-coordinate (horizontal) and a y-coordinate (vertical).
The x values increase from left to right and the y values increase from bottom to top. For this example, we
will simply switch between these two keys for splitting purposes rather than evaluating the largest spread.
Starting with the x-key, the median points are 6 and 1, so we choose the point with the larger x-value to be
the first node, Point 1. Point 1 becomes our root node, which can be seen in Figure 3.7 with the partition
labeled as A. The rest of the nodes will be evaluated from left to right and bottom to top. For the next node
we switch keys from x to y. The median point in the left subspace is Point 15 (the greater of two median
points in the current key was chosen again), so this point become a non-terminal node that is a son of the root
node (partition is labeled B). The next node is Point 11 (line C), followed by Point 3 (line D). Finally, we
reach Point 8, which is the only extra record in our tree. As can be seen in Figure 3.6, Point 8 is at the left of
our tree (hence, the term left-balanced). It also represents the longest path from the root node (log2 16 = 4).
The rest of the nodes are similarly calculated.

3.4.3 Map Re-Use

Once it is formed, the photon map is a static entity that contains all of the information that we need about
the approximate scattered light field within a volume. Every time we need to find the local density within
the volume we can re-use the same photon map. Map re-use is where the advantages of photon mapping are
really demonstrated. Instead of having to send out new, backward propagated sample rays at every point in
our integration to calculate the in-scattered radiance, we can simply re-use the forward propagated photons.

3.4.4 Searching the Tree

In order to search the k-d tree, we need to know the relationships between the nodes. From the construction
above, we know that each left child-node represents a subspace in which all of the values for a particular
key are less than (or equal to) the key value for the current node while the right child-nodes are greater. For
example, in Figure 3.6, all of the points to the right of Point 1 must have a greater x-value; all of the Points
to the left of Point 12 must have a smaller y-value; Point 5’s x-value must be between Point 1 and Point 14;
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1

Figure 3.6: The points used to construct the example k-d tree (numbers) and the corresponding splitting lines
(letters).

1

Figure 3.7: The k-d tree constructed in the example using Figure 3.6).
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Point 16 has the highest values for both x and y; Point 8 must have the lowest; etc.. Since we do not normally
switch between partitioning keys in a set pattern (as we did in the example), it is necessary to store the key
along which the space was split (this key is also known as the discriminator of the node). This is why we
include the key index variable within the photon structure (see Section 3.3.2). A k-d tree search algorithm
makes use of these relationships to quickly traverse the tree and find the m closest matches to a query record.

When we are searching the k-d tree, we have the choice of either searching for a given number of photons that
are closest to a location or searching for all of the photons that are within a given radius. A search by number
is usually used when we want to ensure that there are enough photons to meet a certain fidelity requirement
while a search by radius is usually used to maintain a certain level of locality around the search site. While
the benefits of either search method is subjective and dependent on the situation, we could use a combination
of the methods to leverage the benefits of both.

3.4.5 Traditional Distance/Volume Calculations

The traditional means of calculating photon distances and encompassing volumes are given here. Initial
developement of this model addressed some of its limitations that won’t be examined in this chapter, but can
be seen in Appendix 11.4.

3.4.5.1 Distance Function

The traditional distance function used by the k-d tree is just the Euclidean distance metric,

d =
√

(x − x0)2 + (y − y0)2 + (z − z0)2, (3.19)

where [x0, y0, z0] is the search location and [x, y, z] is the photon location. This is a fairly obvious choice for
the estimation volume since it recovers the sphere of photons around a point, but other applications of the k-d
tree could certainly use a different metric.

3.4.5.2 Volume Calculation

Since the distance function used by the k-d tree (Equation 3.19) is based on the radial distance from the search
site in any direction, the effective search volume is a sphere.

Vsphere =
4
3
πr3, (3.20)

This is shown to contrast with the novel method which uses a cylinder as its effective search volume.

3.5 Novel search algorithm

Nearest neighbor search structures such as the k-d tree mentioned earlier are efficient at retrieving points
falling in an equidistant volume around a search site. Accordingly, the base shape of the search volume



3.5. Novel search algorithm 55

in Photon Mapping has been a sphere (i.e. V = (4/3)πr3). This search algorithm is more than sufficient for
surface Photon Mapping. In this section, a new search structure and corresponding search volume is proposed
based on volumetric Photon Mapping.

A nearest neighbor map (a k-d tree or otherwise) can be used in volumetric Photon Mapping by assuming
that a local volume at a search point, ri, along the ray is representative of the sub-section, ∆ri. This means
that, for n sub-sections, the map must be independently searched n times. For most simulations, n ≈ 10–100
is a reasonable value on average (i.e. the integration along a ray is done in 10–100 steps).

This approach, however, does not take advantage of the fact that all of the searches are along the same
ray. Instead, every search is done independently at each %x(ri). If a search algorithm could find the nearest
neighbors to the ray itself, rather than a point, then only one search would be needed per ray rather than n.
Such an algorithm would have a different base search volume—a cylinder—that is much better suited for
describing the local volume about a ray. Unfortunately, tree structures such as the k-d tree are not well suited
for this task directly, so another algorithm must be developed.

Consider constructing a virtual volume of influence (or VOI) around each !! . This VOI is defined by a radial
distance that is equivalent to the desired maximum search distance, rs, perpendicular to the ray. Thus, in three
dimensions, each !! ’s region of influence is a sphere centered at %x !" with radius rs. Now, in order to find the
!! s in the cylinder around a ray, one can simply intersect the ray with the VOIs of the !! s in the map. Given

a ray with origin %x(ra), the intersection can be found by using

r2
s = (%x − %x !" )(%x − %x !" ), (equation of the VOI sphere)
%x = %x(ra) + dξ̂, (equation of the ray)

and solving for the distance, d, to the intersection via the quadratic formula. A real solution indicates that the
!! is within the search volume and has the added bonus that it gives the distance along the ray (technically, the

distance to the intersection point on the surface of the sphere, but this can be easily modified in the solution
implementation). Luckily, ray-sphere intersections are one of the most fundamental processes of ray-tracing
and can be implemented very efficiently.

Of course, no matter how fast the intersection code, it is probably not beneficial to test against every !!
in the map. A tree structure can be used to organize the !! s into bounding volumes so that all the !! in
a tree node can be eliminated by a failed intersection test with the bounding volume. This work uses a
simple octree structure to segment the space; i.e. each time the tree splits, the encompassed space is divided
into eight equal sized volumes by three planes with padding to account for VOI overlap. The bounding
volumes are axis-aligned boxes and they can be tested against using using efficient ray-box intersection code
(such as a Plücker coordinate intersection algorithm Mahovsky and Wyvill [2004]). A visualization of a ray
“intersecting” the map is shown in Figure 3.8.

There are a number of organizational structures that could be used here to optimize search times. However,
the primary speedup when compared to a traditional nearest-neighbor search comes from the fact that the
new structure is only searched once per ray. Given only loosely comparable search times between a k-d
tree search in a sphere and the intersection search in a cylinder, the new method can be orders of magnitude
faster just based on n. The intersection search has the added benefit that it is easy to use all the !! s in the
natural local volume around a ray, whereas point searches along the ray will always leave potential gaps.
Approximate search speedups based on exemplar relative run-times for increasing numbers of integration
steps are described and shown in Figure 3.9.
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Figure 3.8: a) A two-dimensional projection of !! s in an octree (i.e. a quadtree) which shows the intersection
of a ray with their volumes of influence and the (unpadded) bounding boxes. b) A three-dimensional view of
the ray-cylinder volume of fixed radius, rs, a corresponding volume of influence, and the collected !! s.
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Figure 3.10: Examples of boundary bias scenarios. Regions in which the locality assumption fail dramatically
are highlighted.

The segment search volume, Vi, is now given by

Vi = πr2
s∆ri, (3.21)

i.e. the volume of a cylinder. When this equation is used for Eq. 3.18, the result,

L(rb; ξ̂; λ) ≈ Φ !"
ωπr2

s

∑

!"∈V
[ ∫

ω
β̃(%x !" ; ξ̂′!" → ξ̂ω; λ !" )dξ̂ω ·

e
∫ rb

r(%x !" ) c(%x(r))dr
]
+ L(ra; ξ̂; λ)e−

∫ rb
ra

c(%x(r);λ)dr, (3.22)

is no longer dependent on segmentation. The volume in which !! s are found is now the local volume of the
entire ray and r(%x !" ) is found as a by-product of the intersection. Segmentation can still be beneficial in order
to re-use computed exponential terms for nearby !! s.

The new search algorithm has one final benefit. Since the VOI radius is not attached in any way (except
conceptually) to the !! s themselves and would be implemented as part of the intersection code, it is possible
to easily modify rs to be a function of some other parameter, such as depth or the distance along a ray. One
possible use for this would be to treat the search volume as a detector solid angle rather than a cylinder,
thereby naturally correlating the collection volume with a particular viewing frustum.

3.5.1 Boundary Bias Compensation

One of the primary assumptions behind the Photon Mapping method is that the flux density derived from the
local volume is representative of the density at the ray. This assumption fails most dramatically when the ray
is near a boundary. The union of the search volume and the boundary volume is usually a region that has a
drastically different light field—most likely the volume on the other side of the interface has few or no !! s at
all, as is the case at the air-water boundary and the bottom-water boundary (see Figure 3.10). This situation
gives rise to bias errors since the search estimate effectively averages the flux over the entire volume.

Compensation for boundary bias errors can be done by subtracting the volume that extends beyond the bound-
ary from the base search volume. The search algorithm introduced in the previous section facilitates this
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computation by changing a volume calculation to a cross sectional area computation. Assuming that the dis-
tance to a boundary perpendicular to the ray is known at %x !" , the occluded cross section area can be computed
as a circle segment and, as with the exponential transmission terms, can be stored in segments for re-use. In
practice, the distance is found by tracing new rays into the scene to determine the first hit. It is not an entirely
optimal means of correcting for boundary bias error (intersections can be relatively computational intensive
when performed numerous times), but it is a sufficient solution.

3.5.2 Spectral “Bias” Compensation

Consideration of spectral (in the sense of hyper-spectral or multi-spectral bandpass based) radiometry adds
another piece of information that must be handled by the Photon Map. Storage of the full spectral contribution
within each !! data structure is impractical for more than a few spectral bands. Conversely, attempting to
extract full spectral distributions from !! s that individually represent a single wavelength would require either
building an overly large map or expanding the search volume well beyond the point where the distribution
could be considered representative of the local light field. In order to handle spectral data effectively, it is
assumed that the spectral distribution is slowly varying relative to intensity. This assumption reflects the
types of phenomena that are desired to be modeled—optical caustics that are formed by wave focusing, for
instance, are primarily fluctuations of the total, spectrally integrated irradiance.

3.5.2.1 The local, core search

The first step is to perform a local, core search by radius across all spectral bands. The radius is set so that
the assumption of a local volume is met. The density that results from this search is used to set the mean
density of the final spectral density (though no spectral shape exists at the moment). Thus, we ensure that
the final integrated density will be consistent with the local density distribution. In other words, we set the
overall “brightness” locally.

3.5.2.2 The expanded, spectral search

The second step performs an expanded, spectral search within each spectral band. The secondary search
radius is set such that we ensure a certain level of fidelity (we don’t care about hitting boundaries since we
don’t use the search results for density estimation). We also calculate the relative weight of each spectral
density and apply this weight to the core density calculated in the previous step. The spectral density that
results is our final estimate. The two search radii and corresponding volumes are shown in Figure 3.11.

3.5.2.3 Practical considerations

In practice, it is inefficient to perform every search independently. Instead we will attempt to reuse the results
from the original, core search to get the spectral search results. Additionally, we can use the boundary bias
compensation technique described previously for one or both steps of the spectral bias compensation process.
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Figure 3.11: Search radii and volumes used for spectral bias compensation.

3.6 Putting It All Together

The concept that binds this chapter together is the idea that the distribution of photons in a scene is represen-
tative of the underlying statistical description of the light field. It is evident that this is certainly the case in
the limit as we approach an infinite number of photons—or, perhaps more clearly, if we were able to actually
model the total number of real photons. However, such a simulation is infeasible for any practical synthetic
scene. Thus, we must be able to leverage as much information as possible about the underlying statistics from
a limited number of photons and using a limited number of calculations. The chapter that follows addresses
this issue by first introducing the concept of Monte Carlo sampling and then examining various Monte Carlo
extensions that increase the importance of each sample we do compute.





Chapter 5

Inherent Optical Properties
Guide to Models and Methods

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2 Implementation summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3 Base media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.1 The null medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.2 The air medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.3 Pure fresh water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.4 Other pure water models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Linear model of IOPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5 Guide to the individual models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.6 Absorption coefficient models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6.1 Constant absorption coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.6.2 Specific absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.6.3 Morel based models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.6.4 Raman “absorption” model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.6.5 Hybrid pure water data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.6.6 Smith-Baker pure water data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.6.7 Prieur-Sathyendranath pure water data . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.7 Scattering coefficient models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.7.1 Constant scattering coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.7.2 Specific scattering model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.7.3 Gordon-Morel based model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.7.4 Kopelevich based model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.7.5 Buiteveld model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.7.6 Raman scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.8 Scattering phase function models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

115



116
Chapter 5. Inherent Optical Properties

Guide to Models and Methods

5.8.1 Uniform model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.8.2 User-Supplied data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.8.3 Henyey-Greenstein phase function model . . . . . . . . . . . . . . . . . . . . . . . 142
5.8.4 Schlick phase function model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.8.5 Rayleigh based model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.8.6 Petzold scattering phase function data . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.9 Refractive index models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.9.1 Constant refractive index model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.9.2 The IAPWS refractive index model . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.10 Aggregate concentration models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.10.1 Constant concentration model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.10.2 Linear concentration model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.10.3 Gaussian concentration model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.11 A note on emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.12 Observed properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.1 Introduction

In order to use the entire water model effectively, the user will need to have a way of defining the spatial
distribution and form of IOPs (inherent optical properties). This chapter addresses the definition of basic IOP
models and the interface that is available to users. We take the approach of emphasizing the basic form of
established models rather than focusing on specific models, so that newer data can be more easily integrated
into the model without having to write new functions. We also try to enable “tweaking” of model parameters
and provide a means of adding uncertainty to the IOP models using gaussian noise. This is done in order to
facilitate the use of this model for sensitivity studies (see future work in Section 9.8) where we wish to find
the influence of each component of the model on observable conditions (such as remote sensing reflectance).
Additionally, it is often hard to determine the impact of the accuracy of models that are presented in the
literature and these tools can be used to develop an intuitive feel for the relative importance of IOP definitions.

In contrast to other chapters, the subsequent sections will delve into the actual code design used to implement
the IOP models in DIRSIG. This is done for two reasons. First, the software design is, in and of itself, a
significant contribution that allows for complex modeling of IOPs and the inter-relationships between them.
Second, because of the complexity involved, it is perceived as beneficial to provide an overall guide to the
design for future users, either for using the provided models or for adding new ones.

5.2 Implementation summary

The practical implementation of the extensible and flexible IOP model was done by adding inter-related
models of IOPs in DIRSIG. The core of the IOP model is a class called PMIOPModel (where PM denotes
the impetus provided by photon mapping). The core class holds the component models that describe the
interaction between component IOPs (as described in Chapter 2 and interface with the rest of DIRSIG. Ad-
ditionally, the core class handles the common spatial distribution of the physical properties of the water, i.e.
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Figure 5.1: A sub-section of the core DIRSIG libraries showing the Photon Mapping library that contains the
IOP models presented in this chapter.

concentration of constituent components such as chlorophyll. PMIOPModel is available to the user through
the material (.mat) file interface as a means of defining material BULK_PROPERTIES which are analogous to
SURFACE_PROPERTIES for opaque surfaces. The IOP_MODEL is a component section of BULK_PROPERTIES
and is initialized by a base medium (usually pure water for our purposes) that defines the basic properties
of the medium. Additional IOPs are added by linear combination, are stored in individual models and are
allowed to communicate with each other (for covariant models, for instance). Since the definition of the
IOP_MODEL is associated with a particular medium “material,” it is possible to have many models tied to dif-
ferent volumes within the same scene which have vastly different IOPs and constituent concentration models
as well as different radiometry solvers and so forth.

While technically defining optical properties, the PMIOPModel code itself is contained within the photon_mapping
library of DIRSIG (see Figure 5.1) rather than the optical_properties library. This differentiates this self-
contained and interdependent approach to IOPs from the few independent IOPs that already exist as optical
properties in DIRSIG. The design used here is much more flexible and useful for defining natural optical
properties than the previously existing system but, at the same time, uses the same interfaces that allow it to
interact with the rest of DIRSIG.

The PMIOPModel class is a wrapper around all of the linear IOP models (which can contain many IOP models
themselves) as well as two additional models: the aggregate concentration model and the single refractive
index model. It exists primarily to enable cross talk between the various models. Thus, multiple IOP models
can query a concentration model at a point to determine the local constituent concentration; an absorption
coefficient model can be dependent on the results of another model; scattering phase functions can easily be
linked to the appropriate scattering coefficient models; and so forth. These inter-relationships are necessary in
order to fully implement many of the common theoretical/empirical IOP models that exist within the literature
and that represent natural waters. Figure 5.2 shows the components of the PMIOPModel class.
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Figure 5.2: Component classes of the IOP model wrapper.
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5.3 Base media

Each IOP_MODEL section is initialized with a base medium that fills out the basic optical properties of the
medium, though the user is able to eliminate all initialization by using the “null” base medium (though the
refractive index does get set to 1.0 by default). To define the base medium, the user adds a BASE_MEDIUM
parameter to the IOP_MODEL section of the material file. Each additional IOP model is defined independently
in its own subsection (as described in the absorption, scattering, phase function, etc... sections that follow).
A typical IOP_MODEL section might look like this (with the base medium defined at top):

BULK_PROPERTIES {
IOP_MODEL {

BASE_MEDIUM = purewater
ADD_SCATTERING_MODEL {

...
}
ADD_ABSORPTION_MODEL {

...
}
ADD_PHASE_FUNCTION_MODEL {

...
}
ADD_CONCENTRATION_MODEL {

...
}

}
}

where the added model definition interfaces are described later.

5.3.1 The null medium

As stated previously, the user may use a null base medium for the IOP model. This effectively sets the
absorption and scattering coefficients to zero and the refractive index to one at all wavelengths. The scattering
phase function is effectively a spherical delta function in the forward direction. In practice, the nullmedium
does not physically exist as code. Instead, all of the initial values of the IOPs will be initialized to null’
values.

5.3.2 The air medium

The air base medium is essentially the same as the null medium, but uses a refractive index of 1.0003 instead
of 1.0. Practically speaking there is very little difference between the two, but the air medium is useful for
clarity within the material file.
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Figure 5.3: Hybrid data for pure water absorption from Smith and Baker [1981] and Pope and Fry [1997] (as
marked)

5.3.3 Pure fresh water

The base medium used for most water modeling runs will be a pure fresh (i.e. low salinity) water model —
purewater. The absorption coefficient is derived from two studies. The first, Pope and Fry [1997], is more
recent and provides absorption data from 380 nm to 730 nm in 2.5 nm increments. The second, Smith and
Baker [1981], is an older and more sparsely sampled source, but it provides data to extend the range from
200 nm to 800 nm (in 10 nm increments) and is roughly consistent with Pope and Fry. Data for wavelengths
between sampling increments will be linearly interpolated. The final shape of the absorption coefficient curve
is shown in Figure 5.3 with the component sections marked.

Absorption beyond 800 nm is rarely reported quantitatively and no accurate source of this data was found for
the IOP implementation. Visual inspection of unsourced data suggests a roughly linear growth with the log
of the absorption coefficient when following the slope connecting 700 nm and 800 nm, though this is a crude
approximation. Because of the lack of data, absorption properties of pure water at these wavelengths are
not implemented in the model and the user should be aware that running the model beyond the given range
will yield questionable results. It should also be noted that the effect of pure water absorption is to render
water essentially impenetrable to light outside of the visible region, though some studies may wish to model
this effect. Additionally, existing models of constituent IOPs (i.e. chlorophyll bearing particles, decaying
organic matter, etc...) are usually restricted to the visible region and will not be valid at longer wavelengths.
Extending the spectral range of the IOP models is reserved for future work (see Section 9.17).
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Figure 5.4: Fit curve for pure water scattering based on Buiteveld et al. [1994]

The scattering coefficients for pure water are based on Buiteveld et al. [1994]. A power function was fit to
the data, resulting in

b(λ) ! 3.4123664 · 108λ4.1537676. (5.1)

No claim is made as to the accuracy of data obtained from this equation outside of Buiteveld’s limits (340 to
750 nm), it is only provided as a guess given that the underlying form in the measured region does appear to
have an underlying power function structure. The spectral pure water scattering coefficient is shown in Figure
5.4.

More complex data from Shifrin [1988] accounts for salinity and pressure, but we will assume that Buiteveld’s
data is sufficient for our purposes of modeling fairly standard fresh waters. The percent difference between
these particular models is only about 2% on average and any errors incurred from using Buiteveld’s data
are most likely within the statistical error of the sampling used in most simulations. Additionally, measured
and other theoretical data has been shown to fall outside of both models (showing both stronger and weaker
scattering), so it is unclear what an accurate model would look like.

The scattering phase function for pure water has been found to have a roughly Rayleigh form [Mobley, 1994],

β̃(θ) = 2π
(
0.06225(1 + 0.835cos2θ)

)

= 0.391128 + 0.326592cos2θ, (5.2)

where θ is the scattering angle measured from the forward direction (all of the scattering phase functions we
will be using are rotationally symmetric). The shape of the phase function is shown in Figure 5.5.
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Figure 5.5: Rayleigh-like pure water scattering phase function [Mobley, 1994]

The spectral refractive index of pure water is taken from the International Association for the Properties of
Water and Steam (IAPWS) model [IAPWS, 1997]. While this refractive index model is parametrized by both
temperature and pressure, the effective differences are minor and will be ignored by this base model. We
choose to use the curve produced by a temperature of 286 K (a mid-range value for water bodies in New York
state) and a single atmosphere of pressure. The results are shown in Figure 5.6

5.3.4 Other pure water models

Besides purewater there are a number of other pure water base media that are provided that use slightly
different combinations of IOPs for comparison purposes with other models. Base mediumsbpurewater
uses just the Smith and Baker values for the absorption coefficients; pspurewater uses values from another
set of data [Prieur and Sathyendranath, 1981]. See the individual absorption models below for more details.

5.4 Linear model of IOPs

We take the approach of using a base medium (eg. pure water) and adding additional constituent properties
to the base in linear combination (see Chapter 2 for the validity of this). Although the focus of this work is
on water modeling, we will refer to the base medium generally (symbolized by a 0 subscript) and the code
will be structured so that any base medium can be used (including a null medium if so desired). Accordingly,
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Figure 5.6: Spectral refractive index predicted by the IAPWS model with temperature equal to 286 K and a
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the linear model for the absorption coefficient is simply the sum,

a(%x, t, λ) = a0(%x, t, λ) +
Na∑

i=1

ai(%x, t, λ), (5.3)

where we have made the dependence on position and time explicit and Na is equal to the number of additional
absorption components. Similarly, the scattering coefficient can be decomposed as

b(%x, t, λ) = b0(%x, t, λ) +
Nb∑

i=1

bi(%x, t, λ). (5.4)

A decomposition of the scattering phase function requires weighting the component SPFs by the effective
contributions of the corresponding scattering coefficients to the whole, i.e.

β̃(%x, t,ω,ω′ → ω, λ) = w0 · β̃0(%x, t,ω,ω′ → ω, λ) +
Nb∑

i=1

wi · β̃i(%x, t,ω,ω′ → ω, λ), (5.5)

and each weight, wi, is given by

wi =
bi(%x, t, λ)
b(%x, t, λ)

, 0 ≤ i ≤ Nb. (5.6)

It is often assumed that there is no spatial/temporal variance in many of the IOPs in order to make calculations
more efficient (see, for instance, Mobley [1994]). While we recognize this as an important way of optimizing
some calculations, we continue to take the approach of enabling a generic description of algorithm compo-
nents. In this case, we always provide the position and time to the IOP interface internally. We can then
derive specialized algorithms that can either use that information or not (though none are given at this time,
but see Section 9.11). This allows us to accept inefficiencies when it is necessary to have a more complex
model and to be able to speed up the process otherwise.

Note that we do not include the index of refraction in the linear combination models. We will assume that a
single refractive index model is used which is usually defined by the base medium, but can be overridden by
the user if necessary.

5.5 Guide to the individual models

The individual IOP models that are available to the user are shown in tables headed in a large typeface.
Each model is defined by its type (Model Type in the tables and TYPE in the material file) and a set of
(mostly optional) parameters. Each model parameter is described by a type, a name, a description, and a
default value. The type is used internally as the C++ data type used to store the parameter and provided
here for reference. The name is the tag that is used within the material file to signal the definition of the
parameter. The description summarizes the purpose of each parameter (see the appropriate model section for
more details). Finally, the default value is given for parameters that are automatically assigned, but can be
overridden by the user. The form of each parameter definition is:

<NAME> = <value>
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where <NAME> is the name given in the tables (always capitalized for clarity and consistency) and <value>
is the value of the parameter. Each parameter definition must be placed within the appropriate material file
section, as described below. Boolean (true/false) parameters currently must be provided as numbers — 0 or
1. For parameters that accept an array of numbers, the array is given by delimited numbers (by spaces or
commas).

All of the models have an optional “noise” parameter that takes The standard deviation of a gaussian random
deviate generator (mean of 0). The noise can be used to experiment with the sensitivity of the model to
random variations within the volume.

5.6 Absorption coefficient models

Absorption coefficient models are added to a base medium which may or may not define initial absorption
properties (see Section 5.3). All absorption models are combined linearly to produce the final coefficient at
any point. To add an absorption model, the user adds an ADD_ABSORPTION_MODEL sub-section to the IOP
model section of the material file. The first entry within this subsection is:

TYPE = <model type>

where <model type> is the unique type name for the IOP model (given within the tables). This is different
from the ID parameter that is used to differentiate between models of the same type. Parameter entries follow,
as seen in this example (for the Morel concentration (morelconc) model).

ADD_ABSORPTION_MODEL {
TYPE = morelconc
ID = example
CONCID = chlConc
PRENORM = 1
ABS = 1.0
K = 0.04
Q = 0.602

}

Plots of absorption coefficients using default values of all the models are given in Figure 5.6. In cases where
a concentration is part of the model, a constant value of 1.0 was used. Note that some of the models are only
valid for the spectral range of [400 − 700] nanometers and are marked accordingly (this issue is discussed
again in Section 9.17).

Each individual absorption model is a fully defined absorption property in DIRSIG (i.e. they all implement
the interface to CDAbsorptionProperty). However, when used within an IOP_MODEL (which is the only
way the user can access them currently) the individual models become components of the linear absorption
property model (PMLinearAbsModel) that also implements the CDAbsorptionProperty interface. Both of
these relationships are shown in Figure 5.7
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Figure 5.6: Spectral plots of the absorption coefficient models using default values.

(a) PMAbsorptionModel (b) PMLinearAbsModel

Figure 5.7: Illustration of the relationships betweeen the defined absorption properties and the absorption
interfaces in DIRSIG. The linear absorption property model both implements and contains absorption prop-
erties and exists within the IOP model which allows for interdependence between varied IOPs.
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5.6.1 Constant absorption coefficient

The simplest way to define the absorption is to provide a file with the spectral absorption coefficients or
provide a single coefficient that is constant across all wavelengths (the absorption coefficient is defined in
Section 2.7.1). This model assumes that the absorption coefficient is the same at any point in the medium
(though the noise parameter may add some variation),

a(z, λ) = a(λ) + N(0,σ), or (5.7)
a(z, λ) = a + N(0,σ). (5.8)

a: Constant Absorption Model
Model Type “constant”

Equation 5.8

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“constant”

double ABS A constant absorption coefficient
across all bands ([1/m])

0.1

std::string FILENAME The name of the file that holds the
spectral absorption coefficients (in
units of inverse meters)–setting this
overrides any constant value given

N/A

double SIGMA The standard deviation of the added
noise

0.0

5.6.2 Specific absorption

In most cases, the primary IOP variation within a volume will be based on the local concentration of par-
ticulate matter. We will discuss how the spatial distribution can be described later in this chapter. In the
meantime, we need to establish the concept of a specific absorption coefficient, that is, an absorption coeffi-
cient that is independent of the concentration of particles. The relationship between the absorption coefficient,
the specific absorption coefficient, and the concentration is expressed as

a(%x, t, λ) = a∗(λ)C(%x, t), (5.9)

where the superscript, ∗, is used to denote the “specific” nature of the parameter. Since the units of a are
[1/m], care must be taken that the units of the concentration and the specific absorption coefficient result in
the equivalent form. In practice, we will assume that we do not need to explicitly keep track of the time
parameter and, similarly, the horizontal position only represents a different depth model. Thus, we will use
the form

a(z, λ) = a∗(λ)C(z). (5.10)
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For some of the models it will be necessary to normalize the specific absorption coefficient and obtain a
non-dimensional representation. We will denote a normalized specific absorption coefficient by a ′.

5.6.2.1 Specific absorption model

This absorption model is simply based on user-supplied specific absorption coefficients and the aforemen-
tioned optional noise parameter,

a(z, λ) = a∗(λ)C(z) + N(0,σ). (5.11)

Once again, care must be taken so that the units of the absorption coefficients and the concentration units are
appropriate (no internal units checking is performed).

a: Specific Absorption Model
Model Type “specific”

Equation 5.11

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“specific”

std::string FILENAME The name of the file that holds the
spectral specific absorption coeffi-
cients

N/A

std::string CONCID The ID of the associated concentra-
tion in the IOP model

“chlorophyll”

double SIGMA The standard deviation of the added
noise

0.0

5.6.3 Morel based models

Two absorption models are based on the form given by Morel [1991],

a(z, λ) =
[
aw(λ) + 0.06a∗

′
c (λ)Cchl(z)0.65

] [
1 + 0.2e−0.014(λ−440)

]
, (5.12)

where aw is the pure water absorption given above, a∗c is a non-dimensional chlorophyll-specific absorption
coefficient derived by Prieur and Sathyendranath [1981] and normalized so that the value at 440 is equal to
one, and Cchl(z) is the chlorophyll concentration at depth z measured in

[
mg
m3

]
. The wavelength, λ, is measured

in nanometers ([nm]).

We shall follow Mobley’s lead [Mobley and Sundman, 2000] and use a simplified reformulation of Equation
5.12 [Morel and Maritorena, 2001],

a(z, λ) = aw(λ) + ap(z, λ) + ay(z, λ), (5.13)
ap(z, λ) = 0.06a∗

′
c (λ)Cchl(z)0.65, (5.14)

ay(z, λ) = 0.2ap(z, 440)e−0.014(λ−440), (5.15)
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where subscript p denotes chlorophyll particle absorption. It is apparent from the last two equations that there
are two different types of models present; one model is concentration and specific absorption dependent, the
other is covariant with another absorption coefficient.

5.6.3.1 Morel concentration

The Morel concentration model is patterned after Equation 5.14,

a(z, λ) = ka∗
′
(λ)C(z)q + N(0,σ). (5.16)

By default, the specific absorption coefficients do not need to be pre-normalized since the model will do so
given the normalizing wavelength. Pre-normalized data can be used by turning the normalization off (the
prenorm parameter, below).

a: Morel Concentration Model
Model Type “morelconc”

Equation 5.16

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“morelconc”

double ABS A constant specific absorption coef-
ficient to use in place of reading in a
file

0.1

std::string FILENAME The name of the file that holds the
spectral specific absorption coeffi-
cients

N/A

double REFWL The reference wavelength used to
normalize the data (in nanometers)

440

bool PRENORM Set to 1 to indicate that the coeffi-
cients have been pre-normalized

0

double K The coefficient, k, in the model 0.06
double Q The exponent, q, in the model 0.65
std::string CONCID The name of the associated concen-

tration in the IOP model
“chlorophyll”

double SIGMA The standard deviation of the added
noise

0.0

5.6.3.2 Morel covariant

The third component of the Morel model leads to an expression for an absorption coefficient that covaries
with another absorption coefficient. We can generalize the model as

a(z, λ) = ka0(z, λ0)e−q(λ−λ0) + N(0,σ), (5.17)
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where a0 is the base absorption coefficient at λ0, the base wavelength.

a: Morel Covariant Model
Model Type “morelcovar”

Equation 5.17

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“morelcov”

std::string ABSID The name of the base absorption co-
efficient (a0) model

“morelconc”

double REFWL The reference wavelength (λ0) used
to obtain the base absorption coef-
ficient and “center” the exponential
(in nanometers)

440

bool USEWL Flags whether to use the reference
wavelength internally or to interpo-
late

0

double K The coefficient, k, in the model 0.2
double Q The exponential component, q, in

the model
−0.014

double SIGMA The standard deviation of the added
noise

0.0

5.6.4 Raman “absorption” model

Though technically an (inelastic) scattering phenomenon, Raman scattering involves absorbing photons at a
one wavelength and re-emitting them at another (longer) wavelength. Therefore, we will first handle Raman
scattering as a loss from the beam via absorption. We will also allow the absorbed energy to reappear later
on via a scattering method. Since the in-scattered contribution can only come from different wavelengths
(instead of the wavelength of the current calculation), it makes sense to make this distinction. Mobley [1994]
points out that there is a great deal of inconsistency in the literature regarding the exact formulation of Raman
scattering, however, he presents the general form

a(λ) = a0

(λ0

λ

)q
+ N(0,σ), (5.18)

where the 0 subscript refer to reference values (again see Mobley [1994] for a summary of current literature
for this). We will use a recent set of measurements by Marshall and Smith [1990] for default values.

Raman scattering is a “quick” (instantaneous) inelastic process that is the product of immediate re-emission
of light from water molecules. We will also model a “slow” process in the form of fluorescence.
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a: Raman “Absorption” Model
Model Type “raman”

Equation 5.18

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“raman”

double REFWL The reference wavelength, λ0 (in
nanometers)

488

double REFABS The reference absorption coefficient,
a0 ([1/m])

0.00026

double SIGMA The standard deviation of the added
noise

0.0

5.6.5 Hybrid pure water data

Already discussed in section 5.3.3, this absorption model combines pure water data from both the finer
resolution, but limited range data from Pope and Fry [1997], with the broader ranged, but coarser resolution
data from Smith and Baker [1981]. The user interface to this model is simple since it just implements the
data (with interpolation).

a: Hybrid Data
Model Type “sbpf”

Equation N/A

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“sbpf”

double SIGMA The standard deviation of the added
noise

0.0

5.6.6 Smith-Baker pure water data

This model implements the pure water absorption data from Smith and Baker [1981] directly. The user
interface to this model is simple since it just implements the data (with interpolation).
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a: Smith-Baker Data
Model Type “smithbaker”

Equation N/A

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“smithbaker”

double SIGMA The standard deviation of the added
noise

0.0

5.6.7 Prieur-Sathyendranath pure water data

This model implements the pure water absorption data from Prieur and Sathyendranath [1981] directly, which
can be used as an alternative data set. The user interface to this model is simple since it just implements the
data (with interpolation).

a: Prieur-Sathyendranath Data
Model Type “prieursathy”

Equation N/A

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“prieursathy”

double SIGMA The standard deviation of the added
noise

0.0

5.7 Scattering coefficient models

Development of the scattering coefficient models is analogous to absorption coefficient models. We define
two essential, basic models (“constant” and “specific”, as above) as well as two based on the basic forms
of established concentration relationships. Scattering coefficient models are added to a base medium which
may or may not define initial scattering properties (see Section 5.3). All scattering coeffcient models are
combined linearly to produce the final coefficient at any point. To add a scattering model, the user adds an
ADD_SCATTTERING_MODEL sub-section to the IOP model section of the material file. The first entry within
this subsection is:

TYPE = <model type>

where <model type> is the unique type name for the IOP model (given within the tables). This is different
from the ID parameter that is used to differentiate between models of the same type. Parameter entries follow,
as seen in this example (for the Gordon-Morel (gordonmorel) model).
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ADD_SCATTERING_MODEL {
TYPE = gordonmorel
ID = chlScat
K = 0.33
Q = 0.62
CONCID = chlConc
EXCLUSIVE = 0

}

Plots of scattering coefficients using default values of all the models are given in Figure 5.8. In cases where
a concentration is part of the model, a constant value of 1.0 was used.

As with the absorption coefficient models, each scattering model independently implements the general
CDScatteringProperty interface, but are used indirectly through the linear scattering model (PMLinearScatModel).
Figure 5.9 shows the relationship between the models and DIRSIG interfaces. The linear scattering model is
directly analogous to the linear absorption model already shown in Figure 5.9.

5.7.1 Constant scattering coefficient

This model assumes that the scattering coefficient is the same at any point in the medium (though the noise
parameter may add some variation) and potentially constant across wavelengths,

b(z, λ) = b(λ) + N(0,σ), or
b(z, λ) = b + N(0,σ). (5.19)

b: Constant Scattering Model
Model Type “constant”

Equation 5.19

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“constant”

double SCAT A constant scattering coefficient
across all bands ([1/m])

0.1

std::string FILENAME The name of the file that holds the
spectral scattering coefficients (in
units of inverse meters)–setting this
overrides any constant value given

N/A

double SIGMA The standard deviation of the added
noise

0.0
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Figure 5.8: Spectral plots of the scattering coefficient models using default values.
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Figure 5.9: Illustration of the relationships betweeen the defined scattering properties and the scattering
coefficient interfaces in DIRSIG. The linear scattering model is analogous to the linear absoroption model
already presented.

5.7.2 Specific scattering model

This scattering model is simply based on user-supplied specific scattering coefficients (see the section on
specific absorption, above) and the optional noise parameter,

b(z, λ) = b∗(λ)C(z) + N(0,σ). (5.20)

Once again, care must be taken so that the units of the scattering coefficients and the concentration units are
appropriate (no internal units checking is performed).

b: Specific Scattering Model
Model Type “specific”

Equation 5.20

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“specific”

std::string FILENAME The name of the file that holds the
spectral specific scattering coeffi-
cients

N/A

std::string CONCID The name of the associated concen-
tration in the IOP model

“chlorophyll”

double SIGMA The standard deviation of the added
noise

0.0

5.7.3 Gordon-Morel based model

We will follow the approach taken for the absorption models and attempt to derive generic model types based
on established models. In this case, we look at the model for scattering from Gordon and Morel [1983] and
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Morel [1991] (the latter work added the pure water term),

b(z, λ) = bw(λ) +
(

550
λ

)
0.30Cc(z)0.62, (5.21)

where the wavelength, λ, is in nanometers and Cc is the chlorophyll concentration in [mgm−3]. This simple
formulation suggests a model of the form

b(z, λ) =
(λ0

λ

)
k ·C(z)q + N(0,σ). (5.22)

b: Gordon-Morel Concentration Model
Model Type “gordonmorel”

Equation 5.22

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“gmconc”

double REFWL The reference wavelength, λ0 ([nm]) 550
double K The coefficient, k, in the model 0.30
double Q The exponent, q, in the model 0.62
std::string CONCID The name of the associated concen-

tration in the IOP model
“chlorophyll”

bool EXCLUSIVE If set to 1, excludes all other scatter-
ing coefficient models

0

double SIGMA The standard deviation of the added
noise

0.0

5.7.4 Kopelevich based model

A scattering coefficient model by Kopelevich [1983] is given by

b(z, λ) = 0.0017
(

550
λ

)4.3
+ 1.34νs(z)

(
550
λ

)1.7
+ 0.312ν+(z)

(
550
λ

)0.3
, (5.23)

where νs and ν+ are the concentration of small and large particles in parts per million (ppm). Even though this
model for the scattering coefficient folds in the pure water scattering, we accept it as a general model form.
Consequently, our model is

b(z, λ) = k ·C(z)
(λ0

λ

)q
+ N(0,σ), (5.24)

where we will make the concentration an optional parameter.
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b: Kopelevich Concentration Model
Model Type “kopelevich”

Equation 5.24

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“kconc”

double REFWL The reference wavelength, λ0 ([nm]) 550
double K The coefficient, k, in the model 0.30
double Q The exponent, q, in the model 0.62
std::string CONCID The ID of the associated concentra-

tion in the IOP model–use “none” if
independent

“none”

double SIGMA The standard deviation of the added
noise

0.0

5.7.5 Buiteveld model

The pure water scattering model based on Buiteveld et al. [1994] was already presented in Section 5.3. This
model is directly available to the user via the buiteveld scattering model.

b: Buiteveld Based Model
Model Type “buiteveld”

Equation 5.1

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“kconc”

double K The coefficient, k, in the model 0.30
double Q The exponent, q, in the model 0.62
double SIGMA The standard deviation of the added

noise
0.0

5.7.6 Raman scattering

Implementation of Raman scattering and, more specifically, the wavelength distribution models would in-
volve a complex mixture of photon mapping estimation, IOP definition, and LUT integration. We will put
aside the development of this model for future development (see Section 9.9)..
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5.8 Scattering phase function models

The scattering phase function is essentially a Probability Density Function (PDF) in spherical coordinates
that describes where scattered photons go. We will make the common assumption that all scattering phase
functions are rotationally symmetric around the forward direction (direction of propagation). This enables
us to sample the phase function shape (the angle, θ) using the simple, one-dimensional importance sampler
described in Chapter 3 (or an analytical model) coupled with uniformly sampling the rotation angle (φ).
We will also assume that there is no spectral dependence (the inherent spectral dependence of scattering is
expressed by the scattering coefficient).

When providing phase function data, it is useful for the user to get in the habit of sampling on constant cosine
intervals, µ, where the angle, θ = cos−1(µ). This method of sampling facilitates numerical integration and
sampling in spherical coordinates since

∫ 2π

0

∫ 1

−1
f (µ, φ)dµdφ =

∫ 2π

0

∫ 0

π
f ′(θ, φ)dcos(θ)dφ

=

∫ 2π

0

∫ π

0
f ′(θ, φ)sin(θ)dθdφ, (5.25)

which gives us the correct form of the integral in spherical coordinates without having to weight the θ inter-
vals. While this form is preferred, the phase function routines will convert θ samples to µ samples if necessary
(based on a type flag in the input).

All of the scattering phase functions must have an associated scattering coefficient model. In cases where
no SPF is provided for a coefficient model, a uniform SPF is used. Scattering phase function models are
added to a base medium which may or may not define initial scattering properties (see Section 5.3). All
scattering phase function models are combined linearly (weighted by the corresponding scattering coeffi-
cients) to produce the final SPF at any point. To add a scattering phase function model, the user adds an
ADD_PHASE_FUNCTION_MODEL sub-section to the IOP model section of the material file. The first entry
within this subsection is:

TYPE = <model type>

where <model type> is the unique type name for the IOP model (given within the tables). This is different
from the ID parameter that is used to differentiate between models of the same type. Parameter entries follow,
as seen in this example (for the Petzold average particle (petzold) model).

ADD_PHASE_FUNCTION_MODEL {
TYPE = petzold
SCATID = chlScat

}

Plots of the various scattering phase function models can be found in Chapter 4, with the exception of the
Petzold phase function which is shown in Figure 5.10. Figure 5.11 shows the relationships between the
various scattering phase function classes.
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Figure 5.10: Petzold scattering phase function data as implemented.

5.8.1 Uniform model

The first scattering phase function model simply associates an equal weighting to all directions, i.e.

β̃(µ, φ) =
1

4π
, (5.26)

∫ 2π

0

∫ 1

−1

1
4π

dµdφ = 1. (5.27)

β̃: Uniform scattering
Model Type “uniform”

Equation 5.26

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“uniform”

std::string SCATID The name of the associated scatter-
ing coefficient implementation

“constant”
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(a)

(b)

Figure 5.11: Illustration of the relationships betweeen the defined scattering phase function properties and the
phase function interfaces in DIRSIG. The linear phase function model incorporates corresponding scattering
coefficients to weight component phase functions.
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5.8.2 User-Supplied data model

This model allows the user to provide phase function data on θ or µ samples. The user should ensure that the
phase function is appropriate, that is, the integral of the function over θ/µ (i.e. the angle from the forward
direction) is 1

2π , so that the total integral is one (rotational symmetry is assumed).

β̃: User Supplied Data Model
Model Type “data”

Equation N/A

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“data”

std::string FILENAME The name of the file containing the
angle–phase function value pairs

N/A

bool MUSAMPLES Flag to indicate equally spaced µ
samples

0

std::string SCATID The name of the associated scatter-
ing coefficient implementation

“constant”

5.8.3 Henyey-Greenstein phase function model

The functional form of the Henyey-Greenstein [Henyey and Greenstein, 1941] phase function is given in Sec-
tion 4.13.1. It is a very useful function to use since it is simple to analytically invert for sampling. However,
phase functions of natural waters can only be described by using many of these functions in weighted com-
bination. This model allows the user to define the component function (characterized by the average cosine,
g) and the corresponding weights, i.e.,

β̃(θ, φ) =
∑

i

wiβ̃hg,i(θ, φ, gi). (5.28)

The weights will be normalized internally so there is no need to ensure that they sum to one.
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β̃: Henyey-Greenstein Model
Model Type “hgpf”

Equation 4.70

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“hgpf”

std::vector〈double〉 G An array of characteristic g param-
eters (average cosines)

0

std::vector〈double〉 W An array of component weights, w 1
std::string SCATID The name of the associated scatter-

ing coefficient implementation
“constant”

5.8.4 Schlick phase function model

The Schlick phase function is similar to the Henyey-Greenstein model, but it is slightly more efficient to
calculate (see Section 4.13.2). The defining parameter, k, is analogous to g, but is not exactly equivalent to
the average cosine. Once again, we implement the model as a linear combination of functions.

β̃: Schlick Model
Model Type “schlick”

Equation 4.73

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“schlick”

std::vector〈double〉 G An array of characteristic k pa-
rameters (approximately average
cosines)

0

std::vector〈double〉 W An array of component weights, w 1
std::string SCATID The name of the associated scatter-

ing coefficient implementation
“constant”

5.8.5 Rayleigh based model

We already saw a Rayleigh-like phase function in the description of pure water (Equation 5.2). We now add
a generic form of this equation to our models,

β̃(θ, φ) = k1(1 + k2cos2(θ)). (5.29)

Note that the user is responsible for choosing k1 and k2 such that Equation 5.29 is normalized.
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β̃: Rayliegh Based Model
Model Type “rayleigh”

Equation 5.29

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“rayleigh”

std::vector〈double〉 G An array of characteristic k param-
eters (average cosines)

0

std::vector〈double〉 W An array of component weights, w 1
std::string SCATID The name of the associated scatter-

ing coefficient implementation
“constant”

5.8.6 Petzold scattering phase function data

The commonly used Petzold average particle scattering phase function data [Petzold, 1972] is implemented
as the petzold phase function model. Data was taken from the table provided in Mobley et al. [1993].

β̃: Petzold Data
Model Type “petzold”

Equation N/A

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“petzold”

std::string SCATID The name of the associated scatter-
ing coefficient implementation

“constant”

5.9 Refractive index models

The refractive index model is the first of two IOP models that do not add linearly internally. In this case,
only one refractive index model is allowed at a time and each model provides the implementation of the
general refractive index property (see Figure 5.12. To define a new refractive index model (overriding the
refractive index in the based medium), the user adds a REFRACTIVE_INDEX_MODEL sub-section to the IOP
model section of the material file. The first entry within this subsection is:

TYPE = <model type‘>

where <model type> is the unique type name for the IOP model (given within the tables). As with the other
IOPs, parameter entries follow, as seen in this example (for the constant refractive index (constant) model).
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REFRACTIVE_INDEX_MODEL {
TYPE = constant
IOR = 1.34

}

Figure 5.12: Illustration of the relationships between defined refractive index models and DIRSIG interfaces.

5.9.1 Constant refractive index model

The constant refractive index model allows the user to define an index of refraction that is constant across all
wavelengths (such as the one used in Hydrolight).

ior: Constant Refractive Index Model
Model Type “constant”

Equation N/A

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“constant”

double IOR The refractive index to use 1.0
double SIGMA The standard deviation of the added

noise
0.0

5.9.2 The IAPWS refractive index model

The IAPWS refractive index model was already mentioned in Section 5.3. Though the details will not be
presented here, it implements the model described in the IAPWS [1997] manual. The implementation is a
two parameter model where the user is able to define the temperature and density of the medium.
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ior: IAPWS Refractive Index Model
Model Type “iapws”

Equation N/A

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“iapws”

double TEMP The temperature of the medium in
degrees Kelvin

273.15

double DENSITY The density of the medium in kg·m−3 1000.0
double SIGMA The standard deviation of the added

noise
0.0

5.10 Aggregate concentration models

Many of the IOP models presented previously make use of the local concentration of a particular constituent
to determine their value at a point in space. In fact, this is currently the only way to vary IOP properties
spatially, though there is nothing in the code that restricts a directly spatially variant model in the future
(though this would be difficult to define). Though multiple concentration models can be implemented in
the same space, they do not combine linearly as with most of the other IOPs. Instead, the concentration
models exist independently in aggregate so that the concentrations of multiple constituents (e.g. chlorophyll,
suspended sediments, etc...) can be defined independently from each other. For example, the following
material file snippet defines three independent constituent concentration models:

IOP_MODEL {
...

ADD_CONCENTRATION_MODEL {
TYPE = gauss
ID = chlConc
BG = 0.2
S = 9
H = 144
DMAX = 17
ZLEVEL = 0
SIGMA = 0

}
ADD_CONCENTRATION_MODEL {

TYPE = constant
ID = ssConc
CONC = 0.1

}
ADD_CONCENTRATION_MODEL {

TYPE = constant
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ID = cdomConc
CONC = 0.5

}
...
}

Currently, the definition of the distribution of concentrations is restricted to vertical variability only in order
to simplify the input format. This was done because it is not yet clear what type of three-dimensional data
will be available for future studies (as might be provided by a hydrodynamics model). Rather than attempt
to guess at a useful data format, implementation of a fully three-dimensional concetration field will remain
future work (see Section 9.12).

Since the concentration models used here are unique to PMIOPModel they do not implement any standard
DIRSIG interface. Figure 5.13 shows the relationship between the aggregate model and PMIOPModel.

Figure 5.13: Illustration of the relationships between defined constituent concentration models and the IOP
model.

5.10.1 Constant concentration model

ior: Constant Concentration Model
Model Type “constant”

Equation N/A

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“chlorophyll”

double CONC The concentration at any point in
the medium

2.0

double SIGMA The standard deviation of the added
noise

0.0
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5.10.2 Linear concentration model

ior: Linear Concentration Model
Model Type “linear”

Equation N/A

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“chlorophyll”

double ATZERO The concentration at zero depth (i.e.
the “z-level”)

2.0

double ZLEVEL Defines the z-coordinate where the
depth is zero

0.0

double RATE The rate at which the concentration
increases or decreases with (posi-
tive) depth

−0.1

double SIGMA The standard deviation of the added
noise

0.0

5.10.3 Gaussian concentration model

The Gaussian concentration model corresponds to a concentration depth profile presented in Mobley [1994]
that is used to model the concentration of chlorophyll measured in the Celtic Sea in May. The depth profile
has the form:

C(z) = Co +
h

s
√

2π
exp
[
−1

2

( z − zmax
s

)2]
, (5.30)

which we will use as the general description of a Gaussian profile. The peak of the concentration curve
is present at a depth of zmax (DMAX in the user interface) and there is always a minimum background
concentration of Co (BG). The default parameters given for the model match those used to fit the Celtic Sea
data. For an example of IOP profiles generated using this model, see Section 7.6.3.
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ior: Gaussian Concentration Model
Model Type “gaussian”

Equation 5.30

Parameters type name description default

std::string ID The specific identifying name of this
implementation

“chlorophyll”

double ZLEVEL Defines the z-coordinate where the
depth is zero

0.0

double DMAX The (positive) depth at which the
concentration is maximum (i.e. the
mean value of the Gaussian)

17.0

double BG The background concentration bias 0.2
double H The value of h in Equation 5.30 144.0
double S The value of s in Equation 5.30 9.0
double SIGMA The standard deviation of the added

noise
0.0

5.11 A note on emission

We have not yet mentioned anything about a treatment of the volumetric source term in Table 2.3, S o. Though
fairly straightforward, implementation of this aspect of the model will be reserved for future work. Discussion
can be found in Section 9.10.

5.12 Observed properties

This chapter has presented a number of ways to represent properties of a medium that are inherent. Nonethe-
less, these properties do not directly describe what an observer sees. Instead, the interaction of the scene
illuminants with the IOPs produces what are known as Apparent Optical Property (AOP)s. These are the
properties that are measurable and will be captured in part by the simulated detector. In Chapter 7 we present
a select few specialized definitions of AOPs for which there are established relationships to the inherent op-
tical properties. The goal of that section is to develop an argument for validation via comparison of given
inherent optical properties (as described in this chapter) with (synthetically) measured apparent optical prop-
erties. Before reaching that point, however, the next chapter presents models for the media boundaries that
will complete the suite of tools used to construct the scene in which IOPs can be defined.
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7.1 Introduction

This chapter presents some of the products that have been generated in the process of verifying and validating
the model. This process is split into five phases. The first phase verifies that the code is actually doing
what it is supposed to be doing and interacting with DIRSIG appropriately. The second phase generates
simple test cases where we can examine specific facets of the model and ensure that the outputs are in
agreement with our expectations. Phase three introduces a whole suite of new tools in DIRSIG that allow
the construction of simple scenes (simplified atmosphere, simplified geometry, etc...) from which a number
of useful visual validations are demonstrated. Phase four uses relationships between input parameters and
measured quantities to establish consistency with established specialized models. The final phase performs a
peer-to-peer radiometry validation against a number of existing and validated numerical models. The results
of this multi-stage validation process will provide the justification for the use of the model and also provide
a useful reference for future users. The details of the validation products have changed somewhat from
what was proposed originally, but the general components and objectives have not. The modifications reflect
experience with what was useful and productive for getting the model into a working state.

7.2 Phase I: Code Debugging

Most of the work that went into the construction of this model occurred during debugging. In this case,
“bug” is used to refer to a piece of code that does not do what it was intended to do. This is in contrast to a
conceptual bug/error where the code is acting correctly, but the intent is faulty. It is not feasible to go through
each coding error that was either created by the implementation or already existing within DIRSIG. Whenever
the code appeared to be broken or acting in a way that was inconsistent with the intent, then an impromptu
project began to track down the error. Primarily, this was done through observation – hand tracing stepwise
outputs from the code in an effort to find the break point and, in case this failed, rewriting large blocks of
code (e.g.. much of the atmospheric sampling was forced to go through a re-write after weeks of reviewing
outputs failed to identify the problem). Occasionally, the gnu project debugger (gdb) was used to localize
problems and to facilitate finding a solution.

A number of the code components introduced have corresponding unit testers that are simple checks on the
expected behaviour of the code in as simplified an environment as possible. By definition, a “unit” is the
smallest testable part of the code. Whenever possible, the code has been designed to be used independently
(i.e. without a full simulation and scene being constructed) by implementing bypasses to the usual initializa-
tion routines that require fully defined simulations. The general concept of unit testing in DIRSIG is a new
one that was just starting to be incorporated into the main code of DIRSIG as this model was being designed
and implemented. Hopefully, in the future, it will facilitate this stage of validation by allowing the coder to
fully isolate newly introduced algorithms. In the meantime, it has been a useful addition to this stage of the
validation process and has been used along with other, more straightforward, debugging processes.
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Despite countless hours checking, re-checking, and fixing code (and probably introducing more potential
problems), there are undoubtedly errors still left in the model that will probably pop up occasionally. How-
ever, for the purposes of validation, the basic functionality of the code has been checked on many different
levels to eliminate as many potential problems as possible. The result of this validation step is code that is
functional and capable of producing the data that will be used in the remaining validation phases. While
no record of the debugging process is kept here, it is possible to review the changes and modifications that
were made to the relevant code over the history of development by referring to the CVS (concurrent versions
system) history. The CVS is used to maintain the most up to date version of the entire DIRSIG code be-
tween all of the developers and to coordinate updates from various sources. As part of the update process,
brief descriptions of the modifications or additions are made and become part of the “history” of every file
that makes up DIRSIG. Where modifications or design changes are in question it is also possible to review
intermediate versions of the code to see first hand why the modifications were made. More information on
interacting with CVS and the DIRSIG repository can be seen in any number of freely available documents or
found in a variety of commercially available manuals (e.g. the O’Reilly publication Vesperman [2006]).

7.3 Phase II: Expectation Test Cases

As with the debugging step, most of the expectation test cases were done during the process of writing the
code and the results were not particularly illuminating except when they showed that certain portions of the
code were incorrect (which resulted in fixes). Nonetheless, a few test cases stood out and are presented here.

7.3.1 Multiple Scattering

One of the first visual test cases validated that multiple scattering was, in fact, occurring. This was shown
by setting up a simple in-water scene (shown in Figure 7.1) where an in-water detector plane faced a uni-
form unidirectional light source at some distance. About halfway between the source and detector, a simple,
completely opaque baffle was placed to block direct light (and, effectively, single-scattered light). Given a
medium with multiple scattering (in this case isotropic scattering was used) we expect that light will bleed
around the edges of the baffle and be scattered into the direction of the detector. At this point in the valida-
tion process no claims were made as to the radiometric validity of the resulting image, but the results were
encouraging. More importantly, perhaps, than the multiple scattering apparent coming around the edges was
the fact that the center of the baffle was the darkest (showin that we were not seeing “bleeding” through the
baffle surface). Figure 7.2 shows the baffle image as produced at that point in the implementation process.

7.3.2 Convergence

As we throw more photons at a scene, we expect that the radiometry will converge to a “correct” solution
(or at least a stable one). To examine whether this is in fact true for the model, we looked at a particular
problem from Phase IV of the validation (canonical problem six). The exact details of that problem are not
important now (they are introduced later), but it is sufficient to say that the problem covers a realistic problem
of moderately deep water (5 optical depths) with a significant amount of primarily forward scattering path
radiance (scattering albedo of 0.2) that mimics natural waters (i.e. Petzold’s average phase function [Petzold,
1972]). The particular metric being examined was the upward (or upwelled) radiance at various depths within
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Figure 7.1: Setup of the baffle expectation case showing the detector (bottom), the baffle (middle) and the
unidirectional illuminant (top). Note that only multi-scattered paths can reach the detector.

Figure 7.2: The resulting image of the baffle setup showing multiple scattering contributions around the baffle
edges.
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Figure 7.3: Demonstration of the lack of convergence before implementing probability thresholding within
the Monte Carlo propagation code. Numbered data correspond to standard deviations around the accepted
values for the given number of map photons.

the body generated by a roughly point source illuminant that approximates the sun, so this test is very sensitive
to the in-scattered radiance output by the photon mapping model. Convergence is expressed as the standard
deviation from accepted values at seven different depths (including one measurement in the air above the
surface) where a virtual radiance detector is pointing down.

An initial study was done to obtain error estimates for maps containing 10, 100, 1k, 10k, and 100k photons.
A number of maps of each size were generated (independent photon distributions) and the solutions for each
run were compared to the accepted values to build the statistics shown in Figure 7.3. It was obvious from this
data that the opposite of our convergence expectation was true. It seemed that, as the map size became larger,
the amount of error increased as well.

The difference between expected behavior and the actual output spawned an extensive project to track the
cause of this problem. It was determined that the problem “went away” for many more photons (one or ten
million for example) and that the actual cause of the problem was simply the occurrence of very rare (though
valid) events during photon propagation that ended up pointing a single photon at the exactly right angle such
that the peak of the SPF aligned with the collection direction. These events were probabilistically valid but,
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Figure 7.4: Result of adding probability thresholding to the convergence study.

due to the limited map size, the occurrence of just one of these types of events meant that their presence was
disproportionate to the population size. The solution to this has already been mentioned briefly in Chapter 3,
and involves tracking probabilities within the code to suppress extremely unlikely events or series of events
(the meaning of “unlikely” should be dependent on the map and the collection size). After making these
changes, the same set of convergence runs were performed with much better results – as shown in Figure 7.4.
Note that we see the expected solution convergence with each growth in map size (the lack of the convergence
at the bottom is most likely due to using the same method for computing the reflected radiance for each run).

7.3.3 Diversion from Beer-Lambert

We expect that, under conditions where there is no scattering, the vertical population of photons coming
from a uniform extended source pointing downwards in the water will follow the Beer-Lambert law, i.e.
exponential fall-off proportional to e−c·z, where c is the attenuation coefficient and z is the depth. With the
addition of ideal forward scattering (a delta function in the forward direction) we expect that the photons will,
on average, travel n + 1 times as far, where n is the order of scattering (n = 1 is single scattering), such that
the fall-off is proportional to e

−c·z
n+1 . In natural waters where we have highly forward (though significantly not
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Figure 7.5: Diversion from the adjusted Beer-Lambert Law with one order of scattering.

ideal) scattering, we would expect the fall-off to diverge from the ideal case. Specifically, scattering outside
of the forward direction will limit the effective penetration of the photons (proportionally) and the backscatter
(and all non-ideal forward scatter) will “boost” the population at shallower depths. The point at which these
two effects balance each other out will generate some sort of “pivot” point.

For this test, we will ignore absorption and look at the effect of increasing the scattering order, though 0-order
scattering mimics the absorption effect even if it doesn’t make physical sense. The average particle scattering
phase function (Petzold) will be used (backscatter coefficient, Bb ≈ 0.018). The results for 0-order scattering
(equivalent to absorption) are not shown since it is sufficient to say that it follows the Beer-Lambert law for
any statistically significant number of photons and the results do not demonstrate anything different from the
random walk described in Chapter 3. By allowing for single-scattering, as shown in Figure 7.5, we start to
see divergence from the adjusted exponential decay function (i.e. assuming photons would travel twice the
distance under idealized forward scattering conditions). It is also apparent that there is a pivot point at an
optical depth of roughly 2.3. Figure 7.6 shows second order scattering with a pivot point around 3 .and more
obvious divergence from the adjusted exponential model. With just these two plots we can validate that the
photon populations behave as expected when the allowed number of scattering events changes.

Figure 7.7 shows the long term trend of increasing the order of scattering as expressed by the “pivot” point (in
optical depths). Beyond (approximately) scattering order 37 the assumption that the photon will travel n times
as far breaks down completely and the photon population decay always falls below the adjusted exponential
model.

While not related to this simple validation, it may be possible to exploit the pivot relationship to derive an
in situ approximation of scattering albedo from simple measurements. Scattering order is not a true physical
property; however, the presence of absorption within natural waters effectively limits the number of scattering
“events” that can occur – thus the scattering albedo is related to the concept of scatter order (though no explicit
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Figure 7.6: Diversion from the adjusted Beer-Lambert Law with two orders of scattering.

-15

-10

-5

 0

 0  5  10  15  20  25  30

a
p
p
ro

x
im

a
te

 p
iv

o
t 
p
o
in

t 
(o

p
ti
c
a
l 
d
e
p
th

)

scatter order

Figure 7.7: Long term trend of pivot points.



7.4. Phase III: Visual Validation Tools 203

relationship is posited here). In-water measurements of scalar irradiance at various depths (analogous to the
“photon population” used here) might then be used to find the effective “pivot” point of the medium and the
scattering albedo could possibly be extracted. Further research into this metric might be worthwhile (noted
in Section 9.14).

7.3.4 Sampling Histograms

We expect that each scattering phase function routine will generate samples that match it’s distribution and
that the more samples we use, the better the fit will be. A simple utility program (spfhist) was written and
will be included within the DIRSIG distribution to perform this task. Due to differential (sine) weighting
across the sphere of possible directions each bin is not equally weighted (i.e. under an isotropic scatterer the
number of samples in each bin would be proportional to sin(θ)). The code was run for a Rayleigh scattering
function using 180 bins (degree width) and an average of 10,000 samples per bin (total of 1,800,000 samples).
The histogram tracks how many samples fall into each degree increment from the forward direction. The
results for this run are shown in Figure 7.8 (note that the noise is higher at the zero and 180 degree ends due
to the sine weighting already discussed).

In contrast, if only an average of 100 samples are used per bin (total of 18,000 samples), the histogram
resembles the actual scattering phase function less, as expected. This is seen in Figure 7.9.

7.3.5 Summary

Phase II was useful for examining potential problems in the model that moved away from straightforward
coding bugs. The expectation test cases verified two things, one, that the model was behaving in a way that
corellated with an intuitive understanding of the underlying physics and, two, that those expections we had
for what the model should be doing were valid. The second aspect was actually the most useful since it
caused many re-examinations of conceptual understanding of radiometry and physics in general that were
beneficial not only for one particular piece of the code, but for the entire design as a whole. Quite frequently,
a minor change in a fundamental understanding of one aspect of the code enabled model-wide changes to
be made that either improved the efficiency or accuracy of the model. In the next phase of the validation,
visual intuition was challenged as we tried to use the full, sensor driven outputs of DIRSIG to validate larger,
chained processes, rather than the limited test cases used in this phase.

7.4 Phase III: Visual Validation Tools

Visual validation of the simulation of physical processes is one of the more powerful validation tools available
since many of the more obscure and subtle errors will only be manifested in complex interactions where
low probability code “events” can occur. Unfortunately, scene construction and rendering in DIRSIG has
traditionally been an involved process that requires full geometric and radiometric descriptions of a scene and
illumination conditions. For instance, each unique sensor view in DIRSIG required a unique MODTRAN
generated atmosphere which could take thirty minutes to an hour (or more) to construct before actually
running the scene. This made it difficult to quickly test different viewing angles or environmental conditions.
Geometry required facetized descriptions that were usually designed and constructed using other modeling
tools (commonly Rhino http://www.rhino3d.com/ or Blender http://www.blender.org/), converted to the native
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DIRSIG geometry format and attributed and positioned using a DIRSIG specific (and very limited) tool
known at bulldozer. These and other scene building requirements made it difficult to use the previous DIRSIG
code as a tool to validate itself – i.e. to use synthetic imagery output by the full application of DIRSIG to
discover bugs/limitations of its own code.

In order to be able to perform visual validation of this model in DIRSIG, it was been necessary to imple-
ment a suite of geometric, optical, and illumination tools in DIRSIG that allow for flexible and expeditious
simulations. Contributions made are summarized below.

Validation Tools Implemented in DIRSIG:

• Primitive/Procedural Geometry (internal geometric intersections)

Sphere Primitive Adapted existing sphere geometry code that was being used for plume puff models
into usable surface geometry.

Box Primitive Adapted existing box geometry code into usable surface geometry for axis-aligned
boxes.

Disk Primitive Added surface geometry for a disk primitive.
Plane Primitive Restructured existing plane code into a geometric primitive.
Sinusoid Primitive Added surface geometry for an extruded sinusoid.

• Attributed Geometry (user accessible object geometry with material properties)

Attributed Sphere Added user interface to the sphere surface geometry (plume related interface ex-
isted) — shown in Figure 7.10a. Note: this code implementation has already been used in at least
one other thesis project in place of a fully facetized sphere.

Attributed Box Added user interface to the box surface geometry (plume related interface existed) —
shown in Figure 7.10b.

Attributed Disk Added an attributed, solid material disk — shown in Figure 7.10c.
Secchi Disk Added a secchi disk option to the attributed disk that can be used to attribute disk quads

differently — shown in Figure 7.10d.
Ground Plane Added an attributed plane that is defined by an anchor point and x/y slopes.
Checkered Plane Added a checker option to the ground plane to allow for alternating material prop-

erties in a checker pattern — shown in Figure 7.10..
Sinusoid Surface Added stand-alone surface geometry for an attributed sinusoidal manifold — shown

in Figure 7.10e. Note that sinusoid implementations can not be summed due to the complexity of
an analytical/numerical solution.

Sinusoidal Volume Added option to extend the sinusoidal surface into an extended volume represen-
tation (i.e. sides and bottom below the surface) — shown in Figure 7.10f. Note that sinusoid
implementations can not be summed due to the complexity of an analytical/numerical solution.

• Optical Properties

Ward BRDF Model Implemented the Ward BRDF model [Ward, 1992] to provide a 4-parameter
anisotropic BRDF function that incorporates diffuse and specular components. Note: this code
implementation has already been used in at least one other thesis project because of it’s accessi-
bility.
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Mirror Rad Solver A simple mirror rad solver (radiometry solver) was implemented that effectively
produced idealized (delta function) specular reflectance off a surface.

• Atmosphere Models

Uniform Atmosphere Model Added a simplified atmosphere model that distributes a given irradiance
between a sun and a uniform sky. As implemented, this model is consistent with Hydrolight’s
uniform atmosphere model.

[the given irradiance is distributed between the sun and a uniform sky
(color for illustration only)]

Gregg-Carder Atmosphere Model Added a full parametrized visible spectrum atmosphere model
based on Gregg and Carder [1999]. As implemented, this model is consistent with Hydrolight’s
RADTRAN atmosphere model.

All of the primitive renderings were done with diffuse (Lambertian) reflectance properties defined using
the Ward BRDF model and are illuminated using the uniform atmosphere model with all of the irradiance
allocated to the uniform sky.

With these tools in place, a number of informal visual validation experiments were performed. As with
previous stages of validation, it is not beneficial to go through every experiment that was performed in the
process of this stage of validation. Instead we highlight a few cases where visual validation of primitive
geometry was particularly effective or informative.

7.4.1 Refraction Validation

Primitive geometry was particularly good at identifying a “bug” in the refractive portion of the Fresnel code
that might otherwise have been missed. One of the visual validation experiments was to construct a sphere
primitive with water properties assigned to it over a checkered plane. While a “water sphere” is not an intuitive
physical object, we did expect it to behave similarly to a glass sphere with differential spectral attenuation.
The result of the first experiment is shown in Figure 7.11.

Even though refraction should have been a simple and fundamental part of the model, it was immediately
apparent that something was wrong with the refractive components of this rendering. In particular, the edges
of the sphere were showing that the transmitted radiance was effectively zero while, the reflections in the
same area looked appropriate. Using this image as a guide the error was tracked down to a simple, though
difficult to find, swapping of terminology in part of the Fresnel model code (the terminology mixup was due
to the difficulty of treating reflectance and transmittance simultaneously when they are, in practice, imple-
mented using different modalities). Effectively, the code swapped the forward incident refractive index for the
backward incident refractive index during a total internal reflection check (where the transmittance is zero)
and effectively terminated the transmittance portion of the code. After fixing the logic, the corrected “water
sphere” was rendered and the result is shown in Figure 7.12. Another simulation was also done placing a
box with mirror properties behind the sphere to verify correct behavior in many-bounce scenarios (see Figure
7.13.
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(a) sphere (b) box

(c) disk (d) Secchi disk

(e) sinusoid surface (f) sinusoid volume

Figure 7.10: Renderings of contributed primitives.
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Figure 7.11: Rendering of a sphere with water properties that identified an error in refracted ray computation.

Figure 7.12: Rendering of a sphere with water properties after fixing errors in refracted ray computation.
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Figure 7.13: Rendering of a sphere with water properties and a mirror to verify multi-directional/multi-bounce
properties.

Without these primitive geometry based validation tests, this particular error would have most likely have
gone unnoticed and would have only created errors in rare, but important scenarios in natural scenes. With
these issues sorted out, another simple refractive experiment was performed to test the refractive index portion
of the model by varying the refractive index of a sphere over the checkered surface and watching the changes
in magnification. The results of the this (successful) test are shown in Figure 7.14.

7.4.2 Verification of surface bias compensation

Like much of the code that was implemented for this model and was not directly pertinent to the implementa-
tion of photon mapping, we have skipped over a description of the surface photon map that was implemented
and based almost directly on the one given in Jensen [2001]. However, a simple, yet novel (and hopefully
quite fast) surface bias compensation technique was developed to handle situations where the surrounding
area is not representative of the local photon distribution. This is, of course, conceptually analogous to
the volume boundary bias compensation handling that has already been discussed in Chapter 6, though the
methodology is quite different.

First, we are only interested in the photons that fall roughly in the tangential plane defined by the hit normal.
By testing the distance from the plane and only including the photons that are within a certain threshold, we
define a modified region of photons that are “locally” valid. The base region of interest is again a circle,
but the modified boundaries could not be found using ray intersections (as was done with the boundary bias
compensation). Instead we effectively find a rough convex hull around the valid points (i.e. after the plane
test) and compute the area. While a number of dfferent methods were attempted we ended up just dividing
the search region (the circle/disk) into wedges and finding a maximum outward distance within each wedge
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(a) 1.0 (b) 1.1

(c) 1.2 (d) 1.3

(e) 1.4 (f) 1.5

Figure 7.14: Rendering of six spheres with refractive indices ranging from 1.0 (air) to 1.5 (glass).
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(a) steps w/ boundary bias (b) steps w/ compensation

Figure 7.15: Visualization of the steps showing surface boundary bias compensation verification.

from the farthest photon found in each. The final area is computed using the sum of the effective wedges.
Potential statistical issues (i.e. possibility of few or no photons falling into a wedge) were handled using
simple interpolation. We demonstrate the effectiveness of this method through a visual validation use the
aforementioned tools. While not directly applicable to the radiative transfer that is the focus of the model,
the surface photon map is essential for effectively modeling optical caustics on the bottom surface of a water
volume, so it is essential to verify that it is behaving correctly.

Take, for instance, a scene consisting of a series of steps constructed using the box primitives and a simple
atmosphere with the sun directly overhead. Assuming that the current surface is on the top surface of a step,
we have to deal with two types of boundaries – one at the step-up and one at the step-down. At either extreme
(the outside and inside edges of the step), the co-planar photons are restricted to a region that is half that of
the base search area (half a circle). Assuming a roughly equal distribution of photons (from the unidirectional
source pointing downward), we expect that these extremes will be biased “downwards” without compensation
since the effective “local” area is half the base area. This is exactly the behaviour we see in the visualization
shown in Figure 7.15a. The centers of the steps are bright (since the photons are evenly distributed within
the entire base area), and the edges are dark. The effect of the transition between these two regions results
in the appearance of the steps as being curved (which is not desired). However, after applying the bias
compensation routine already introduced, the visual results match our expectations of flat looking steps (as
seen in Figure 7.15b. We can conclude from this visual verification that the bias compensation technique is
perfoming correctly. There is still some noise in the image, but this is mostly due to stretching the data within
a limited dynamic range of radiance values.

7.4.3 Verification of surface caustics

Verification of surface caustics was done by constructing a simple scenario consisting of the steps defined in
the previous section placed within a sinusoidal water volume such that vertical illumination onto the surface
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Figure 7.16: Visualization of the surface map formed by a sinusoidal wave above a set of steps.

of the waves will be focused differentially onto the steps. Figure 7.16 plots the locations of the photons in the
map and verifies the expected focusing. Figure 7.17 is a rendering of the steps where the only illumination
is from the surface photon map itself. Note that the search radius used was too large to capture the high
frequency caustics shown in Figure 7.16 and instead they are spread out due to the averaging effect of the
search. While this effect could be minimized by increasing the number of photons in the map and simulta-
neously decreasing the search radius. However, it would be more effective to smartly treat high frequency
photon density changes within the surface rad solver similar to boundary bias compensation. Such efforts are
reserved for future work, as noted in Section 9.16.

7.4.4 Verification of volume caustics

Since radiative transfer is the primary objective of this work, it is important that we are able to construct and
use a full spatial description of the light field via the photon map. In Figure 7.18 a series of simple volume
maps were constructed for a set of representative sun locations and projected into two dimensions for easy
visualization. Each scenario demonstrates the volumetric focusing that results from the sinusoidal surface
as well as general attenuation with depth. It is interesting to note the “hollow” areas behind the peak of
each wave where incident light is mostly reflected off of the surface, especially at large zenith angles. The
distribution of photons is exagerated given an idealized source (sun only, no sky) for visualization purposes.
Figure 7.19 shows a full rendering of the volume that is only “illuminated” by the volume photon map.
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Figure 7.17: Visualization of surface caustics formed by a sinusoid wave on steps from a unidirectional source
above. The wave and water medium have been removed for clarity and the color of the reflected light (blue)
is solely due to the spectral distribution of photons in the map. The effective focal point of the waves is close
to the depth of the last step.

7.5 Phase IV: Validation Through Apparent Optical Properties

7.5.1 Overview

An Apparent Optical Property (AOP) is an observable characteristic of the water volume (or a medium in
general) that depends both on the properties of the water itself and the illumination conditions (in contrast to
an IOP which is independent from the illumination conditions). The objective of this phase was to examine
apparent optical properties for which an approximate relationship to IOPs is known. We use these relation-
ships to compare a measured AOP with known IOPs and validate higher order aspects of the model (e.g. the
relationship between the scene parametrization and the final output).

7.5.2 Spectral Irradiance Reflectance at the Surface

7.5.2.1 Measurement

The spectral irradiance reflectance, R(z, λ) is defined as the ratio between the upwelled and downwelled
irradiance (Equations 2.15 and 2.16) at depth z. Thus,

R(z, λ) =
Eu(z, λ)
Ed(z, λ)

. (7.1)

While the irradiance reflectance within the volume is of use in optical oceanography [Mobley, 1994], we are
only concerned with irradiance reflectance at the surface. At the surface (z = 0), the upwelled irradiance
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(a) 0◦ (b) 15◦

(c) 30◦ (d) 45◦

(e) 60◦ (f) 75◦

Figure 7.18: Visualization of volumetric caustics for selected sun zenith angles
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Figure 7.19: Visualization of volume caustics formed by a sinusoid wave illuminated by a unidirectional
source above. The sinusoid “volume” is rendered with no background or diffuse illumination (i.e. no sky).
Surface caustics on the bottom are suppressed for clarity. The volumetric caustics can be seen through the
side of the sinusoid volume as the bright columns under the sinusoid peaks.

is usually called the water-leaving irradiance and the irradiance reflectance describes the effective integrated
reflectance of a volume.

7.5.2.2 Relationship to IOPs

Every day observation of natural waters suggests that there is a relationship between the irradiance reflectance
(the apparent reflectance of the water) and the optical properties of the water. When the water is highly scat-
tering, it appears brighter due to more light being scattering back towards the observer. When the absorption
is high, the light that enters the water volume tends to stay there and this effectively makes the water look
darker.

These observations are reflected in the computer studies performed in Gordon et al. [1975] and Gordon and
Morel [1983] which puts forth the relationship

R(0, λ) = C
bb

a + bb
. (7.2)

where C is a function of solar altitude and bb is the backward scattering coefficient defined in Equation 2.38.
In natural sea waters, bb 1 a, such that the reflectance relationship is often written as [Morel and Prieur,
1977]:

R(0, λ) = C
bb

a
. (7.3)

The aforementioned studies concluded that C was roughly 0.33 when the refracted solar zenith angle (the
angle of solar photons beneath the surface), θ2refr , is zero (sun at nadir). Additionally, in a separate study, Kirk
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Figure 7.20: The irradiance reflectance for the sun at nadir.

[1994b] found that

C(θ2refr ) ! −0.629 cos(θ2refr ) + 0.975, (7.4)

which is in reasonable agreement with the other findings at nadir. Unfortunately, this last relationship is not
valid for all scattering phase functions and should only be used with Petzold-like functions. The surface
irradiance reflectance at nadir solar zenith angle is shown in Figure 7.20.

7.5.2.3 Validation Results

Irradiance reflectances were found using an implemented version of the Petzold average particle scattering
phase function that has an effective backscatter coeffient of 0.01817b where b is the scattering coefficient
and 0.01817 was found by manually integrating the scattering phase function over π/2 ≤ θ ≤ π (the SPF is
rotationally symmetric so the φ portion of the integral is 2π as usual). In order to verify agreement with the
AOP/reflectance relationship the absorption coefficient was fixed and the scattering coefficient was found by

k =
bb

a + bb
,

b =
−k

(k − 1)0.01817
, (7.5)

where values of k were chosen to produce the plot shown in Figure 7.21. The scene itself was constructed to
resemble an infinite plane (slab) case with a level surface and an idealized sun at nadir. The map for each run
only contained ten thousand photons (corresponding to runs on the order of a few seconds) in order to verify
general agreement with the model. This data suggests that that slope is higher than 0.33 and may follow
Equation 7.4 which gives C(0) = 0.345.
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Figure 7.21: Agreement with the reflectance AOP/IOP relation for only 10k photons. Note that the simulated
data suggests that Kirk’s value of C(0) = 0.345 is probably more appropriate, though the general trend of
agreement with both is valid.

7.5.3 Diffuse Attenuation Coefficient of the Euphotic Zone

7.5.3.1 Measurement

The diffuse attenuation coefficient is based on the assumption that the downwelled irradiance (Ed(z, λ)) de-
creases exponentially with depth,

Ed(z, λ) = Ed(0, λ)e−
∫ z

0 Kd(z′,λ)dz′ . (7.6)

The coefficient for this exponential loss, Kd, is called the diffuse attenuation coefficient. If we take the depth
at which the light level is reduced to one percent from the surface, z1%, as defining the depth of the euphotic
zone, the average diffuse attenuation coefficient in the euphotic zone is equal to

Kd(z1%, λ) =
1

z1%

∫ z1%

0
Kd(z, λ)dz. (7.7)

It is interesting to note that approximately 90% of diffusely reflected light comes from a surface layer of water
of depth 1/Kd [Smith and Baker, 1978].

7.5.3.2 Relationship to IOPs

According to Kirk [1994b], the average diffuse attenuation coefficient in the euphotic zone is related to the
IOPs by

Kd(z1%, λ)
a

!
1

cos(θ2refr )

(
1 +G

(
cos(θ2refr ), µs(λ)

) b
a

) 1
2

. (7.8)
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Figure 7.22: The diffuse attenuation coefficient scaled by the absorption coefficient for a nadir solar zenith
angle and a scattering phase function with an average cosine of 0.8.

The value of G is dependent on the (refracted) solar zenith angle and the characteristic average cosine (µs) of
the scattering phase function (Equation 2.40). Kirk’s development of this relationship yielded

G
(
cos(θ2refr ), µs(λ)

)
= cos(θ2refr )

(
2.127
µs
− 1.895

)
− 0.618
µs
+ 0.490. (7.9)

Figure 7.22 shows this relationship for a nadir solar zenith angle and a scattering phase function with an
average cosine of 0.8.

7.5.4 Validation results

In the process of attempting to determine whether the code matched this AOP relationship, it was found that
Kirk had published a different form of Equation 7.9 in 1991 [Kirk, 1991],

G′
(
cos(θ2refr ), µs(λ)

)
= cos(θ2refr )

(
2.236
µs
− 2.447

)
− 0.849
µs
+ 0.739. (7.10)

While the functions G
(
cos(θ2refr ), µs(λ)

)
and G′

(
cos(θ2refr ), µs(λ)

)
have the same form, the differences between

the two are significant. Particularly, if we look at the forward scattering region (which is where most natural
waters belong), the difference between the two can be seen in Figure 7.23.

It is beyond the scope of this validation step to thoroughly analyze the sources and validity of both phase
function dependency functions (they were constructed by fitting to both simulated and measured data under
a wide range of scenarios and natural environments). However, since the simulation ended up matching the
more recent form of the equation [Kirk, 1994a], we will only consider that form for this validation step, as
planned. It is interesting to note that the 1994 study was heavily based on actual measured quantities, whereas
the 1991 study was based on simulations. This is especially revealing when we examine the differences
between the predicted one percent depths as derived from both Kirk’s models, as shown in Figure 7.24 (the
absorption coefficient was fixed so that only the scattering coefficient was varied for a given average cosine).
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Figure 7.25: Diffuse attenuation for a single run with an absorption coefficient of a = 0.1, a scattering
coefficient of b = 0.9, and an average cosine of 0.8. An exponential fit is shown for reference

This rather huge discrepency may not have been obvious from Figure 7.23, and shows how sensitive the depth
prediction is to the G

(
cos(θ2refr ), µs(λ)

)
.

In order to verify the model, we need only find the depth, z1%, at which the downwelled irradiance has
reduced to one percent of the downwelled radiance at the surface. We can then compare with Equation 7.8
for verification of the model. Of course, finding this depth is not necessarily straightforward and it will
be necessary to approximate the depth somewhat from a series of output depths. Figure 7.25 shows the
results of a simulation using an absorption coefficient of a = 0.1, a scattering coefficient of b = 0.9, and
a Henyey-Greenstein phase function with an average cosine, µ = 0.8. The map for the run only contained
ten thousand photons. Analysis of the results showed a value of z1% = 19.3 [m]. Plugging the scattering
and absorption coefficients into Equations 7.8 and 7.9 yielded 19.9 [m]—showing that we were in agreement
within a meter for this set of IOPs. Continuing this process for other values of the scattering coefficient
(fixing the absorption) yields the plot shown in Figure 7.26 and shows that we follow the trend of this AOP
relationship.

No further, quantitative analysis is necessary for this validation/verification since the AOP-IOP relationship
is inherently an approximate one in order to support generalization and is not a reflection of true physical
radiometry for a particular scene. Once again, though, we have shown that very few photons (10k in this
case) are necessary to show the general trends we would expect in effectively ”plane parallel” waters. In the
next phase of validation we examine absolute radiometric accuracy.
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7.6 Phase V: Canonical Problems

In 1993, nine radiative transfer code authors collaborated on a set of “realistic” canonical problems that
future models should be able to solve [Mobley et al., 1993]. A comparison of seven (or less, depending
on model capabilities) numerical solutions to the individual problems were also published. A number of
numerical methods were used as the driving mechanism of radiative transfer, including forward Monte Carlo
techniques, a discrete ordinate method and an invariant embedding model. For the most part, results were
consistent between the different models and inconsistencies were largely due to random fluctuations in the
Monte Carlo methods at photon starved depths.

Unfortunately, this problem set is not entirely well suited for validating the model presented here. All the
models discussed in Mobley et al. [1993] exploit the plane-parallel assumption to compute delocalized ra-
diance and irradiance at various depths — an assumption which this model has avoided in the interest of
generality and applicability to shallow water regions. Despite this and the fact that it has not been designed
to accurately compute radiance/irradiance at ten or twenty optical depths in highly scattering or absorbing
waters, the implemented Photon Mapping approach still performs rather well.

For each metric in question (radiance/irradiance), a localized estimate is used, so direct comparison with
Mobley et al. [1993] is difficult. Radiance is computed by querying from an arbitrary point (usually horizon-
tally centered in the map) and only uses the local !! distribution for the estimate (which has the result that
many !! s in the constructed map are never used). Similarly, irradiance is computed locally—in this case,
through the addition of finite, “virtual” disks placed in the medium that measure incident flux. Nonetheless,
since the measurements are made over extended surfaces, the effect of the photon mapping solution is to
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Figure 7.27: The types of measurements simulated for the canonical problems in validation phase V.

average the data in a manner that should be somewhat similar to what is done for the canonical problems,
though many photons are “wasted,” by comparison (if only because collection is done by disk/cylinders and
the map is always stored in a box). The types of measurements taken are summarized in Figure 7.27

7.6.1 Canonical Problem 1

Problem 1 represents a “simple” scenario that tests both a highly scattering (ωo = 0.9) and highly absorbing
(ωo = 0.2) medium where the scattering is governed by a Rayleigh phase function, β̃w(ψ) = [3/(16π)](1 +
cos2(ψ)), where ψ = cos−1(ξ · ξ′) (i.e. it is only dependent on the angle between the propagation direction and
the scattered direction). The illumination source is a localized “sun” in a black sky (total scalar downwelled
irradiance of 1.0 [Wm−2nm−1]). Figure 7.28(a) shows the results for the highly scattering case where a single
high !! count run (10M !! s) is compared to the average results from Mobley et al. [1993] as well as values
obtained from running Hydrolight 4.1 [Mobley and Sundman, 2000] for the same problem. Additionally,
standard deviations in the radiance estimate were computed from independent runs of maps using many fewer
!! s (100k and 10k) and are shown on the same plot (standard deviations for 1M and 10M were negligible in

this case). Note that for this case, Eou and Ed are equivalent within the water (see Mobley et al. [1993] for an
explanation of this). Fig. 7.28(b) shows the results for the highly absorbing case.

7.6.2 Canonical Problem 2

Problem 2 introduces a more realistic, highly forward scattering phase function based on measurements by
Petzold [Petzold, 1972]. Because the radiance measurement is highly dependent on the collection solid angle,
ω was chosen to be somewhat comparable to the (usually quad-averaged) solid angles used in the models.
In this case, an estimate of the integral was made for a solid angle of approximately 0.005 [sr]. The results
for the highly scattering and highly absorbing cases are shown in Fig. 7.29(a) and Fig. 7.29(b), respectively.
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Figure 7.28: Problem 1: “Easy Problem”
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Gregg-Carder atmosphere properties for Problem 4

Solar zenith angle 60.0 degrees
Pressure 29.9 in. mercury
Air mass type 1.0
Relative Humidity 80.0 %
Precipitable water 2.5 cm
24-hr wind speed 0.0 m

sec
Current wind speed 0.0 m

sec
Visibility 15.0 km
Total ozone 392.0 Dobson units
Aerosol optical thickness at 550 nm 0.261

Solar irradiance just above surface 0.4158 W/(m2 nm)
Sky irradiance just above surface 0.2729 W/(m2 nm)

It is evident in both problems 1 and 2 that the performance is better for the highly scattering case versus the
highly absorbing case in deep water–as expected, since fewer !! s are reaching the same depths in parts (b)
than in (a).

7.6.3 Canonical Problem 3

Problem 3 stratifies the water column so that the inherent optical properties are dependent on a chlorophyll
concentration that varies with depth. Like most other numerical water models, the user is able to define
concentration profiles and use a number of built-in, parametrized relationships between IOPs and constituent
concentrations that are commonly seen in the literature. More details on the specific models and parametriza-
tion used in this problem can be found in Mobley et al. [1993]. The resulting IOPs as a function of depth are
summarized in Figure 7.30 for verification against the original data (the scattering phase functions are not
given, but vary appropriately with depth as well). Figure 7.31 shows the results of running this scenario.

7.6.4 Canonical Problem 4

Problem 4 returns to the scenario introduced in Problem 2(a) and adds sky illumination. Since the details
of the particular sky models used by the various numerical models were not given and, more importantly,
since there were no atmospheric data to validate against, this problem has been done using an independent
implementation of the spectral Gregg-Carder atmospheric irradiance model[Gregg and Carder, 1999] coupled
with the Harrison-Coombes sky distribution model[Harrison and C. A. Coombes, 1988]. After applying
modifications to the atmospheric model given in Mobley and Sundman [2000], the atmospheric model was
validated against Hydrolight 4.1, which uses both models as its standard illumination model (RADTRAN).
The specific parameters used for this problem are summarized in Table 7.6.4 and the resulting solar and sky
irradiances are given as well. Simulation results are shown in Figure 7.32.

In contrast to the other scenarios, the modified Problem 4 incorporates a fully spectral model for the illumi-
nation source. This enables a validation of the spectral distribution relative to depth as is shown in Figure
7.33. Larger discrepancies at higher frequencies are due to IOP model differences.
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Figure 7.29: Problem 2: “Base Problem”
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7.6.5 Canonical Problem 5

Problem 5 introduces a windblown air-water interface to the basic problem (Problem 2) that is modeled as a
statistical distribution of slopes (i.e. an uncorrelated distribution). In constrast to the Cox-Munk distribution,
the canonical problem uses the isotropic distribution,

p(θh, φh) =
1
πσ2

(
tan(θh) sec2(θh)

)
exp
(
− tan2(θh)
σ2

)
, (7.11)

which is based on a slope distribution p(zx, zy). The variance of the distribution is given by

σ2 = 0.003 + 0.00512U. (7.12)

The wind speed, U, is measured in [m/s] and the subscript h has been used to denote the normal vector of
the micro-facet (i.e. it is a half vector as defined previously). It is not known why the anisotropic Cox-Munk
distribution presented in Section 6.3.1 was not used. Additionally, “shadowing” of photons is ignored.

Of interest is the fact that the photons used in the canonical problem are supposed to be weighted by the
following function:

W =
cos(ω) sec(θh)∫ ∫

cosω 0 p(θh, φh) cos(ω) sec(θh)dθhdφh
. (7.13)

According to Mobley et al. [1993] this weighting “accounts for sampling from p(zx,zy) even though all facets
are not visible to the photon.” While the fact that not all micro-facets orientations are exposed to any given
photon is true (particularly grazing photons), it is not clear why this weighting is justified. At any point on a
surface where there are micro-facets “pointed away” from a photon then there will always be an intervening
facet that is pointed towards the facet. It is not possible for the photon to move underneath the surface without
going through the surface. Additionally, if the photons are weighted, we would effectively be removing
energy from the scene. Unlike absorption within the water which effectively transforms the source energy
into another form, there is no process at a Fresnel interface that can remove a portion of the energy; the energy
within a photon bundle is transmitted and/or reflected, no other outcome is possible.

For these reasons we do not consider this canonical problem to be a valid test of a physical process and it will
not be included in the final error analysis. That said, the problem was simulated using the micro-facet model
described in Section 6.3.7 and ignoring “shadowing” effects. When sampling the distribution of micro-facets
to determine the redirection of an incident photon, orientations pointing away from the photon direction were
simply skipped and the distribution was re-sampled. The justification for this is the fact that the microfacet
distribution across the surface is constant for any local region (for the whole surface, in fact) and any offset
incurred by moving the hit to the nearest intervening facet is balanced by the same process in neighboring
regions.

The results of this simulation are shown in Figure 7.34 along with the published canonical problem solutions.
The light field for our unweighted simulation case is scaled slightly higher than the weighted case. In fact,
by tracking photon events in the code it was found that the scale factor between the two solutions is almost
exactly the difference between re-drawing the badly oriented facet samples and throwing them out altogether.
Therefore, despite the discrepencies, this problem does show that we are in agreement with the canonical
problem beyond a disagreement in how the surface is handled.
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Figure 7.34: Problem 5: “Windblown Surface”

7.6.6 Canonical Problem 6

Problem 6 is perhaps the most relevant to the stated purpose of the model at hand in that it introduces a
finite depth to the basic problem such that the light field is affected by reflectance off of the bottom material
(a 50% Lambertian reflector). Because the volume is limited, it is possible to reproduce the results of this
problem using many fewer photons. The generic radiometry solver (covered elsewhere) was used to integrate
the reflectance function at the bottom surface, but it would be just as possible to use a surface photon map as
well in this type of scenario.

7.6.7 Angular distribution (Problem 2c)

For the final canonical problem we return to Problem 2 and look at the angular distribution of radiance that
results from “spinning” the detector at three different depths. The results are shown in Figure 7.36 (published
data shown in figure 7.37 for reference). Since the results for this plot are highly dependent on the solid
angles used by the various models, absolute comparison with the published angular distributions is difficult,
though it is possible to visually validate the distributions with those shown in Figure 8 of Mobley et al.
[1993]. It should also be noted that the apparent noise in our distribution may be due, at least in part, to a
higher sampling rate–though it is not clear what sample rate was used in the aforementioned plot. In general,
however, we are in good agreement with the other models (those that are capable of producing this angular
distribution, that is).
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Figure 7.37: Published angular radiance distribution data, reprinted from Mobley et al. [1993] for compari-
son.

7.6.8 Error analysis

Quantitative errors for the runs used in the preceding sections are given in Table 7.1 and 7.2. The relative
errors (RE) from the Photon Mapping based model are directly comparable to the coefficients of variance
(CVs) given for the included numerical models. Both values are expressed as percentages to highlight the
fact that they are relative to the mean (RE% and CV%). The coefficient of variance is defined as the ratio
between the sample standard deviation and the mean value or:

CV =

[
1

N−1
∑N

i=1 (xi − x̄)2
] 1

2

1
N
∑N

i=1 xi
, (7.14)

where the number of models, N, is seven in most cases (for exceptions, see Mobley et al. [1993]). In other
words, if RE% is less than the CV%, then the error is within a single standard deviation of the data. In most
cases the relative error is within or much smaller than the standard deviation of the published models and, in
the few cases where larger “errors” exist, they are likely due to low photon population levels that have already
been mentioned.

An additional data product is provided in the form of a radiance to irradiance ratio. This ratio is analogous to
the remote sensing reflectance defined as Lu/Ed which represents the bulk effects of the volumetric scattering
and surface reflectance. For the canonical problems, all ratios are taken below the water so no reflectance
contribution exists, but the concept is the same. This metric was not published so it is not possible to state
the CVs with any accuracy (computation depends on the individual ratios).

The results from the Photon Mapping approach are generated from a single map and represent a unique run
of the simulation. It is likely that re-running the simulation multiple times and averaging the solutions would
result in much better results for some of the problems (particularly the ones that involve very low population
counts in deep water). Nonetheless, the user should only be expected to run the simulation once for a given
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problem and a number of techniques have been used in the design to minimize the effect of the stochastic
nature of the process (see Chapter 4, for instance).

With a few exceptions, the relative error in the data tracks the uncertainty in the published canonical problem
solutions. It should be noted that the published values are averages between the different approaches and do
not necessarily represent a “correct” solution. This is especially true in the cases where the model discrepen-
cies are high (see, for instance, the average upwelled radiance computed in Problem 2b). The “population”
of model types must be taken into account as well, given that many models use the same type of approach.
Similar methods are likely to give similar results, regardless of whether they are accurate or not, and possibly
“weight” the averages. This is especially important in the cases where a subset of the models are used (see
Mobley et al. [1993]), since some types of models are eliminated entirely.

Despite caveats about the canonical data and the stochastic nature of the model, it is clear that the results ob-
tained from using the Photon Mapping method are comparable to those that have been used historically. The
magnitude of relative errors between our method and the published data are correlated with the “difficulty”
of the problem (as we would expect) and large discrepencies correspond to high variability in the published
data. Most importantly, for the types of problems that this model has been designed to address (complex
coastal scenarios) we are concerned with the accuracy within the first few optical depths — corresponding to
the lowest errors in the validation data. Particularly, Problem 6 (the shallow bottom case) corresponds to a
likely scenario that will be encountered and it demonstrates excellent agreement with both the canonical data
and Hydrolight simulation.

7.7 Conclusion

After five phases of mechanical, intuitive, qualitative, and quantitative validation and verification, we have
still not compared this model with any real data. While this is certainly a direct shortcoming of the validation
process as given, we have indirectly validated against measured data through comparison with the models
underpinning the canonical problems and with Hydrolight, which was included in most of those problems.
Many of these models (Mobley’s in particular) have gone through extensive validation themselves that incor-
porates measured data and through peer-to-peer agreement we have, in essence, been able to exploit much
of the work that has been done previously. Of course, no matter what the source, it is impossible to validate
against all possible scenarios that may be of future interest, but by basing all aspects of the model on consis-
tent physics and radiometry models, we can be confident that the results of validating fundamental cases can
be extended to new scenarios. This is not to say that errors will not be found in the future, but at this point
in the development of the model we can be fairly sure that they will be due to unintended coding mistakes,
typos, or limitations of the model, rather than fundamental misunderstanding or faulty foundation.

All of the validation steps taken in this chapter have used simplified or restricted scenarios in order to test
and verify components of the model (though certainly at higher degrees of complexity with each phase).
With this validation as a foundation, the next chapter will look at simulating and modeling scenarios that
demonstrate many of the capabilities of the model that go well beyond the limited cases that were used here.
Most importantly, it will demonstrate what this model can do that the models against whch it was validated
cannot.
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Downwelled Irradiance, Ed Upwelled Scalar Irradiance, Eou

z Avg. PM CV% RE% z Avg. PM CV% RE%

Problem 1a
1 3.66-1 3.66-1 0.2 0.0 1 3.72-1 3.74-1 0.5 0.5
5 4.33-2 4.34-2 0.3 0.2 5 4.35-2 4.30-2 0.7 1.1
10 3.16-3 3.14-3 1.5 0.6 10 3.20-3 3.11-3 3.8 2.8

Problem 1b
1 1.41-1 1.42-1 0.1 0.7 1 1.34-2 1.33-2 0.3 0.7
5 1.07-3 1.06-3 0.5 0.9 5 1.00-4 9.52-5 3.9 4.6
10 2.93-6 2.81-6 10.2 4.1 10 3.00-7 1.95-7 30.8 35.0

Problem 2a
1 4.13-1 4.13-1 0.1 0.0 1 9.31-2 9.19-2 2.1 1.3
5 1.87-1 1.86-1 0.5 0.5 5 4.63-2 4.57-2 1.7 1.3
10 6.85-2 6.93-2 1.0 1.2 10 1.65-2 1.66-2 1.4 0.6

Problem 2b
1 1.62-1 1.62-1 0.0 0.0 1 9.66-4 9.63-4 2.3 0.3
5 2.27-3 2.28-3 0.2 0.4 5 1.37-5 1.17-5 6.3 14.6
10 1.30-5 1.29-5 4.7 0.8 10 7.28-8 6.19-8 18.7 15.0

Problem 3
5 2.30-1 2.13-1 0.6 7.4 5 4.34-2 4.26-2 2.5 1.8
25 1.62-3 1.46-3 2.8 9.9 25 2.86-4 2.54-4 3.8 12.6
60 5.23-5 3.46-5 7.1 33.8 60 5.13-6 3.42-6 3.6 33.3

Problem 6
1 1.62-1 1.62-1 0.0 0.0 1 9.81-4 9.88-4 1.0 0.7
5 2.28-3 2.29-3 0.3 0.4 5 2.28-3 2.28-3 0.2 0.0

Table 7.1: Quantitative analysis of the applicable canonical problems as compared with accepted values.
Published average solutions are given in the Avg. column; Solutions from this model are given under PM;
Published values for the coefficient of variance from the various models is given in the CV% column; and the
relative error from the model is given under RE%.
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“Upwelled” Radiance, Lu Lu/Ed

z Avg. PM CV% RE% z Avg. PM RE%

Problem 1a
1 4.85-2 4.88-2 1.5 0.6 1 1.33-1 1.33-1 0.0
5 5.59-3 5.77-3 5.2 3.2 5 1.29-1 1.33-1 3.1
10 4.37-4 4.21-4 9.1 3.7 10 1.38-1 1.34-1 2.9

Problem 1b
1 1.72-3 1.70-3 4.4 1.2 1 1.22-2 1.19-2 2.5
5 1.37-5 1.29-5 28.8 5.8 5 1.28-2 1.21-2 5.5
10 3.39-8 2.81-8 19.7 17.1 10 1.16-2 1.00-2 13.8

Problem 2a
1 6.99-3 7.40-3 6.3 5.9 1 1.69-2 1.79-2 5.9
5 3.26-3 3.05-3 5.5 6.4 5 1.74-2 1.63-2 6.3
10 1.21-3 8.85-4 10.9 26.9 10 1.77-2 1.28-2 27.7

Problem 2b
1 5.47-5 5.33-5 6.0 2.6 1 3.38-4 3.29-4 2.7
5 6.24-7 7.39-7 35.5 18.4 5 2.75-4 3.23-4 14.9
10 4.02-9 3.92-9 24.8 2.5 10 3.09-4 3.04-4 1.6

Problem 3
5 3.13-3 3.18-3 5.4 1.6 5 1.36-2 1.29-2 5.1
25 2.12-5 1.83-5 6.1 13.6 25 1.31-2 9.15-3 30.2
60 3.57-7 3.84-7 43.4 7.5 60 6.83-3 9.49-3 38.9

Problem 6
1 6.84-5 6.90-5 2.0 0.9 1 4.22-4 4.25-4 0.7
5 3.60-4 3.63-4 1.0 0.8 5 1.58-1 1.64-1 3.8

Table 7.2: Quantitative analysis of the applicable canonical problems as compared with accepted values.
Published average solutions are given in the Avg. column; Solutions from this model are given under PM;
Published values for the coefficient of variance from the various models is given in the CV% column; and the
relative error from the model is given under RE%. The ratio between the upwelled radiance and downwelled
irradiance is shown for reference (analogous to remote sensing reflectance).
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ABSTRACT

Sensor reaching radiance in coastal ocean-water environ-
ments contains contributions from the air-water interface,
in-water objects, and the participating volume itself. If ren-
dered by a forward-modeling synthetic image generation
program, the imagery must account for several interesting
phenomenon, including, but not limited to; volumetric scat-
tering, shadows, skyfraction, background reflections, and
capillary and gravity wave glints and caustics. DIRSIG mod-
els the radiative transfer process in this complex environment
using a combination of sophisticated raytracing and photon
mapping techniques. This research illustrates a subset of
our validation efforts associated with the forward radiometric
modeling process used by DIRSIG when rendering coastal
environments with significant contributions from in-water
objects. The results exemplify DIRSIG’s ability to render
spectrally independent (elastic) and radiometrically accurate
hyperspectral imagery of participating media.

Index Terms— DIRSIG, Radiative Transfer, Monte
Carlo, Photon Mapping, Participating Media

1. INTRODUCTION

The radiative transfer equation (RTE) is a mathematical de-
scription of radiative gains and losses experienced by a prop-
agating electromagnetic wave in a participating medium. Ex-
cept for an isotropic lossless vacuum, all other volumes have
the potential to scatter, absorb and emit radiant energy. Of
these possible events, the global scattering term is the great-
est obstacle between a radiative transfer problem and its so-
lution. Historically, the RTE has been solved using a host
of analytical approximations and numerical methods. Typi-
cal solution models exploit plane-parallel assumptions where
it is assumed that optical properties may vary vertically with
depth, but have an infinite horizontal extent. For more com-
plicated scenarios that include pronounced 3D variability, a
Monte Carlo (MC) statistical approach to the radiative trans-
fer (RT) solution is often utilized.

Photon mapping provides a probabilistic solution to the
in-scattered radiance problem, by employing a two-pass tech-
nique that first populates a photon map based on a Monte

Carlo (MC) solution to the global scattering term, and then
later uses this map to reconstruct the in-scattered radiance
distribution during a traditional raytracing pass [1]. Although
Monte Carlo methods have existed since the 1940’s [2], ever-
increasing computer efficiency and resources have recently
enabled integration of MC RTE solutions into synthetic image
generation programs. The technique produces visibly con-
vincing simulations of volume and subsurface scattering, and
has been used for a variety of applications in the field of Com-
puter Graphics.

Monte Carlo photon mapping capabilities were recently
added to the Rochester Institute of Technology’s Digital
Imaging and Remote Sensing Image Generation model [3].
DIRSIG is a sophisticated physics-based synthetic image
generation tool that can render multi- or hyperspectral im-
agery between the visible and thermal infrared regions of the
electromagnetic spectrum. The simulated products account
for all aspects of the image formation process, generating
training data for analysts and algorithm development, as well
as a trade space for system and sensor design.

Although the addition of PM capabilities to DIRSIG ex-
tends the model’s ability to render any number of participat-
ing media and associated phenomenon, the realistic simula-
tion of any environment requires several other radiometric
solutions that are not directly related to the photon mapped
in-scattered radiance. For example, if one considers a coastal
ocean-water environment, then the sensor-reaching radiance
will be a function of a host of boundary interface, medium,
and submerged or floating object effects. Therefore, render-
ing truly interesting scenes that leverage the benefits of a pho-
ton mapped in-scattered radiance distribution goes well be-
yond validation of the Monte Carlo solution of the RTE. With
this in mind, an extensive validation and verification effort has
been undertaken. Our approach to validation has three major
phases.

• The first phase concerns the evaluation of radiometric
contributions to sensor reaching radiance. This is ac-
complished by comparing DIRSIG modeled results to
those predicted analytically, by comparison to other nu-
merical models, and by comparison to observed field
and water-tank phenomenology.



• The second phase addresses image quality concerns
that are a function of the computational mechanism
and configuration used during image generation. The
primary goal of this phase of the research is to provide
the user with a first-order estimate of a computational
solution’s ability to render a given phenomenon, and
any variance or bias that may result as a function of the
user-specified solution configuration.

• The final phase attempts to demonstrate DIRSIG’s
ability to render complex coastal ocean-water scenes,
thereby proving that the phase one validations, when
taken in combination, can recreate complex system-
wide phenomenological events that include any number
of spectrally variant parameters, generating radiomet-
rically accurate hyperspectral imagery of participating
media.

The remainder of this paper illustrates a subset of phase
one results that validate contributions to sensor reaching ra-
diance that are a function of the air-water interface and the
participating medium itself.

2. AIR-WATER INTERFACE

The energy that impinges on this boundary can originate
from a myriad of downwelling and upwelling sources. Typi-
cal examples include downwelling radiance from direct solar,
diffuse skylight, and background reflections, and upwelling
radiance that has been reflected from in-water objects, or
backscattered through the volume. For an interface that
can take on any number of geometric-forms (e.g. planar,
sinusoidal-like gravity waves, microfacet capillary waves)
interactions at this boundary determine the magnitude and
direction of travel for the reflected and transmitted radiance.
This is governed by Fresnel equations, the law of reflection,
and Snell’s law, which generate a vast number of observable
consequences.

The ocean surface is often marked by rapidly varying cap-
illary waves superimposed on more slowly varying gravity
waves. This combination gives rise to sun glitter and sub-
surface caustics. Glints are the result of solar rays being re-
flected toward the observer from a multitude of facets with
varying inclination. The counterpart of the reflected ray is a
transmitted and refracted ray whose magnitude and direction
are likewise a function of the inclination of the interface. At
a particular depth, several transmitted and refracted rays may
converge, generating spatially and temporally varying subsur-
face caustics. A straightforward example of this are the caus-
tics that result from a sinusoidal-like gravity wave. The spa-
tially varying caustics are directly related to the focusing ef-
fect of wave peaks, and the defocusing effect of wave troughs.
This was validated using a simple but elegant approach de-
scribed in [4]. Briefly, the slope of the interface at any arbi-
trary location can be determined by differentiating the wave

equation. This knowledge provides a geometric solution to a
ray’s resting position (at any reference depth), as a function
of the ray’s passage through the spatially varying air-water
interface above. Using this approach Fig.1 (a) depicts a sinu-
soidal air-water interface (asterisks), with a wave amplitude
of 0.4 m, and a wavelength of 5.0 m. The dashed line shows
the shift (in units of distance) expected from uniform (contin-
uous) vertically incident rays. The squares depict the location
of DIRSIG modeled incident rays, in 2.0 m increments, and
the solid line depicts the caustic’s relative intensity and loca-
tion, after traversing the reference water depth. By comparing
the predicted shifts (dashed line) to the DIRSIG result (solid
line), individual refractive events are validated. For example,
the first sample ray strikes a peak and is not deflected. The
second sample ray is refracted back toward the origin (x = 0.0
m) by approximately 0.3 units. The third ray is refracted for-
ward, away from the origin, by nearly 1.0 units. The DIRSIG
modeled refracted result for all remaining rays can be con-
firmed in a similar fashion. This scenario, but with slightly
larger sensor pixels would result in a collection of caustics
with varying relative intensity since the tightly clustered re-
fracted rays near x = 6.5 m and x = 16.5 m would appear to
contribute to a single pixel and therefore generate a greater
sensor-reaching radiance than the neighboring rays.
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Fig. 1. Surface wave, refractive-induced shift in caustic, and
caustic intensity for several normally incident sample rays.
The solid line shows the DIRSIG modeled normalized caustic
intensity for the 2.0 m increment samples denoted by squares.

For a great number of remote sensing applications, the
capillary waves (superimposed on lower frequency gravity
waves), will in fact be subpixel and therefore induce a dif-
fuse blurring effect on volume and surface caustics and re-
flections. An example is the diffuse glint and caustic formed
by rays from the sun. Within DIRSIG, the capillary surface
is treated as a collection of subpixel microfacets. For a given
wind speed, microfacets with a given inclination are more or
less probable. Research indicates that the probability density
of the occurrence of a given microfacet slope can be modeled
(to first-order) as an anisotropic two-dimensional Gaussian



function that varies with wind speed [5]. This can be incor-
porated into a bidirectional reflectance distribution function
(BRDF) that describes the ratio of the radiance reflected in a
particular outgoing direction, to the irradiance from a speci-
fied incoming direction [6]. The slope probability distribution
function can also be incorporated into a bidirectional trans-
mittance distribution function (BTDF) which models the out-
going transmitted and refracted radiance as a function of the
incoming irradiance on opposing sides of an interface. Both
the BRDF and BTDF can be modeled analytically and with
variable wind speeds, and then compared to the DIRSIG sim-
ulated results. This is shown in Fig.2 (for transects along the
upwind direction) which plots the analytical prediction (solid
line) of the solar glint (a) and transmitted caustic (b) versus
the DIRSIG simulated results (dotted line) at 2.0, 3.0, 5.0 and
8.0 m

s . The accompanying imagery shown in (c) and (d) il-
lustrates the obvious result, that as wind speed increases, the
glint (caustic) becomes increasingly diffuse.
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Fig. 2. Analytical prediction of solar glints and caustics (solid
line) versus DIRSIG modeled results (dotted line) in the up-
wind direction for wind speeds of 2.0, 3.0, 5.0 and 8.0 m

s .
Accompanying imagery (the crosswind direction is horizon-
tal, and the upwind direction is vertical), including the lesser
wind speed of 0.5 m

s .

Although the above examples illustrate a spatially cor-
related interface, and one that has a probable solution for
slope inclinations, there is nothing that restricts the user
from generating a more complicated boundary. This can in-

clude spatially uncorrelated variability such as that from ship
wakes and breaking waves, affording the user the opportunity
to study complicated phenomenological interactions typical
of coastal environments.

3. MEDIUM

The participating volume extinguishes radiance through ab-
sorption, and redistributes radiance through scattering. In
coastal ocean-waters, the scattering phase function is highly
forward peaked, but the scattering point spread function be-
comes more diffuse as multiple scattering dominates. De-
pending on the turbidity and geometric depth of the volume,
the sensor-reaching radiance can contain a significant contri-
bution from direct radiance that has been reflected back to-
ward the sensor, in addition to backscattered contributions.
In fact, a great deal of effort has already been expended ex-
amining skyfraction and background reflected contributions
from in-water objects. When considering the scattered radi-
ance contributions, we compare DIRSIG’s simulated results
to those predicted by independent numerical radiative trans-
fer models. This is a robust gauge of DIRSIG’s success since
we expect constant physics-based interactions to generate nu-
merically convergent results regardless of the computational
model used to describe those interactions.

For example, Fig.3 compares DIRSIG simulated results
for a stylized in-water canonical problem (referred to as
canonical problem #6) [7] versus that predicted by inde-
pendent radiative transfer codes. The simulation parameters
include a particle scattering phase function and a lambertian
ground plane, with additional details regarding the problem
and its independent solution described elsewhere [7]. Here,
we show finely-sampled DIRSIG results of the upwelling
radiance Lu, the upwelling scalar irradiance Eou, and the
downwelling irradiance Ed, compared to the mean predicted
values from [7].

Fig.4 likewise compares DIRSIG simulated downwelling
irradiance to that predicted by an independent numerical
code [8], but for a more taxing 3D scenario that leverages
the benefit of using a photon mapped solution. A complete
description of the scenario and its independent solution are
described elsewhere [8]. Briefly, the relatively clear water
scenario examines the surface and volumetric shadow cast by
a 30o zenith angle sun and a 10.0 m wide (reflective) floating
obstruction, combined with a forward scattering volume and
reflective ground plane.

Referring to Fig.4, the volumetric shadow is bounded by
a rapid change in the downwelling irradiance, as illustrated
by the vertical contours that terminate near the nominal x-
locations of -10.0 and 2.5 m. The shadow becomes more
diffuse with depth due to in-scattering, and includes a minor
contribution from upwelling irradiance that has been reflected
from the underside of the floating obstruction. At increasing
horizontal and vertical distances from the surface obscuration,



Problem 6:  Spectral Radiance & Irradiance
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Fig. 3. DIRSIG modeled results for canonical problem #6 af-
ter tracing 1 million photon histories. Each curve is labeled
as either scalar upwelling irradiance [Eou, dotted line], down-
welling irradiance [Ed, solid line], or upwelling radiance [Lu,
solid line]. The symbols (triangles, diamonds and asterisks)
are the mean predicted values provided by [7] just above the
full reference depth (5.0 m) and 1.0 m below the surface (sur-
face is at 0.0 m in this plot).
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Fig. 4. Normalized log10 downwelling irradiance at 532 nm
as a function of depth and distance from a floating obstruc-
tion (centered at 0.0 m along the x-direction). The results are
based on tracing more than 100,000 photons per cubic me-
ter in the volume, and more than 240,000 photons per square
meter on the ground surface. DIRSIG shows good agreement
with the results presented by [8] (not shown here).

perturbations to the downwelling irradiance are lessened, as
evidenced by horizontal contours. The results show good
agreement with those reported by [8], validating DIRSIG’s

solution, and nicely illustrating the 3D variability that can be
modeled by photon mapping.

4. SUMMARY

The preceding results illustrate a subset of our phase one
validation efforts concerning radiative transfer in coastal
ocean-waters. The work is driven by our desire to accurately
forward-model spectrally variant participating volumes, in-
cluding coastal regions with significant contributions from
in-water objects. Although the above results are from sin-
gle or small bandpass simulations, DIRSIG can inherently
accept an equivalent but spectrally varying parameter. The
reported results are therefore, by logical extension, spectral
validations, ultimately leading to radiometrically accurate hy-
perspectral imagery of participating media that are dominated
by elastic scattering. Current research addresses phase two
and phase three interests, including the spectrally-dependent
signal-to-noise-ratio associated with clear and turbid water
scenarios.
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