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Modeling Multiple Scattering and Absorption for a 
Differential Absorption LIDAR System  

 
by 
 

Daniel D. Blevins 
 

Chester F. Carlson Center for Imaging Science 
Rochester Institute of Technology 

 
Abstract 

 
 
The Digital Image and Remote Sensing Image Generation (DIRSIG) model has been 

developed and utilized to support research at the Rochester Institute of Technology (RIT) 

for over a decade. The model is an established, first-principles-based scene simulation 

tool that has been focused on passive multi- and hyper-spectral sensing from the visible 

to long wave infrared (0.4 to 14 µm). Leveraging photon mapping techniques utilized by 

the computer graphics community, a first-principles-based elastic Light Detection and 

Ranging (LIDAR) model was incorporated into the passive radiometry framework so that 

the model calculates arbitrary, time-gated photon counts at the sensor for atmospheric, 

topographic, and backscattered returns. The active LIDAR module handles a wide variety 

of complicated scene geometries, a diverse set of surface and participating media optical 

characteristics, multiple bounce and multiple scattering effects, and a flexible suite of 

sensor models. This robust modeling environment allows the researcher to evaluate 

sensor design trades for topographic systems and the impact that scattering constituents 

(e.g. water vapor, dust, sediment, soot, etc.) may have on a Differential Absorption 

LIDAR (DIAL) system’s ability to detect and quantify constituents of interest within 

volumes including water and atmospheric plumes. 

 

The interest in modeling DIAL sensor engagements involving participating media such as 

gaseous plumes presented significant challenges that were overcome using the photon 

mapping paradigm. Intuitively, researchers suspect that multiple scattering effects from 

additional constituents as simple as water vapor or soot could impact a DIAL sensor’s 

ability to detect and quantify effluents of interest within a participating medium. 
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Traditional techniques, however, are not conducive to modeling the multiple scattering 

and absorption within a non-homogenous finite volume, such as a plume. Specific 

numerical approaches are presented for predicting sensor-reaching photon counts, 

including the effects of multiple scattering and absorption within a realistic plume. These 

approaches are discussed and benchmarked against analytically predicted results using a 

non-stationary, diffusion approximation. The analytical development and consistency of 

this new variant of photon mapping is explored along with the underlying physics and 

radiative transfer theory for participating media. Additionally, a LIDAR equation that 

accounts for multiple scattering effects is presented in conjunction with a discussion of 

the importance of accounting for these effects. 

 

Representative datasets generated via DIRSIG for both a topographical LIDAR and 

DIAL system are then shown. The results from some interesting phenomenological case 

studies including standard terrain topography, forest canopy penetration, plume 

interrogation with scattering and absorbing constituents, and camouflaged hard targets 

are also presented. Based upon a limited number of case studies, the effects of multiple 

scattering on DIAL sensor performance are also qualitatively discussed. 
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Nomenclature 

The nomenclature for this dissertation is listed in the table below. In general, the standard 

conventions in each subject area were followed. The nomenclature attempts to limit the 

potential for confusion and subscripts were employed for clarification; however, some 

symbols will have contextual meanings. For instance, k is used for Planck’s constant in 

discussing thermal dynamics or emission and is also used for the wavenumber in the 

electromagnetic wave equations. These cases were limited as much as possible. The specific 

context is indicated by the shaded categories within the table. 

   
 

Symbol Definition 

General 
λ Wavelength of light 

c Speed of light 

!  Gradient operator 

T Temperature 

P Pressure 

!  Flux 

k Wavenumber or Planck’s constant 

h Boltzmann’s constant 

LIDAR 

abs
!  DIAL wavelength at a strong absorption feature 

! 

"ref  DIAL reference wavelength in wing of absorption feature 

! 

" #,R( ) LIDAR system function 

R Range 
2
RA

r
 Acceptance solid angle of the receiver optics 

r
A  Collecting area 

! 

P
L
"( )  Average power in the transmitted pulse at wavelength λ 

! 

"R  Effective range resolution of LIDAR signal 
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Symbol Definition 

! 

C
B
i

"( )  Backscattering cross-section at wavelength λ 

! 

N
i
r( )  Number density of scatter species i at range r 

! 

CAp
"( ) Particle species absorption cross-section at wavelength λ 

! 

Np r( )  Number density of particle absorbing species p at range r 

! 

C
A
m

"( ) Molecular species absorption cross-section at wavelength λ 

! 

N
m
r( )  Number density of molecular absorbing species m at range r 

! 

"# $,R( )  Backscattering coefficient at wavelength λ and range r 

! 

"
ext
#,R( ) Extinction coefficient at wavelength λ and range r 

L
!  Laser pulse duration 

D
!  Detector’s integration period 

! 

N 
m

 Averaged molecular number density 

! 

"
S
#( ) Backscattering efficiency of the topographic target 

RT Range to the topographic target 

! 

E ",R
T( ) Radiative energy received from topographic target at range RT 

! 

E
L
"( )  Transmitted energy of the laser pulse 

SNR Signal-to-noise ratio 

! 

N R( )[ ]
min

 Minimum detectable concentration for aerosol DIAL 

! 

Ntopo[ ]
min

 Minimum detectable concentration for topographic DIAL 

cmin Minimum concentration in ppm 

Natm Atmospheric molecular density 

! 

C
m
"( )  Species absorption cross-section at wavelength λ 

! 

"
r
 Solid angle subtended by the receiver 

! 

p "( ) Scattering phase function 

ρL Angular half-width of transmit laser beam 

ρT Angular half-width of receiver 

! 

" Mean angular width of scattering phase function main lobe 

! 

" x( ) Fraction of energy in forward peak of phase function at range x 
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Symbol Definition 

! 

p"n  Weighted average of scattering phase function 

! 

P
n
R( )  Received power from range R due to nth-order scattering 

Pt (t) Total received power as function of time t 

Pl Legendre associated polynomial 

gl Legendre associated polynomial coefficient 

! 

"
l

m µ( )  Normalized associated Legendre polynomial 

Ndetected Number of photons detected 

NL Number of photons in laser pulse 

W(R) Transmit beam waist radius at range R 

f Focal length of system 

AD Area of detector 

Scattering and Electromagnetics 

a Particle diameter 

aef Effective particle radius 

x Particles size parameter 

m Complex index of refraction 

E Electric field vector 

B Magnetic field vector 
ρ Charge density 
ε Electric permittivity 
µ Magnetic permeability 

j Electric charge 

S1 Perpendicular component of scattered wave amplitude function 

S2 Parallel component of scattered wave amplitude function 

an Mie coefficient 

bn Mie coefficient 

πn Legrendre associated polynomial 

τn Legrendre associated polynomial 

ψn Riccati-Bessel function 
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Symbol Definition 

ζn Riccati-Bessel function 

χn Riccati-Bessel function 

i1 Perpendicular scattered irradiance per incident irradiance 

i2 Parallel scattered irradiance per incident irradiance 

Qext Efficiency factor for extinction 

Qabs Efficiency factor for absorption 

Qsca Efficiency factor for scattering 

Csca Scattering cross-section 

Cabs Absorption cross-section 

Cext Extinction cross-section 
d

sca
!  Differential scattering cross-section 

rn Recursive Riccatti-Bessel function ratio 

An Logarithmic derivative of ψn 

ln Number of lost significant digits for Du’s Mie code 

σext Extinction coefficient 

σsca Scattering coefficient 

σabs Absorption coefficient 

0
!  Single surface albedo 

Lλ Radiance at wavelength λ 

ci Particle concentration 
τλ Optical thickness or depth 

N Number concentration of particles (typically) 

g Asymmetry parameter 

cv Volumetric concentration of particles 

! 

"( ) Gamma function 

!  Observation angle 

!  Observation azimuth angle 

0
!  Incident angle 
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Symbol Definition 

0
!  Incident azimuth angle 

!
r

 Wave propagation vector 

θ Scattering angle 

n
r  Observation vector 

r
r  Direction of the light beam 

0
B  Internal sources of radiation 

!
I  Radiant intensity leaving top of plane-parallel layer 

!
I  Radiant intensity leaving bottom of plane-parallel layer 
d
I
!

 Upward diffused light intensity 
d
I
!

 Downward diffused light intensity 

R Reflection function 

T Transmission function 
!

0
R  Reflection function for semi-infinite layer 

It Total intensity 

Iλ Radiant intensity at wavelength λ 

Isrc Internal sources of radiation 

Iem Emission sources of radiation 

Isca In-scattered source of radiation 

I0 Initial incident intensity 

Isrc Internal sources of radiation 

    

! 

F r 
" { } Modified 2-D Fourier transform with respect to incident vector 

    

! 

F r 
" { } Modified 2-D Fourier transform with respect to observation 

vector 

  

! 

r 
F 

r 
r ( )  Flux density vector in direction   

! 

r 
r  

  

! 

w
r 
r ( )  Radiation density in direction   

! 

r 
r  

γ Asymptotic attenuation coefficient 

q Scattering inicatrix parameter 

! 

T "( )[ ]
homogenous

 MTF for a homogenous plane-parallel layer 
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Symbol Definition 

! 

T "( )[ ]
inhomogenous

 MTF for an inhomogenous plane-parallel layer 

  

! 

I"

r 
# ,

r 
n ,u( ) Irradiance impulse response to an isotropic point source 

Es Irradiance from the sun 

ρsurf Reflectance of a surface 

Δt Length of listening window 

Photon Mapping 

Li In-scattered radiance 

  

! 

L
src

x,
r 
n ( ) Internal source of radiance within media 

Le Radiance emitted along the path 

d Distance traveled by a photon prior to the next event 

samp
!  Efficiency of the acceptance-rejection method 

Li,d In-scattered radiance direct component due to single scattering 

Li,i In-scattered radiance indirect portion 

r
L  Reflected radiance 

fr Bidirectional reflectance distribution function (BRDF) 

Lp Radiance through pixel p 

ts Total frame time 

! 

g " x ( ) Receiver filter function 

  

! 

s " x ,
r 
# ,t( )  Reciever shutter function 

Plume Dynamics 

u
r  Velocity vector of gas 

p Pressure of gas 

gv Gravity in the vertical direction 
β Coefficient of thermal expansion 

T0 Initial reference temperature 

Tk 
Average temperature on the boundary between a gaseous cell 
and the one above it 

λ Represent both molecular and turbulent diffusion processes 

Q Source strength 

t Time 
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Symbol Definition 

! 

" x,y,z( )  Concentration overall 

x Downwind distance 

y Lateral distance from centerline 

z Vertical distance from ground 

σy Lateral coefficient of dispersion 

σz Vertical coefficient of dispersion 

µ Mean wind speed 

heff Effective height of stack 

h Height of the centerline of the plume 

rstack Stack radius 

vratio Emission velocity ratio 
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Chapter 1  

Introduction 

For the last decade or so, the remote sensing community has grappled with how to best solve 

the problem of detecting and analyzing gaseous plumes. Sensor designers and algorithm 

developers attempt to balance the requirement to determine the makeup, the species type 

present, the temperature (absolute and relative) within the plume, the particle concentration 

spatially and temporally, and the rate of release of pollutants or specific chemicals. In 

general, active measures, such as laser remote sensing with a LIght Detection And Ranging 

(LIDAR) system, provide a more accurate determination of the concentration of effluents in a 

plume at fixed wavelengths than passive means (Measures, 1998; Zanzottera, 1990). Within 

the active sensor regime, the Differential Absorption and Scattering (DAS) or Differential 

Absorption LIDAR (DIAL) is often the sensor of choice for concentration measurements due 

to their reputed high accuracy and sensitivity even with a modest design complexity. 

 

Intuitively, researchers suspect that multiple scattering effects from additional constituents as 

simple as water vapor or soot could impact a DIAL sensor’s ability to detect and quantify 

effluents of interest within a participating medium. For instance, cloud atmospheric inversion 

algorithms often require the user to intelligently guess or utilize some sort of measurement of 

how much water vapor is present within the cloud layer. The variability of the results may 

then be correlated with how accurate the guess is and how much the water vapor varies 

within the cloud layer. The impact is highly dependent upon the gas constituent of interest. A 

more complicated situation can arise when examining a variety of different factory stacks, 

particularly in a third world country where the plumes are typically very “dirty”. The 

potential impact of the multiple scattering in the plume coupled with its very non-stationary 

nature could be problematic for a DIAL system.  Although exploring this problem set with a 

synthetic data generation tool may be beneficial, modeling these complex scenarios with a 

high degree of accuracy poses significant challenges. Traditional techniques are not 

conducive to modeling the multiple scattering and absorption within a non-homogenous, 

finite volume, such as a plume. 
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This research presents a new physics-based modeling approach to simulate the multiple 

scattering and absorption in a medium viewed by a LIDAR sensor, and particularly by a 

DIAL system. The available tools to simulate LIDAR scenes do not support rigorous 

atmospheric interactions, participating media, multiple bounce/scattering, thermal and 

reflective region passive returns, complex scene geometries, moving platform and scanning 

effects, detailed optical descriptions of materials (e.g., BRDF and scattering models), and 

time-gated returns. Such requirements were deemed crucial to fully address future research 

problems and accurately model the observable signatures of gaseous plumes under a variety 

of complex scene conditions, including multiple scattering.  

 

Developed at the Center for Imaging Science (CIS) at the Rochester Institute of Technology 

(RIT) in Rochester, NY, the Digital Imaging and Remote Sensing Image Generation 

(DIRSIG) software is a quantitative first-principle, physics-based synthetic imagery 

generation model of the imaging chain for specified scenarios.  With a 20-year history, 

DIRSIG is an established scene simulation model for passive multi- and hyperspectral 

sensing from the visible to long-wave infrared. Leveraging the photon mapping techniques 

utilized by the computer graphics community, a first-principle-based elastic LIDAR model 

was incorporated into the passive radiometry framework so that the model calculates 

arbitrary, time-gated photon counts at the sensor for atmospheric, topographic, and 

volumetric backscattered returns. In conjunction with recent upgrades to DIRSIG’s 

foundation, this research extended DIRSIG’s LIDAR module capability and fidelity beyond 

the initial proto-type development conducted by Burton in 2002. The LIDAR module now 

handles a wide variety of complicated scene geometries, diverse surface and participating 

media optical characteristics, multiple bounce and multiple scattering effects, and a variety of 

sensor models. 

 

The interest in modeling DIAL sensor engagements involving participating medium, such as 

gaseous plumes with scattering constituents, presented significant challenges that were 

overcome using the photon mapping modeling paradigm. Specific approaches are presented 

to predict sensor-reaching photon counts for a LIDAR system, including the effects of 
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multiple scattering and absorption within a realistic plume. These approaches are then 

discussed and benchmarked against analytically predicted results using a non-stationary 

diffusion approximation. The analytical development and consistency of this new variant of 

the photon mapping is also presented along with the underlying physics and radiative transfer 

theory for participating media. Additionally, a LIDAR equation that accounts for the effects 

of multiple scattering, which forms the foundation for the new modeling approach, is 

presented in conjunction with a discussion of the importance of accounting for these effects.  

 

Representative datasets generated via DIRSIG for both the improved topographical LIDAR 

and DIAL system are then shown. Additionally, the results from some interesting 

phenomenological case studies including standard terrain topography, forest canopy 

penetration, plume interrogation, and camouflaged hard targets are presented. Finally, some 

initial conclusions are drawn based upon the modeling efforts and the respective theory about 

the effects of multiple scattering on DIAL sensor performance.  

 

This dissertation is divided into seven chapters and one appendix. Chapter 2 introduces the 

primary objectives and some additional desirable goals. Chapter 3 describes the general 

theory and background material for the entire research effort. The fundamental theory for 

DAS and DIAL systems, radiative transfer theory for participating medium, photon mapping, 

and a multiple scattering LIDAR equation are reviewed. Additionally, the foundational 

theory for modeling plumes and the optical properties of participating medium via Mie 

theory will be presented. The former sections form the basis for the modeling effort; whereas, 

the latter sections discuss some enabling theory to generate reasonable data for the 

simulations. Specific approaches to model the multiple scattering and absorption within the 

plume will be discussed in Chapter 4, which begins with a discussion of the justification of 

an active system within the DIRSIG framework and the overall requirements and goals for 

the LIDAR module. The introduction of the model is then followed by a more detailed 

description and some practical considerations, such as a practical atmospheric model and 

reasonable assumptions for the optical properties of water vapor or soot. Then, the 

verification philosophy and approach are discussed. Chapter 4 ends with a description of 

some key case studies, both interesting phenomenological case studies and multiple 
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scattering case studies. Chapter 5 gives the results of the verification efforts, sample results 

from the case studies, and qualitative results with regards to the importance of modeling the 

effects of multiple scattering for DIAL concentration measurements of gaseous plumes. 

Conclusions are then drawn in Chapter 6 including some recommendations for future 

research. The appendix provides a detailed discussion of the accuracies of the Mie code(s) 

introduced in Chapter 3, which were used for modeling the plume optical properties. 
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Chapter 2  

Objectives 

This chapter provides a general overview of the objectives associated with this research 

effort. While the scientific endeavor involves a variety of tasks, the overarching objective is 

the development and verification of a Monte-Carlo photon counting LIDAR model that 

accurately simulates the multiple scattering and absorption of a laser pulse in a participating 

medium. To obtain this objective, a series of tasks must be performed to provide a sufficient 

level of confidence that the simulations are reasonable or physically accurate. The specific 

tasks deemed necessary are directly tied to the overarching objective and thus are designated 

as success criteria, as described in Section 2.1  . Additional general research goals were 

pursued as time and research constraints permitted. Section 2.2  addresses the general 

research goals and how they tied into the overall scope of work. 

2.1  Success Criteria 

The specific objectives associated with this research effort are itemized below: 

 Develop a set of representative DIAL simulations utilizing the DIRSIG LIDAR sensor 

module. The intent is to demonstrate the capabilities inherent within the DIRSIG LIDAR 

module to model a variety of different DIAL scenarios. The operating parameters or 

system design characteristics which may be used to describe a DIAL payload during an 

engagement are the transmit power, the pulse width, the transmit wavelength(s), the 

effective receiver wavelengths and bandwidth, the dwell time, the pulse repetition rate, 

the duty cycle, the pulse shape, the receiver optics gain, the range resolution, the 

sampling rate, the detector size, the sensor field-of-view, the detector quantum efficiency, 

and the laser spot size on the target. The representative set of DIAL simulations will not 

include the full range of possible operating parameters listed above. Rather, the intent is 

to generate a reasonable and representative set of collection scenarios that demonstrate 

how a DIAL sensor might be modeled. 
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 Develop a firm understanding of the mathematical and theoretical basis, viability, and 

practical limitations of photon mapping to numerically model multiple scattering and 

absorption in a dispersive, gaseous participating medium through the following: 

 Explore the analytical development of photon mapping and evaluate consistency with 

the underlying physics and radiative transfer theory for gaseous media. 

 Verify the accuracy of photon mapping thru analytical means (where tractable) is 

consistent with the theoretical foundation of scattering, absorption, and radiative 

transfer theory. The scenarios will be simplified cases for a single layer of dispersive 

media over a variety of driving parameters. Some of the technical parameters of 

interest may include: 

 Various scattering phase functions, such as isotropic, anisotropic, Henyey-

Greenstein (for water, soot, and aerosols), and Mie generated and importance 

sampled (for water, soot, and aerosols) 

 Particle size distributions, including homogenous, log-normal, gamma, Junge, and 

Gaussian 

 Optical thickness ranging from thin to thick  

 Strong, weak, and non-absorbing media 

 Visible and near infrared regimes where thermal self-emission is a factor 

 Substantiate that the photon mapping results of more complex scenes exhibit the 

characteristic behavior and trends predicted or implied by the established scattering 

and absorption literature through qualitative assessments where necessary. Exemplar 

datasets shall be generated that include full complex backgrounds and targets to 

demonstrate the interactions between the participating medium and a more realistic 

surrounding environment.  

 Develop an understanding of the theoretical basis of light scattering by small particles 

and demonstrate a practical methodology for generating the critical optical properties of 

mixed gases required for the propagating photons through the scene and estimating the 

observed radiance. Specific items to be addressed are: 

 Generating the scattering and absorption cross-sections and the scattering phase 

functions for a particular gas or aerosol based upon its complex index of refraction.  
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 Constructing composite scattering phase functions and optical properties for mixed 

gases based upon an assumed composition and linearity. 

 Develop a methodology to invert the scattering phase functions into a random angle 

generating function that is required for the photon mapping propagation model. 

 Develop a set of simulated DIAL datasets with gaseous plumes or voxels suitable to 

qualitatively confirm whether common scattering constituents, such as water vapor or 

soot, can significantly degrade a DIAL sensor’s ability to accurately detect and measure 

the concentration level of a particular constituent within the plume.  

 Implement an algorithm to detect and measure concentration for DIAL sensor data. The 

algorithm will be used to augment the qualitative assessments of the impact of plume 

scattering on the identification and quantification of plume effluents. Additionally, the 

algorithm will demonstrate the utility of the DIRSIG simulated DIAL dataset(s) and 

tradeoffs of active versus passive sensor and algorithm combinations against comparable 

collection scenarios. The intent is not to implement a robust, high-precision algorithm, 

but rather to estimate the concentration of the constituent of interest based upon 

something as simple as the band ratios. Additional augmentations will be pursued as time 

permits. 

2.2  Goals 

The following goals have been identified for this research effort to help reinforce the value of 

the basic requirements established in the previous section: 

 
 Extend DIRSIG’s LIDAR module capability to model topographic scenarios. While the 

focus of the research is on DIAL systems, the underlying physics inherently drives a level 

of fidelity in the modeling that incorporates sufficient capability to model topographic 

LIDAR sensors. 

 Develop and test a topographic processor with sufficient flexibility to incorporate 

various detector modes (Geiger-counter, linear, etc…).  

 Conduct phenomenological case studies including standard terrain topography, forest 

canopy penetration, and camouflaged hard target. The intent is to exercise and 
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demonstrate capabilities of the DIRSIG LIDAR module to simulate 

camouflage/canopy penetration and multi-bounce phenomenon.  

 Generate a library of scattering phase functions for standard gases and aerosols of interest 

based upon the published database. As a portion of this goal, the following tasks were 

considered: 

 Develop a prototype suite of software to directly access the HITRAN database. 

 Develop an interactive tool to view the scattering phase function of interest. 

 Develop an interactive tool to combine multiple scattering phase functions for 

combinations of well-mixed gases and aerosols based upon relative concentration 

levels. 

 Develop a database of standard aerosol and gaseous media particle size distribution 

functions for the purposes of generating scattering phase functions. 

 Explore the validity of assumption of linearity when generating the scattering phase 

functions for mixed gases. Conventionally, the scattering phase function for a voxel is 

based upon a linear relationship between the relative concentration levels of the gases 

within that voxel. When the scattering particles have relatively similar optical properties, 

then the linear assumption is generally deemed acceptable. The primary intent is to 

explore whether nonlinear combinations should be considered in the future as a research 

area of interest. 
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Chapter 3  

Background and Theory 

This chapter highlights the essential theoretical foundation upon which this research effort is 

based.  The material can be essentially grouped into two categories, the foundation of theory 

and analysis and practical approaches to modeling. The first three sections of this chapter 

primarily focus on the first category: governing equations and underlying physics of the 

problem. Section 3.1 introduces the principles of the DIAL/DAS method, the standard single-

scatter LIDAR equation for a DIAL/DAS system, a discussion of typical system parameters, 

the detection and concentration sensitivity drivers, and a broad comparison with other 

methods. Section 3.2 initiates the discussion of multiple scattering by developing a LIDAR 

equation and exploring the potential impacts for a DIAL system. The multiple scatter LIDAR 

equation presented in Section 3.2 will later be discussed in Chapter 4 as a critical portion of 

the new modeling methodology. Section 3.3 lays the foundation for describing the interaction 

of light within a participating medium, such as a gaseous plume. The crux of this section is 

the general solution to the radiative transfer equation (RTE) for a participating medium. The 

latter portion of Section 3.3 addresses issues associated with solving the radiative transfer 

equation for a nonstationary source (such as a mono-directional, pulsed point source) via the 

diffusion approximation. Chapter 4 will leverage the diffusion approximation and the 

multiple scattering LIDAR equation as a key analytical verification tool of the accuracy of 

the DIRSIG LIDAR module. The modeling approach discussed further in Chapter 4 is a 

variant of photon mapping and is unique. The verification process is critical to ensure both 

that the implementation and the core algorithms are accurate and robust. As a direct 

extension of the theoretical development of the radiative transfer equation within a 

participating medium, Section 3.4 reviews the theoretical, mathematical, and practical 

implementation of photon mapping for modeling multiple scattering and absorption of light 

within a dispersive, participating media. Section 3.4 emphasizes the traditional photon 

mapping approaches that form the enabling paradigm for the DIRSIG LIDAR module; 

however, the specific implementation details are left to Chapter 4. The last three sections of 

this chapter discuss the theory and the practical considerations necessary to simulate complex 
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scenes. Section 3.5 introduces the types of particle size distributions that are relevant to this 

area of research and the impact of those distributions on the optical properties of the medium. 

Section 3.6 focuses on the absorption and scattering of arbitrarily-sized small particles. This 

section introduces the basis for Mie scattering theory and a practical algorithm to physically 

calculate the necessary optical properties for a particular gas or aerosol based upon its 

complex index of refraction and particle size distribution function. Rayleigh and non-

selective scattering will also be addressed; however, the emphasis will be on Mie scattering 

theory because the typical particles of interest for this dissertation fall within a regime that 

requires Mie codes. Section 3.7 briefly addresses modeling of plume dynamics. The section 

introduces the overall governing equations for modeling the flow of effluent concentrations 

within a scene and the two plume models fully integrated into DIRSIG, the Gaussian model, 

and the Blackadar model. The Blackadar plume model is currently the only one that is 

capable of interacting with DIRSIG’s LIDAR module; however, future plans to incorporate 

higher-fidelity plume models such as QUIC-PLUME are also introduced in Section 3.7. 

3.1  DIAL/DAS Systems 

A variety of disciplines within the remote sensing community rely upon the ability to 

efficiently measure the gas or molecular constituents within a path of interest. This is 

particularly true in monitoring pollution and measuring trace elements within the atmosphere. 

One of the techniques is the differential absorption LIDAR (DIAL) technique introduced by 

Schotland (1966). The roots of the DIAL technique are in the remote sensing of atmospheric 

properties utilizing the absorption and scattering processes of particles and molecular species 

prior to the invention of the laser. Advances in lasers made over the last 20 years have paved 

the way for a suite of elegant and useful remote sensing techniques to measure the 

constituents within a participating medium. For instance, Schotland was measuring water 

vapor using a simple ruby laser and was then restricted to a limited set of transmit 

wavelengths. Such restrictions are not as prevalent today due to advances in laser and 

receiver technology. The continued expansion of LIDAR techniques will rely upon the 

availability of tunable laser sources to match the absorption lines of various atmospheric 

gases. The ability to transmit short, coherent pulses of high-intensity energy in a narrow 

beam and over a very narrow spectral bandwidth is one of the distinct advantages of a laser 
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in this application. The nature of the laser allows one to employ a set of very powerful optical 

remote sensing techniques to probe the atmosphere and gaseous volumes, such as plumes or 

clouds. The DIAL method represents a very selective and sensitive method of measuring 

those constituents. The purpose of this section is to provide a broad overview of the DIAL 

technique including the governing equations for DIAL systems and transfer into a top-level 

discussion of a typical DIAL system design. The latter portion of this section lays the 

foundation for the basis of how scattering may effect DIAL measurements by covering the 

detection threshold and sensitivity of the concentration measurements based upon a DIAL 

approach and the importance of accounting for multiply scattered returns. As part of this 

discussion, a practical multiple scatter LIDAR equation developed by Eloranta (1972, 1998) 

will be explored.  

3.1.1 Principles of the DIAL Method 

The underlying principle of the DIAL method is that the signal attenuation due to a particular 

molecule in the atmosphere or the participating medium can be used to derive the number 

density of that molecule along the laser’s path. A simple DIAL collection scenario is 

illustrated in Figure 1. A pair of short pulses at two different wavelengths are transmitted 

along the same path and the receiver monitors the backscattered LIDAR signal. The return 

signal is comprised of backscattered returns from the atmosphere, the background, and the 

participating medium of interest. For the purposes of this illustration, the participating 

medium is assumed to be a gaseous plume. The wavelength 

! 

"
abs

of one pulse is chosen to 

coincide with a unique strong absorption feature of the gas of interest and is known as the 

absorption wavelength. The complementary pulse is transmitted at a reference wavelength 

! 

"ref  that is detuned slightly from the absorption wavelength and is in the “wing” of the 

spectral feature. This permits the processor to decouple the absorption of the constituent of 

interest from the absorption and scattering of other contributors along the path. Essentially, 

the DIAL sensor receives two return signals similar in form to those shown in Figure 1. 

Notice the increase in backscatter for the ranges where the plume exists and notice the 

differences in the returns at each wavelength. In this scenario, the primary scattering 

mechanism needed to ensure an adequate signal-to-noise ratio (SNR) is assumed to be due to 

elastic scattering from atmospheric aerosols and particulates. This subset of the DIAL 
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methods is frequently referred to as “differential absorption and scattering” (DAS). 

Alternatively, one could employ a strategically placed topographical target or retroreflector 

to ensure a strong return signal. In some cases, DIAL systems rely upon the underlying 

surfaces (such as the ground around a gas pipeline) to be the topographic target. 

 

The next stage examines the ratio of the observed power from the reference and absorption 

pulses. Figure 2a and Figure 2b show an example of a DIAL measurement of a plume with 

SO2 published by Measures (1988). The diagrams show the averaged return signals at the 

absorption and reference wavelengths as described previously in this section. The ratio of the 

two signals is shown in Figure 2c. Based upon this ratio, the concentration as a function of 

range was then calculated for each range interval of 50 m (R±25 m) and is shown in Figure 

2d. While the DIAL methodology may appear fairly straightforward, the design or modeling 

of the system can be quite complex. For instance, selection of the wavelengths is strongly 

influenced by more than the absorption spectrum of the gas of interest. The availability of a 

laser at that wavelength, the absorption spectrum of other constituents in the atmosphere and 

participating medium, the scattering nature of the medium, the detector type available, and 

the range resolution are just a few of the critical factors. Some of the subtleties will become 

clearer in the next few subsections as the governing equations are introduced and explored. 
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Figure 1: Illustration of DIAL principles 

 
 

Figure 2: Example of DIAL measurement of SO2 (Measures, 1988) 
(a) Absorption LIDAR signal, (b) Reference LIDAR signal, 

(c) DIAL curve, and (d) Calculated concentrations 
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3.1.2 DIAL LIDAR Equation 

The governing equations for the received signal power captured by the DIAL sensor and the 

associated concentration calculation are derived from a general LIDAR equation for elastic 

scattering.  The derivation of the elastic LIDAR equation from fundamental electromagnetics 

is well established in literature and additional details can be found in Measures’ book (1984). 

Measures’ discussion involves a much more complex and complete form of the LIDAR 

equation which can be simplified for DIAL applications where only elastic scattering is 

considered. Stated without proof, the received power from a range R due to elastic 

backscattered radiation can be written as: 
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where ( )R,!"  is a system function determined by the geometric considerations of the 

receiver optics, the quantum efficiency of the detection system at each wavelength, and the 

overlap between the transmitted laser beam and the field of view of the receiver; 
r
A  is the 

area of the entrance pupil; 2
RA

r
 is the acceptance solid angle of the receiver optics with a 

collecting area 
r
A ; ( )!

L
P  is the average power in the transmitted pulse at wavelength λ; R!  

is the effective range resolution of the LIDAR signal; ( )!
i
B
C  is the backscattering cross-

section at wavelength λ; ( )rN
i

 is the number density of scatter species i at range r; ( )!
pA

C  is 

the particle species absorption cross-section at wavelength λ; ( )rN p  is the number density of 

particle absorbing species p at range r;  ( )!
m
A
C  is the molecular species absorption cross-

section at wavelength λ; and ( )rN
m

 is the number density of molecular absorbing species m 

at range r.  
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Using the definitions for the backscattering 

! 

"#( ) and extinction 

! 

"
ext( )  coefficients: 
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and substituting the limit for the effective range resolution, the elastic LIDAR equation may 

be rewritten as: 
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where c is the speed of light, 

L
!  is the laser pulse duration, and 

D
!  is the integration time of 

the detector. If the detector’s integration time is small in comparison to the pulse duration, 

then the received power becomes: 
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Although not readily apparent, Equation 5 includes the underlying assumption that the 

multiple scattering effects are minimal. Essentially, the single scattering component is 

assumed to be the dominant term and the diffuse contribution from multiple scattering is 

negligible. Although even today most LIDAR techniques are based upon the single scattering 

approximation, the multiple scattering contributions do represent a source of error in the 

DIAL calculations and in some cases can be leveraged to extract additional information on 

the aerosol extinction coefficient and particle sizes (Bissonnette and Roy, 1998).  An 

alternate LIDAR equation that accounts for most of the multiple scattering effects will be 

addressed in Section 3.2. The potential impact of this assumption on DIAL concentration 

measurements will also be briefly discussed in Section 3.1.4.  

 

Although some advantages exist for employing more than two wavelengths in a DIAL 

system, the most common approach is to select only two wavelengths, the absorption and 

reference wavelengths. As stated previously, the simplest algorithm examines the ratio of the 
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received power from the two complimentary pulse trains, which can be mathematically 

expressed as: 

! 
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if the solid angles for the beams and the effective range resolutions at each wavelength are 

approximately equal. This expression can be further simplified if one assumes that the 

backscatter for the aerosols and the scattering and absorption for the background constituents 

are relatively equivalent at the two wavelengths. The ratio of the two powers becomes: 
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If one assumes that one molecular species dominates the differential absorption at the 

frequencies chosen, then the summation terms cancel in the exponential for all species except 

that of interest. After applying this assumption and taking the logarithm of both sides, then 

the expression can be rewritten as: 
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After differentiating with respect to the range R, the number density of the absorbing 

molecules can be expressed as: 
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Then one can find the molecular number density averaged over a range 
12
RRR !="  by 

integrating both sides from R1 to R2: 
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The averaged molecular number density ( )

m
N  then can be written as: 
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This expression is often simplified by assuming that the system function for the receiver 

optics and the average pulse power are similar at the chosen wavelengths. Thus the second 

logarithmic term is assumed to be negligible and the expression for the averaged molecular 

number density can be rewritten as: 
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One should note that in many operation DIAL systems, this assumption may not be valid and 

must be compensated for in the processing algorithms. 
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As alluded to earlier, the detection sensitivity may be improved by employing a 

topographical scatterer or retro reflecting mirror as the primary scattering mechanism. 

Similar to the previous case with the aerosol scattering returns, the return signal 

instantaneous power becomes: 
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where ( )!"

S
 is the backscattering efficiency of the topographic target, RT is the range to the 

topographic target, and the other variables are as described previously. For this DIAL 

approach, the radiative energy received from the topographic target during the detector’s 

integration period is of primary interest and can be expressed as: 
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where 

! 

E ",R
T( ) is the radiative energy received from the topographic target at distance RT 

provided that the integration period of the detector 

! 

"
d( ) is kept longer than the laser pulse 

duration 

! 

"
L( ), and 

! 

E
L
"( )  is the transmitted energy of the laser pulse. Using a similar 

approach to the DAS technique, the average molecular number density can be shown to be: 
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Note that the wavelength dependence of reflectivity of the topographic target must be 

carefully considered for this approach. This is particularly true for DIAL sensors operating in 

the infrared region (Measures, 1988). 
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3.1.3 Typical System Configuration 

The configuration of the primary hardware components for a typical LIDAR system, 

including a DIAL sensor, is shown in Figure 3. The setup can be divided into four major 

partitions: the transmitter, the receiver, the detector, and the processor. This subsection 

attempts to briefly describe each of the major components and their role in DIAL 

measurements. 

 
Figure 3: Configuration of typical DIAL system 

3.1.3.1 Transmitter 

The transmitter is perhaps the most critical component for a DIAL system. The transmitter 

generates and directs high energy pulses at the prescribed wavelengths through the 

atmosphere to the target area. The laser has distinct advantages over other light sources in the 

form of low beam divergence, extremely narrow spectral width, and short intense pulses. 

Because the background radiance is a significant source of noise for DIAL measurements, 

the designers prefer to have as small field of view (FOV) as possible. The beam director not 

only guides the laser beams such that the FOVs of the two transmitted pulses align on the 

target, but is also used to ensure that the beam is sufficiently well-collimated for transmission 

through the atmosphere. Thus, the beam divergence is minimized. The narrow spectral width 

is an inherent feature of lasers, which is advantageous for DIAL measurements because the 



28 

narrow spectral width ensures that the energy emitted is only at the wavelength of either the 

reference or absorption markers.  

 

The pulsing capability of the laser makes it an ideal source for range gating and to maximize 

increased average power by manipulating the peak transmit power, the pulse duration, and 

the pulse repetition frequency (PRF). The selection and design of the laser drives the 

potential performance that can be achieved by the DIAL system. The choice of laser is based 

upon many factors: desired wavelengths, tunability, output energy, repetition rate, desired 

duty cycle, and cost. Table 1 lists lasers typically used in LIDAR systems in the 1990s. 

Although more advanced lasers currently exist, the parameters listed are still consistent with 

current practical DIAL systems.  

 

The type of laser and wavelength are tightly coupled to the location of the absorption line and 

reference frequency for the molecular constituent of interest. The next item to consider is the 

pulse energy. The peak power is a limiting design parameter for each laser, but signal 

averaging can increase the SNR of the system. However, a high-energy pulse for a few shots 

is ideal for tracking plumes due to the dynamic nature of plumes. In addition, the signal 

averaging process must be balanced with the repetition rate and the pulse duration. A faster 

repetition rate permits additional signal averaging over a fixed time window and thus results 

in a higher SNR. The laser then must operate at a higher duty cycle, which affects the 

operational ranges for the system. The PRF is constrained to ensure that each pulse returns 

from the nominal target range prior to transmission of the next pulse. This requirement limits 

the range ambiguity between pulses. High-:duty cycle lasers up to continuous wave (CW) 

can be employed provided that advanced modulation coding techniques are utilized. Such a 

system is often cost prohibitive and technically complex.  

 

Additionally, one should note that the cost-benefit trade changes depending upon the spectral 

region of the laser. For instance, a visible DIAL system’s SNR is directly proportional to the 

product of the PRF and the emitted energy. A balance is needed for a visible system. In 

contrast, the SNR of an IR DIAL system is directly proportional to the emitted energy of the 

signal because the detector tends to be dominated by detector noise and not shot noise; 
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therefore, firing just a few shots at high power is a preferred approach. Mixed in with the 

design trade-space is the pulse duration. Longer pulse durations result in poorer spatial 

resolution, but an increase in average transmitted power. Once again, the parameters of the 

transmitter are highly design specific and depend greatly upon the availability of a good laser 

at the wavelengths of interest. 

 

Table 1: Sample lasers used in LIDAR systems (Zanzotera, 1990)  
Type Wavelength 

(µm) 
Typical 

Energy (J) 
Pulse Duration 

(µs) 
Rep Rate 

(Hz) 
Gas     
CO2 9-11 0.1-1.0 0.1-2.0 10-50 
CO 5-6 0.01-0.05 10 10 
HF 2.7-3.0 0.1-0.5 0.1-1.0 1-10 
DF 3.7-4 0.1-0.5 0.1-1 1-10 

Excimer     
ArF 0.193 0.1 0.01 10-100 
KrCl 0.222 0.1 0.01 10-100 
KrF 0.249 0.1-0.5 0.01 10-100 

XeBr 0.282 0.1 0.01 10-100 
XeCl 0.308 0.1-0.5 0.01 10-100 
XeF 0.352 0.1 0.01 10-100 

Solid State     
Alexandrite 0.71-0.8 0.1-1 0.1-0.2 10 

Ruby 0.6943 1 0.02 0.1 
Nd:YAG 1.06 0.5-1 0.01 10-30 

Nd:YAG x 2 0.532 0.2-0.5 0.01 10-30 
Nd:YAG x 3 0.355 0.1-0.2 0.01 10-30 

Co:MgF2 1.5-2.3 0.01 0.3 10 
Dye Laser     

Visible-NIR 0.4-0.8 0.1-0.01 0.01 10-30 
UV 0.2-0.4 0.0001-0.01 0.01 10-30 

 
 
3.1.3.2 Receiver 

The receiver collects the backscattered LIDAR signal, performs some processing, and directs 

the radiance toward the detector focal plane. The primary optical element of the receiver is 

the telescope. The receiver telescope is usually a Newtonian, Cassegrainian or Gregorian 

type with a large parabolic primary mirror. Other configurations are utilized, but most 

operational DIAL systems are variants of these types. The receiver requires some sort of 

active or passive alignment system to ensure that the narrow transmit and receive beams 

overlap properly and maintain that alignment during an engagement. In some instances, a 
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polarizing filter is added to the optical chain to reduce multiple scattering effects from the 

background radiation prior to processing by a spectral discriminator or analyzer. The 

analyzer separates the wavelengths of interest and filters the light to optimize performance 

for a very narrow bandwidth around those center frequencies.  

 
3.1.3.3 Detector 

Two primary modes of detection are used in LIDAR systems: direct detection and 

heterodyne detection. Direct detection is the simplest and provides a proportional response to 

the number of photons detected. Heterodyne detection allows one to operate at a lower SNR 

while maintaining a detection threshold, but is more costly and complex to build. The 

detector characteristics depend upon the spectral region of interest and are similar to optical 

detectors used in passive optical remote sensing. 

 
3.1.3.4 Data Processor 

After the return signals are recorded, they need to be processed to estimate concentrations 

based upon the power ratios and the absorption properties of the gas. A processing flow chart 

of a typical DIAL processor is shown in Figure 4. The core portion of a DIAL processor is 

fairly straightforward; however, the critical steps are usually in the pre-processing stages 

before calculating the concentration path length (CPL) and are often design specific.  

 

To begin processing, three classes of datasets are typically required for generating a CPL 

map: the raw sensor data, the flight data, and the calibration data. The processor requires 

some general input parameters, which tend to be system or processor specific and often 

remain the same for different collects. The raw sensor data is the captured linear signal from 

the detector after the signal has been sent through the A/D converter and formatted into an 

intelligible form. The flight data includes such items as the platform location for each pulse, 

the estimated transmit times, the receive windows, the sensor pointing angles, the A/D rate, 

etc. The calibration data vary based upon the specific system design. The processor leverages 

the calibration data to adjust for the reference and absorption actual pulse powers, timing, 

and pulse width.  
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The first step is to pre-process the raw data and ingest it into a usable format for the 

processor. In some instances, a form of motion compensation may be applied to the pointing 

data. The next step is to calibrate each pulse so that the relative transmitted power of the 

reference and absorption pulses are known or ideally are the same. For most systems, the 

transmitted power of the pulses can vary from pulse to pulse and is not always the same for 

the reference and absorption pulse sequence. Although one could calibrate the data, this step 

is often combined with normalization so that the SNR is maximized during the next few 

signal processing operations. After calibration, the return signals are filtered to remove the 

background signal and noise. In some cases, the background estimate is made from a dark 

image processed through the calibration stage. The challenge is to filter the return signal to 

remove as much noise as possible without significantly damaging the peak returns. The next 

step is to use information from the returned pulses to align the absorption and reference 

signals. Pulse-finding algorithms range from the very simple to highly complicated 

algorithms depending upon the stability and operational characteristics of the DIAL sensor. 

 

Once aligned, the pulses are integrated and then normalized. A set of pulses at each 

wavelength may be averaged to obtain the desired concentration sensitivity and inherent SNR 

of the design. Finally, the CPLs are calculated based upon the integrated power ratio between 

the absorption and reference returns. The range is then calculated based upon a standard 

topographical method and a CPL is assigned to that 3-D coordinate. Additionally, a suite of 

statistics, such as the mean profiles or a time-averaged 3-D concentration map, may be 

calculated.  Because of the narrow FOV, the spatial extent of the maps is limited. Thus the 

DIAL sensor scan motion must be used to generate a more complete picture, but it also adds 

complications due to the need for accurate motion compensation and spatial registration of 

the profiles in the pre-processing and calibration phase. 
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Figure 4: Generalized DIAL processing algorithm 

3.1.4 Detection Limit and Concentration Sensitivity 

The minimum detection threshold for a DIAL system is often of key interest during system 

design or when comparing performance. The remote sensing community uses a variety of 

techniques and measures to determine the detection limit of a DIAL system; however, the 

primary approach introduced in this subsection is a variant of one presented by Measures 

(1984). This subsection explores the ability of a dual wavelength-based DIAL system to 

detect a change in concentration by examining the incremental change in observed energy 

from either the aerosol return or the topographical target. 

 

3.1.4.1 Detection Limit for Aerosol Return 

For a DAS sensor, the incremental change in the observed energy for an aerosol return due to 

the attenuation by molecular constituent of interest over a range increment of R!  is: 

! 

"E
*

= "Eabs #"Eref  (16) 

 
where the decrease in the signals at each wavelength are: 

! 

"E
abs

= E #
abs
,R( ) $ E #

abs
,R + "R( ) (17) 

! 

"Eref = E #ref ,R( ) $ E #ref ,R + "R( )  (18) 



33 

 
If one assumes that the reference signal decreases less than the received signal at the 

absorption wavelength, then the detection of the overall incremental change should satisfy: 

! 

E "
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E "
abs
,R + $R( )
SNR

 (19) 

 
where SNR is the signal-to-noise ratio. This requirement essentially states that the 

incremental change in the signal must be greater than the noise in the signal from the range 

RR !+ . Using some simple algebra, the relationship can also be rewritten as: 
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The next step is to evaluate the left side of the expression using Equation 5. The received 

energy at the absorption wavelength is: 
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If one assumes that the loss in energy over the range interval ( )RRR !+,  is dominated by the 

absorption of the molecule of interest, then the left side of Equation 20 becomes: 
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Assuming that the gas density is relatively constant over the effective range resolution of the 

sensor such that: 
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then the ratio of energies can be written as:  
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After evaluating the logarithm of both sides and manipulating the terms, the minimum 

detectable concentration for the aerosol scattering DIAL methodology is: 
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If the effective range resolution of the system is small in comparison to the range of the 

plume, then the equation for the minimum detectable concentration can be further simplified 

and expressed as: 
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Note that the concentration above is expressed in units of m-3 and can be converted to parts 

per million (ppm), using the following conversion: 

! 

c
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"10
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 (27) 

 
where Natm is the atmospheric molecular density and 25

1055.2 !"
atm
N  m-3 at standard 

temperature and pressure. 

 

Equation 26 shows that the minimum detectable concentration is primarily determined by the 

range resolution of the system, the absorption cross-section of the constituent of interest, and 

the system SNR. One additional factor is the difference in absorption cross-section. Recall 

that we assumed that the difference in the reference return signal is negligible due to the 

increase in concentration of the molecule or particle of interest. If the absorption cross-

section at the reference wavelength is similar to that at the absorption wavelength, then the 

change in the reference return signal is significant.  
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A more conservative expression for the minimum detectable concentration, which accounts 

for this factor is (Zanzotera, 1990): 

! 
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 (28) 

 
For either Equation 26 or 28, the increase in SNR permits a lower detection threshold and 

greater sensitivity.  

 

Increasing the average transmit power must be balanced with the range resolution. If one 

increases the average transmit power by extending the transmit pulse length, then the range 

resolution is decreased. A better approach would be to improve the optical gain, integrating 

over a series of pulses, or improving detector sensitivity of the system to improve the SNR 

while maintaining the best possible range resolution. This is one reason that approximately 

100 pulses are typically averaged for each return signal in the concentration calculation for 

highly sensitive DIAL sensors. This discussion is predicated on the absorption cross-sections 

at the various wavelengths to result in an observable difference. 

 

3.1.4.2 Detection Limit for a Topographic Return 

Topographic targets are used to gain greater sensitivity due to a better SNR for low 

backscatter collections, but sacrifice the range information associated with the concentration 

measurements. Thus, the detection limit derived previously is not entirely valid; however, the 

general form and the parameter dependence of the detection limit correlates well with the 

minimum detection threshold for an aerosol return. Similar to the aerosol return case, the 

change in energy for a topographic return can be expressed as: 

! 

"E = E #ref ,RT( ) $ E #abs,RT( )  (29) 
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The change in energy due to absorption by the constituent of interest should be larger than 

the fluctuations in energy due to the inherent signal noise. This requirement can be expressed 

as: 

! 

E "ref ,RT( ) # E "abs,RT( ) >
E "abs,RT( )
SNR

 (30) 

 
A viable alternative is to consider the change in energy with respect to the overall signal 

energy and to require that this ratio be larger than the noise. The result is: 
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Equation 31 is more conservative and significantly easier to evaluate. In addition, Equation 

31 requires knowledge about the optical path length, which is not always known a priori. 

Thus we shall continue with the previous requirements, which can be reduced to: 
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Note that this is a familiar construct. Using the DIAL equation for the return energy from a 

topographic target, the left-hand ratio becomes: 
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If one assumes that the system effects, pulse energies, and nominal path attenuation are 

equivalent, then the equation simplifies to: 
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If the gas of interest is restricted to a range interval (R1, R2), then the molecular concentration 

N(r) may be considered a constant over the interval (R1, R2) and zero elsewhere. Based upon 

these assumptions, the requirement can be mathematically expressed as: 
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Solving for the minimum detectable concentration, the result is: 
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Note that if the backscatter cross section of the topographic target can be considered constant 

over the two wavelengths, then that term drops out and the Equation 36 simplifies to: 
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As shown for the aerosol return, the detection limit is driven by the SNR and by the 

difference in the absorption cross section at the two wavelengths for the molecular 

constituent of interest. The range resolution dependence in the aerosol case is replaced by the 

thickness of the plume or participating medium. If the plume is very shallow, then the system 

detection threshold is high. In contrast, if the participating medium is very thick, like an 

atmospheric layer or cloud, then the detection threshold is much lower.  

 
3.1.4.3 Concentration Sensitivity and Interfering Constituents 

The accuracy of DIAL measurements depends upon a variety of factors. During system 

design, these factors must be handled carefully and optimized for the intended operational 

scenario. A comprehensive error analysis for a DIAL system was documented by Measures 

(1984). The optimization techniques are addressed well in the literature and will not be 

considered here. While designing a DIAL system, the key factors that determine the potential 

accuracy are the SNR limits, the absorption properties of the constituent of interest, the 

spatial, temporal and spectral dependent aspects of the system, and the atmospheric 

conditions (including multiple scattering effects).  
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For a DIAL measurement, the SNR is driven by the shot noise of the signal, the background 

noise, and the dark current. The dark current is a design factor and is not directly affected by 

scattering media. The signal shot noise is the fluctuation in the detected signal from a 

statistical mean. It is directly impacted by the spatial and temporal stability of the laser, but 

also is impacted by the spatial and temporal stability of the atmospheric conditions 

surrounding the plume. Similarly, the background noise could be increased such that the laser 

backscattered signal is buried within the background radiation. This is typically counteracted 

using filters and a narrow field of view. While the SNR could be impacted by the presence of 

scatterers in the form of additional noise, a well-designed system should not exhibit degraded 

performance. 

 

As mentioned previously in the detection limit discussion (Section 3.1.4), the absorption 

cross-sections of the constituents in the plume and path and the degree to which they are 

accurately known directly impacts the accuracy of the DIAL measurements. Absorption cross 

sections of atmospheric constituents can be determined with great accuracy in a lab 

environment; however, many of these molecules do not have strong absorption features in the 

frequency range of available lasers. Essentially, molecules have vibrational-rotational 

absorption lines in the infrared (IR) region. Unfortunately, collisions broaden otherwise sharp 

features of individual molecules and many of the molecules have overlapping features. Thus, 

DIAL measurements in the IR region present certain challenges, which can be overcome in 

certain instances. Additional constituents within the plume could theoretically mask the sharp 

spectral feature such that the differential absorption cross-section between the two 

wavelengths of interest is greatly reduced. The derivations in this section thus far have relied 

upon the fact that the molecular constituent of interest is the dominant absorber in the 

absorption wavelength and that in addition that no other dominant absorber is present at the 

reference wavelength that would reduce the returned reference signal significantly.  

 

The spatial, temporal, and spectral dependent factors of the DIAL system are generally 

driven by the as-built design and the operational parameters and are not directly affected by 

the presence of interfering chemicals. The exceptions are for the backscattering and 
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extinction factors in the LIDAR equations. Both were considered to be spectrally 

independent. In other words, they were constant for both wavelengths. This assumption is 

reasonable provided that the wavelengths are sufficiently close together and that there are no 

interfering gases. In atmospheric studies, relative humidity has been known to affect the 

accuracy of DIAL measurements for gases such as CO2. Water vapor or soot in a plume 

could have noticeable effects on the accuracy of the pollutant concentration measurements. 

To counter the effect, multiple wavelengths may be employed by applying much more 

complicated DIAL algorithms than the simplistic version introduced in this dissertation. 

 

The atmospheric conditions combine multiple scattering and temporal effects. The LIDAR 

equations presented in this section are predicated upon single scattering events only; 

however, multiple scattering contributions to the backscattered return are often significant. 

For a dense plume, the returns from ranges behind the plume that are in fact due to multiple 

scattering must be accounted for. If not, the concentration measurement will be erroneous. 

The problem is exacerbated if the scattering cross sections are very large. Bissonnette and 

Roy (1998) showed that the DIAL ozone concentration inversion could be dramatically 

affected by the presence of multiple scattering when going from low to high visibility 

conditions. The resulting errors could be as large as 5% to 60%. They suggested a method to 

leverage the multiple scattering contributions and improve the computed results. The precise 

nature of their algorithm is not of primary concern here, but it does demonstrate the 

importance of accounting for multiple scattering. In theory, using polarization filters can 

minimize the effect of multiple scattering; however, other design considerations limit the use 

of this option. In particular, chemicals with a large scattering cross-section could possibly be 

skewed due to the multiple scattering. Theoretically, if the scattering cross-section for the 

scattering effluent is nearly constant over the wavelengths of interest, then the DIAL 

concentration measurements should be only slightly affected. However, there are a few 

exceptions. First, the temporal fluctuation in the background backscatter in conjunction with 

the time delay between the reference and absorption pulses may skew the concentration 

measurement. Secondly, if the substance significantly alters the mean path length of a photon 

in the participating medium, the concentration path length assessment would be altered. Both 

of these scenarios are reasonable and thus the effects of multiple scattering should be 



40 

included in any model development. The development of a multiple scattering LIDAR 

equation is explored in the next section, further emphasizes the importance of account for the 

effects of multiple scattering, and lays the groundwork for the first-principles physics-based 

LIDAR model that is presented later (Chapter 4).  

3.2  Multiple Scattering LIDAR Equation 

Many of the underlying principles, theory, and practical considerations for DIAL/DAS 

systems were just introduced in Section 3.2. In general, the theoretical foundation for LIDAR 

systems is built upon a single scattered LIDAR equation like Equation 1. The single 

scattering LIDAR equation encompasses the vast majority of the physics associated with a 

LIDAR system; however, significant multiple scattering is often present in DIAL/DAS 

applications. This section attempts to explore two fundamental questions about the effect of 

multiple scattering on the received LIDAR signal: (1) when is multiple scattering sufficiently 

significant to be considered? and (2) for a DIAL sensor, how will the system performance 

degrade in the presence of multiple scattering? To properly discuss these two issues, we shall 

first develop a practical multiply scattered LIDAR equation that incorporates as many 

multiple scattering effects as possible. Additionally, one should note that the multiply 

scattered LIDAR equation presented in this section forms the basis (in conjunction with the 

photon mapping paradigm) for the DIRSIG LIDAR module participating medium radiance 

solver. 

3.2.1 Key Assumptions 

The theory presented in this section was developed by Eloranta (1972, 1998) to enhance the 

study of size measurements of cloud droplets and particles; however, the principles can be 

extended to probing plumes with a DIAL system given some constraints and caveats. Before 

proceeding with the derivation, it is prudent to examine the key assumptions in the 

development of a multiply scattered LIDAR equation. Since Eloranta was primarily 

interested in cloud measurements, he restricted the discussion to participating layers 

dominated by forward scattering. This assumption is reasonable for scattering induced by 

water vapor or soot in a plume. Eloranta (1972) also shows in his dissertation that the 

multiply scattered LIDAR return is predominantly composed of photons that were 
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backscattered via only one large-angle scattering event. The photons may have undergone 

numerous multiple scatterings; however, these must have been small-angle forward-

scattering events to allow photons to reach the receiver aperture. The small-angle forward-

scattering events can certainly occur at any time throughout the round trip. This assumption 

is fairly intuitive, but exhibits the inherent axiom that those returns incident on the receiver 

are only from backscatter events in the medium. Although these certainly could be included 

at the cost of some additional complexity, the return from topographic targets and surfaces 

are not directly considered. Thus, photons returning from the medium must have undergone a 

large-scale scattering event that redirects them into receiver. The assumption is that if the 

photons incur a second large-scale redirection, then they will not likely remain within the 

receiver’s field-of-view (FOV). 

 

Based upon the preceding scenario, both the simplified approximation and the general 

derivation assume that: 

• The forward peak of the scattering phase function can be approximated by a 

Gaussian phase function. In the case of the simplified approximation, this allows 

one to assume that half of the scattered energy is scattered into a forward 

diffraction peak. In the general derivation, this significantly simplifies the process 

of evaluating the redistribution of photons due to scattering events within the 

layer. 

• The backscatter portion of the scattering phase function is assumed to be nearly 

isotropic in the backscatter direction. This permits direct calculation of the 

backscattered portion of the energy from a particular range within the medium. If 

the scattering phase function is generally forward, then this assumption is very 

reasonable. 

• The laser beam is assumed to have a Gaussian spatial distribution with a known 

divergence angle. 

• Multiply scattered photons that return to the receiver aperture have encountered 

only one large-scale backscattering event.  

• Because the photons of interest have undergone only small-angle scattering 

events, the extra path length traveled by the photons is assumed to be negligible. 
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Additionally, the photons are not significantly delayed with respect to any singly 

scattered photons.  In many cases, this assumption is reasonable; however, 

optically thick layers with a fair amount of scattering can induce significant path 

length differences between the singly and multiply scattered photons.  

• The transverse dimension of the receiver FOV in the scattering layer is assumed 

to be much less than the optical mean free path of photons in the layer. If this is 

not true, then the derived set of equations overestimates the return signal. This 

assumption is appropriate for most airborne LIDAR systems; however, space 

borne systems will likely violate this constraint. 

 

3.2.2 Simplified Approximation of Multiple Scattering 

In this subsection, a simplified approximation for the ratio of the contribution of multiple 

scattered returns and the single scattered photons will be derived based upon the assumptions 

mentioned previously and upon the fundamental physics involved. The simplified 

approximation is not strictly valid in many cases, due to some liberties that we shall exercise 

in this section to simplify the problem; however, as will be shown in the general derivation, 

this intuitive approach has some validity for wide field-of-view LIDAR systems. 

 

Consider the simplified multiple-scattering scenario described in Figure 5. A laser pulse is 

transmitted up towards a scattering layer at a distance xc from the source. The receiver shares 

the same optical axis as the laser beam, but the receiver FOV is much larger than the transmit 

beam. Beer’s law states that the transmitted power at a distance d within the layer can is: 

! 

P = P0 exp "# ext
d[ ]  (38) 

 
where P0 is the transmitted power, 

ext
!  is the extinction coefficient of the scattering layer, 

and the penetration depth is
c
xctd != 2 . Technically, not all of the scattered energy is lost.  

A fraction of the photons are scattered into the forward direction and have a high probability 

of remaining with the receiver FOV. If we assume that the forward-scattered photons do not 

incur a significantly delay with respect to the directly transmitted photons, then the primary 
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impact of those photons is a broadening of the spatial distribution of arriving photons at a 

particular range.  

 
Figure 5: Simplified multiple scattering setup 

If the scattering phase function is Gaussian in the forward scattering direction, then 

approximately half of the scattered energy remains within the diffraction peak and is not truly 

lost. To accommodate for this fraction of the energy, the power at penetration distance z 

within the layer can be mathematically expressed as: 

! 

P = P0 exp "# ext
d +

#
sca
d

2

$ 

% & 
' 

( ) 
 (39) 

 
where 

sca
!  is the scattering coefficient.  We shall assume that the backscatter from a 

particular layer is generally isotropic in the backscatter direction. The result is that the 

photons are backscattered diffusely, when such an event occurs.  
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Thus, the power that returns from a particular penetration depth within the layer without any 

further scattering can be written as:  

! 

P = P0" sca

c # $t
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, - 
 (40) 

 

where ( )
!

!
"

4

p
sca

 is the fraction of the energy that is backscattered per unit length and 
r

!  is 

the solid angle subtended by the receiver at that range.  However, we have not yet accounted 

for the photons that are primarily forward scattered during the return trip. If we apply the 

same adjustment as for the transmit path, then the received power is: 
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Then if we expand the last exponential term into a Taylor series, the expression becomes: 
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where P1 is the predicted power for single scattering. The additional terms in the series on the 

right-hand side of the equation could be viewed as contributions from photons undergoing 

different numbers of scattering events. For instance, the second and third term represent the 

doubly and the triply scattered photon contribution, respectively the ratio of the multiply 

scattered and the singly scattered contributions is: 

! 

P
N

P
1

=
"
sca
d( )

N#1

N #1( )!
 (43) 
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where PN is the Nth-order scattering contribution. Eloranta  (1998) denotes that the 

backscatter approximation made earlier is fairly crude and justifies an adjustment to account 

for this fact. The ratio of the Nth-order scattering contribution to the single-scatter 

contribution can be expressed as: 

! 

PN

P
1

=
p "( )

N

p "( )

# scad( )
N$1

N $1( )!
 (44) 

 
where ( )

N
p !  is the weighted mean of the scattering phase function and can be expressed 

mathematically as: 

! 

p "( )
N
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%  (45) 

 
where ( )

1
!

N
M  is the probability that a photon scattered N times is scattered at an angle 

1
!  at 

that point in the layer. Eloranta (1972) points out that these two functions are difficult to 

calculate in many cases. For the doubly-scattered case, we can use: 
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For photons that are scattered many times, the central-limit theorem shows that the resulting 

angular distribution of photons is Gaussian and the probability distribution can be expressed 

as: 
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and 

! 

" 2
N

 is the variance of the scattering angle. The variance of the scattering angle is 

defined as: 

! 
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 (48) 

 
Admittedly, the adjustments for the true nature of the backscatter from the penetration depth 

observed are complicated, but they can be calculated directly for a known scattering phase 

function. Equation 44 will be revisited in the next section and shown to emerge from a 

specific case considered in the generalized model. However, Equation 41 shows that the total 

power can be expressed as: 

! 

P
t
= P

1
e
" sca z  (49) 

 

where z is the penetration depth within the layer. If the optical depth of the layer due to 

scattering is approximately 1, then the predicted received power is about 2.7 times longer 

than the power from the single-scatter LIDAR equation. Although this simplified 

approximation may overestimate the contribution to multiple scattering in some cases, the 

discussion clearly indicates that multiply scattered photons cannot be ignored. The next 

subsection introduces a more rigorous development of a generalized multiply scattered 

LIDAR equation. 

3.2.3 Generalized Multiply Scattered Model 

Now let’s consider a short duration laser pulse fired into a participating medium. The angular 

distribution of photons emitted from the laser is assumed to be Gaussian in nature with a 

known divergence angle. The photons that reach the receiver are assumed to result from a 

single large-angle scattering event (referred to as “singularly backscattered”) from a slab at  

range R = ct/2 and with thickness cτL/2.  
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Based upon the divergence angle, the spatial distribution of photons arriving at the 

backscattering slab is: 

! 
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where dN is the number of photons incident in the incremental area !"" dd ## , Nt is the 

number of photons in the transmitted pulse, R is the range between the laser and the 

backscatter slab, 2ρL is the full angular width of the laser beam, 

! 

" R( ) = #
sca

x( )dx
0

R

$  is the 

optical depth at range R, ( )x
sca

!  is the scattering cross-section as a function of x, ξ is the 

radial distance from the laser beam axis measured at the ct/2 slab. This distribution is 

consistent with those observed in the literature. 

 

A scattering layer of thickness dx1 is introduced at a distance x1 from the ct/2 slab as shown 

in Figure 6. A photon emitted from the laser that is scattered once at the x1 layer through a 

small-angle scattering event will be incident upon the slab at a radial distance of ξ2 instead of 

ξ1. The incident spatial distribution of photons is then directly impacted by the scattering 

phase function of the x1 layer. The new spatial distribution of photons can be found by 

convolving the Gaussian laser beam with a forward-scattering representation of the scattering 

phase function at x1.  
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Figure 6: Geometry for a photon emitted by the laser and scattered once at a slab at a distance 

x1 from the maximum range R 

If the scattering phase function of the layer is predominantly forward-scattered, then a 

Gaussian approximation can be used to represent the spatial distribution of the small-angle 

scattering events. The scattering phase function can be approximated as: 
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and 

! 

"
s
 is the angular half-width of the diffraction peak. Although the Gaussian scattering 

phase function approximation is convenient, it successfully models the peak value and area 

predicted by diffraction theory:  

! 

p 0( ) = ptrue 0( )

p "( )
4#

d$
0

4#

% =
1

2

 (52) 

 



49 

The convenience is due to the fact that an exact computation of the new spatial distribution 

would require analytical evaluation of a series of complicated joint probabilities. Instead, the 

new spatial distribution due to the scattering at the x1 layer is a convolution of two Gaussians 

which yield a Gaussian distribution. The resulting spatial distribution of photons at range R 

is: 
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where 

! 

" x
1( )  is the angular half-width of the diffraction peak at x1, 

! 

" x( ) = # $s

2
x( )p 0,x( ) 4#  is the fraction of energy in the forward peak of the phase function 

at x. 

 

Additional scatterings can then be considered at distances x2, x3, …, xm between x1 and the 

backscattered slab. The spatial distribution of the photons incident upon the incremental area 

!"" dd ##  after m scattering events can be found after performing a multiple set of 

convolutions in succession and is given by: 
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One should note that 

! 

" x
0( )# sca

x
0( )dx0 =1 and ( ) 0

0

22

0
=! xx

s
 were added to account for the 

photons that are transmitted to the ct/2 slab without scattering. 
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Although Equation 54 accurately describes the spatial distribution of the photons after m 

scatterings at the specified locations x1, x2, …, xm, the equation does not account for all 

possible locations at which n scattering events could occur. To accomplish this, one must 

integrate over all the possible locations; however, integration at this stage would prevent us 

from using the same Gaussian convolution approach to account for any multiple, small-angle 

scatterings that might occur on the return trip to the receiver.  Thus, we will elect to delay the 

integration to a later stage. 

 

At this point, a set of critical assumptions must be made. We must assume that the photons 

arriving at the backscatter slab are identical to those in the non-scattered case except for their 

spatial distribution. For instance, the photons are assumed to have traveled a similar distance 

as those which were not yet scattered. This assumption is not entirely valid; however, since 

the photons under consideration are restricted to have undergone only one small-angle 

forward scattering, the assumption should not introduce significant error. As noted by 

Eloranta (1998), the differential difference in the path lengths is: 
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If the additional path length is incurred in a homogenous portion of the layer with a scattering 

phase function diffraction peak mean-square width 

! 

"
s
, the mean square angle of propagation 

with respect to the system axis is: 

! 
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sca
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2 (56) 

 

Using this relationship and integrating Equation 55, the total path length difference is: 

! 

l ="
sca
d
2
#

s

2  (57) 

 

where d is the penetration depth. Typically this path length difference is tolerable, but should 

be evaluated to affirm the validity of this approximation. 

 



51 

Additionally, Eloranta (1998) discusses the issue of whether the multiply scattered photons 

reach the slab with a different distribution of incident angles than directly transmitted 

photons.  If so, the variation in incident angles directly impacts the amount of backscattered 

photons from the slab and their spatial distribution at the receiver. One could account for the 

different distribution of incident angles and turn-around angles at the slab; however, the task 

would involve evaluating the joint probability of the backscatter angle and the probability of 

the multiply scattered photon returning to the receiver.  In many ways, this unnecessarily 

complicates the problem. Although the solution proposed by Eloranta (1998) does not fully 

account for all of the effects, the reduction in complexity is necessary and beneficial. 

Eloranta (1998) argues that we can assume that the scattering phase function is independent 

of angle near 180o (the backscattering angle). The result is that incident photons are scattered 

back to the receiver based upon assuming that the incident angle was 180o regardless of its 

actual value. To lessen the impact of this assumption, we shall assume that the backscattered 

phase function shall be calculated based upon a weighted average of the scattering phase 

function ( ) !" 40,p  near the backscatter direction. The weighted average of the scattering 

phase function is defined as: 
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where n is the order of scattering and 2d is the distance traveled in the scattering medium for 

the round trip. Although this is an approximation, Eloranta (1998) argues that this is the best 

approximation in the limit of large receiver acceptance angles and results in very reasonable 

results when compared to real-world datasets. A more thorough discussion of the 

implications is found in Eloranta (1972, 1998). 

 

Now account for the return trip of the photons backscattered by the slab at range R. The 

geometry is shown in Figure 7. The photons scattered toward the receiver from the volume 

area !""# ddc $$$2  will be incident on a sphere of radius R centered upon the scattering 

volume and extending to the entrance of the receiver aperture. If we assume that the 

backscatter lobe is isotropic, the spatial and angular distribution relative to the radius vector 
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will be independent of position and independent of the number of scatterings. If we consider 

a returning photon incident at an angle θ1 upon a layer xm+1 (with a thickness dxm+1 ) and then 

scattered so that the angle of incidence upon the receive aperture with respect to the radius 

vector is θ2, the differential number of photons incident on the receive aperture per unit time 

is: 
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where Ar is the area of the receive aperture, θ is the angle between the photon trajectory and 

the radius vector, and φ is the angle measured around the radius vector. Note that we are 

using the small angle approximation ( !! "sin ) to relate θ1 and θ2 such that ( )Rx
m 112 +!"" . 

 
Figure 7: Geometry for a photon returning to the receiver from the area ξ dξ dψ 

If additional scattering events occur between xm+1 and the receiver aperture from layers xm+2, 

xm+3, …, xn-1, we can then find the angular distribution of photons relative to the radius vector  

at the spherical surface in front of the receiver aperture by convolving Equation 59 with the 
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Gaussian phase function approximation at each scattering layer. The resulting relative 

angular distribution of photons at the receiver can be expressed as: 
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To compute the full angular distribution of photons incident on the receiver aperture, we 

integrate over the illuminated area of the backscatter slab. Fortunately, the integration is 

fairly straightforward is simply the convolution of two Gaussians and thus easy to evaluate. 

The resulting angular distribution of photons incident on the receive aperture is: 
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Now if we integrate over the full angular FOV of the receiver ( )!"## 20 ;0 $$$$
t

 to collect 

all of the photons and then divide by the number of singly scattered photons, we obtain the 

expression: 
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 (62) 

 

where 
t
!  is the angular half-FOV of the receiver. Integration of Equation 62 yields the signal 

power due to the nth-order scattering divided by the power of single scattered photons that is 

indicated by the standard LIDAR equation. For simplicity, the coordinate system for the 

integration can be laid out as shown in Figure 8. The general setup is similar to that already 

used, but the problem has essentially been “unfolded”. The origin has been located at the 

backscattering slab, which is a distance R from the laser and receiver. Therefore photons that 

are transmitted and eventually backscattered to the receiver go through a thickness of 2d in 

the cloud.   

 



55 

 
 

Figure 8: Multiple scattering geometry for a cloud located at a distance Rc from the LIDAR 

 

Given this coordinate system, the resulting expression for the nth-order scattering versus 

single scattered power ratio is: 
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The next step is to substitute the approximation of the Gaussian scattering phase function into 

Equation 63: 
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Although the development could stop here, the expression can be simplified by splitting the 

integration into two parts, by using symmetry, and by then translating the origin to a more 

intuitive location.  After the first two steps we obtain: 
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The last step is to move the origin. If we rewrite the equation in terms of distance from the 

LIDAR by substituting r=x+R, then Equation 65 can be rewritten as:  
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Equation 66 is the contribution due to the nth-order scattering that is absent in the standard 

singly scattered LIDAR equation. The total power observed can be found by summing 

Equation 66 for all numbers n of scattered photons and then multiplying by the singly 

scattered power P1(R) to obtain: 
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This is a LIDAR equation that accounts for  multiple scattering.  One must recognize the 

limitations of the derivation if any of the critical assumptions are violated; however, the 

expression is very useful in a number of cases.  

 

Although numerical evaluation of Equation 66 is certainly feasible, let’s examine a few 

special cases where the expression can be simplified analytically. First, let’s look at a special 
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case where the FOV is very wide so that all photons scattered by the layer are within the 

diffraction peak and are collected. In simplified terms, evaluate Equation 66 under the 

condition that all of the photons that undergo small-angle scatterings are collected. This 

situation was essentially investigated in Section 3.2.2 as the simplified approximation. Under 

the wide FOV receiver assumption (WFOV), Equation 66 can be simplified to: 

! 

Pn R( )
P
1
R( )

=
p"n R( )
p " ,R( )

# n$1

n $1( )!
 (68) 

 

This is the same expression that we intuitively derived earlier for the simple approximation in 

Equation 44. Figure 9 shows the power ratio of multiply to singly scattered photons as a 

function of penetration depth for a cumulus C1 cloud model (Liou and Schotland, 1971; 

Eloranta, 1972; Kokhanovsky, 2001). The additional contribution made by doubly scattered 

photons makes when compared to the single scattered photons predicted by the standard 

LIDAR equation can be very significant. The doubly scattered contribution for a C1 cloud 

layer begins to impact the signal at very shallow penetration depths. On the other hand, 

photons scattered three or four times introduce less than 10% error until the penetration 

depths reach much deeper into the cloud layer (30 m for n=3 and 55 m for n=4). For shallow 

depths, one could reasonably ignore the 3rd- and 4th-order scattering effects without incurring 

a great error.  
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Figure 9: C1 Cloud multiple-to-single scatter power ratio for a WFOV LIDAR at different 

penetration depths 

Another way to explore Equation 68 is to calculate the total power. If all contributions for all 

orders of multiple scattering are summed, the total received power is: 

! 

P
t
R( ) = P

1
R( )e"  (69) 

 

For an optical depth of τ=1.0, the total received power is approximately 2.7 times that 

predicted by the single scatter LIDAR equation. Figure 10 compares the multiply scattered 

and the singly scattered LIDAR equations for a homogenous layer (similar to a cloud layer) 

with an extinction coefficient of 0.1 m-1, a scattering albedo of 0.9, and an asymmetry 

parameter of 0.863. Note that the received power is normalized by the transmit power and 

receiver aperture area. The photon stream returning from deeper in the layer is significantly 

underestimated by singly scattered LIDAR equation. The difference is about an order of 

magnitude at about 30 m penetration depth (200 ns), which corresponds to an optical depth of 

about τ≅3.0. 
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Figure 10: Comparison of multiple scattering and single scattering LIDAR equation 

3.2.4 Implications for DIAL Measurements 

In Section 3.1.2, Equations 12 and 15 were used to calculate the concentration of a gaseous 

effluent in a participating medium using the backscattered return or the topographic target 

return at the reference and absorption wavelengths. The formulation of both equations was 

based upon the singly scattered LIDAR equation, which we have just shown in the previous 

section does not entirely account for all of the power observed by the receiver if enough 

scattering is present. The received power for a return pulse can be significantly larger than 

anticipated from the single-scattering LIDAR equation. A natural question arises as to 

whether this will impact results of a processor based upon Equations 12 and 15. 

 
If we assume that the scattering cross-section is approximately constant across the spectral 

region of interest, then the increase in power at the receiver is approximately the same for 

both the reference and absorption pulses. Equations 12 and 15 would then not be greatly 

affected because the ratio between the reference and absorption pulses should remain 

constant. Although the multiple scattering LIDAR equation may be more accurate for an 
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individual pulse, the impact to the final concentration measurement should be negligible 

regardless of the degree of multiple scattering. However, the atmospheric remote sensing 

community generally acknowledges that multiple scattering can make a difference. One 

could argue that some error will be introduced due to the variability in the scattering cross-

sections at both wavelengths, but this does not account for all observations. 

 
Some necessary assumptions in the derivation of the multiple scattering LIDAR equation are 

not always valid for real-world scenarios. These discrepancies would result in observable 

differences for a DIAL system when multiple scattering is present. For instance, we assumed 

that the path length of a photon that had been scattered for the nth time travels the same 

distance and arrives at the receiver at the same time as a single scattered photon. If the 

participating medium is sufficiently thick, this assumption is invalid. The mean distance 

traveled within the medium can be significantly altered by increasing the scattering cross-

section of the layer. If the mean distance is increased, then more absorption will occur and 

the measured concentration should be higher. Unfortunately, the situation may not be as 

straightforward when considering that the scattering phase function also changes the 

distribution of photons to a greater extent as the layer becomes optically thicker. In some 

instances, the phase function may exhibit less forward scattering as presumed and could 

theoretically cause photons to turn around and scatter out of the layer prematurely. This 

could result in an underestimation of the actual concentration because the mean photon path 

length and distribution within the layer was decreased. If one is going to accurately model the 

scattering and absorption of photons within a homogenous or non-homogenous medium, then 

one must somehow relax the restrictions introduced for the derivation of the multiple 

scattering LIDAR equation.  

 

Another potential impact is due to the temporal variability in the plume itself. The reference 

and absorption pulse pairs are typically not fired at the same time. They are fired sequentially 

with a short, but noticeable time delay. If the plume contains significant scattering particles 

and is active (moving and turbulent), then the observed multiple scattering signature is 

modified and the DIAL measurements could exhibit significant error. To some degree, the 

situation may be compensated for using pulse-averaging techniques. This presumes that the 
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plume variability is wide-sense stationary to some degree over some reasonable time interval. 

From a modeling perspective, all of the cases mentioned thus far require a robust treatment of 

multiple scattering effects to support investigation into the impact on DIAL measurements.  

3.3  Radiative Transfer in Participating Media 

This subsection emphasizes the theoretical basis for propagating light through a participating 

medium, such as a gas plume or cloud. When electromagnetic radiation interacts with a 

particle within a participating medium, part of the energy may undergo a change in direction, 

a loss, or a gain of energy. These processes are commonly referred to as scattering, 

absorption, or emission. These interactions for a gaseous medium pose significant challenges. 

First, the scattering, absorption, or emission occurs at every point in space within the 

participating medium and not only at the system boundaries. As the media changes 

temperature, concentration, and orientation with time, the events within the gaseous body and 

the intensity observed outside the gaseous body are constantly shifting and are spatially and 

temporally correlated. A complete solution of the radiative transfer through a gaseous plume 

or cloud requires substantial knowledge of the temperature, the local radiation intensity, and 

physical properties of the gaseous mixture at every instance in the time of interest. In general, 

the mathematics to describe these physical processes exists; however, the theory is inherently 

cumbersome and requires simplification to derive any meaningful result.  

 

The theory of radiative transfer, which characterizes light fields traversing through a 

participating medium, has been studied for years by individuals such as Chandrasekhar 

(1950), Siegel and Howard (1992), Sobolev (1956, 1972), Ishimaru (1978), and Van de Hulst 

(1980). The foundation built by these researchers explores solutions to the radiative transfer 

equation (RTE). Many of the derivations are straightforward if sufficient constraints are 

applied and limiting assumptions are valid. Generalized solutions of the RTE for real-world 

situations, such as with a mixed-gas, smoke-stack plume, are not always tractable. One is 

typically forced to rely on the use of numerical and approximation techniques. In truth, even 

scenarios which appear at first glance to be trivial can be overly burdensome if you try to 

analytically evaluate them. Hence, this section shall address some of the commonly used 

simplifications, some critical terminology and relationships, and derive a RTE that may 
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adequately represent the real-life physics of laser light propagating through a participating 

medium such as a factory stack plume. Although the principles and many of the derivations 

will apply to other scenarios, like fog and rainbows, the specific focus will be upon the 

theory describing various gas plumes.  

3.3.1 Fundamentals and Properties for Participating Medium 

As denoted previously, a photon interacts with a particle or molecule through the primary 

modes of interaction of scattering, absorption, or emission. Within that context, we begin by 

examining some of the fundamental properties of a participating medium, such as the 

extinction coefficient, the scattering coefficient, the absorption coefficient, and the scattering 

phase function.  

 

Consider the change in radiance Lλ at a specific wavelength λ after passing through a small 

volume dV of participating medium at normal incidence (Figure 11). If any radiance added 

due to emission is disregarded and the volume is relatively small so that no radiance is 

scattered into the path of interest, then the change in radiance Lλ can be expressed as: 

! 

dL" = #$
ext
L"dS  (70) 

 
where dS is the length of the path through the medium and 

ext
!  is the extinction coefficient. 

The extinction coefficient 
ext

!  is a physical property of the medium and is dependent upon 

the wavelength λ , the temperature T, the pressure P, and the material composition denoted 

by the concentrations ci. The dependence upon the material composition also includes such 

properties as the complex indices of refraction, particle size, and particle size distribution. 

This also indicates that the radiance within the medium and exiting the medium is also a 

function of these dependencies, which is consistent with intuition.  
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Figure 11: Radiance attenuation through a participating medium of volume dV 

 
Although stated without proof, the extinction coefficient can be viewed as the inverse of the 

mean penetration distance for a homogeneous medium. If this statement is applied to 

Equation 70 and integrated over a path length S: 
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where Lλ(0) is the incident radiance at the origin of the path, then the result of the integration 

is: 
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This is often known as Bougeur’s law, Lambert’s law, Bouguer-Lambert law, or Beer’s law. 

Beer’s law is somewhat more restrictive and was intended to state the dependence upon the 

concentration levels. Despite the potential confusion about the law’s name, Equation 72 

mathematically expresses that the spectral radiance is attenuated exponentially along a path 

through an absorbing and/or scattering medium where emission and multiple scattering 

effects are not considered directly. The rate of exponential attenuation is then determined by 

the integration of the local extinction coefficient over the path length.  
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The exponential term in Equation 72 is designated the “optical thickness”, “depth”, or 

“opacity” of the layer with a thickness S. Note that the optical thickness also depends upon 

the pressure, temperature, material composition, and wavelength and is a function of how 

these parameters change along the path from 0 to S.  Bougeuer’s law can be restated as: 

! 

L" S( ) = L" 0( )exp #$" S( )[ ]  (73) 

 
where 

! 

"# S( )  is the optical thickness. If the medium is homogeneous and at equilibrium such 

that the temperature and pressure are essentially constant, then one can express the optical 

depth as: 

! 

"# S( ) =$
ext,#S  (74) 

 
If 

! 

"# S( ) <<1, then the volume or layer is designated to be optically thin; however, if 

! 

"# S( ) >>1, then the layer is designated to be optically thick. For the optically thin case, the 

mean penetration distance is much larger than the physical thickness of the layer; therefore, 

only a limited amount of extinction occurs and (more importantly) the multiple scattering 

effects are negligible. 

 

The extinction coefficient 

! 

"
ext

 is a physical property of the medium that accounts for the 

attenuation due to scattering and absorption and can be split into two components, the 

absorption coefficient 
abs

! and scattering coefficient 
sca

! :  

! 

"
ext
#,T,P,c

i( ) ="
abs

#,T,P,c
i( ) +"

sca
#,T,P,c

i( ) (75) 

 
Note that both the scattering and absorption coefficients are also dependent upon the 

temperature, pressure, wavelength, and material composition. From this point forward, these 

dependencies will be formally dropped and merely inferred for convenience. The absorption 

and scattering coefficients can be found using: 

 

! 

"
abs

= N #C
abs

 (76) 

! 

"
sca

= N #C
sca

 (77) 
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where N is the number concentration of particles, Cabs is the absorption cross-section, and 

Csca is the scattering cross-section. Note that, by construction, the extinction cross-section 

can also be expressed as: 

scaabsext
CCC +=  (78) 

 
such that the extinction coefficient can also be expressed as: 

! 

"
ext

= N C
abs

+ C
sca( )  (79) 

 
If the medium is composed of particles with different sizes, then the mean values of the 

cross-sections are used in Equation 79. Calculation of the absorption, scattering, and 

extinction coefficients and cross-sections for different particle sizes and types is addressed in 

more detail in Section 3.6. 

 

Another important term is the differential scattering cross-section. The scattering coefficient  

sca
!  is defined as the integral of the differential cross-section d

sca
! : 

! 

"
sca

= d# "
sca
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0
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2%
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If one assumes that the azimuth-independent local scattering law applies, the expression 

simplifies to: 

! 

"
sca

= 2# "
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d $( )sin $( )d$
0

#

%  (81) 

 
The azimuth-independent local scattering assumption is common and reasonable in most 

cases. Thus, it follows from Equation 81 that: 
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The central term within the integral of Equation 82 describes the angular distribution of the 

scattered energy. This distribution is represented by the scattering phase function of a particle 

or medium, which is defined as: 

! 

p "( ) =
4#$ sca

d

$ sca

=
dI% ",&( )

1

4#
dI% ",&( )d's

0

4#

(
 

(83) 

 
where p(θ) is the scattering phase function which is normalized such that: 

 

! 

1

2
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0
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The scattering phase function indicates the scattered intensity in a direction specified by θ 

divided by the intensity that would be scattered in that direction if the scattering was 

isotropic. Alternatively, the scattering phase function is intuitively interpreted as the 

probability that a photon is scattered in a direction given that a scattering event occurs. The 

probabilistic interpretation requires a different normalization for the definition of the 

scattering phase function. The probability that a photon is scattered into a solid angle dΩ is 

equal to dΩ/4π. For isotropic scattering, the phase function is uniform: 

( ) 1=!p  (85) 

 
Another commonly used empirical phase function is the Henyey-Greenstein phase function. 

It is often used to describe scattering in oceans and clouds and can be adjusted by an 

asymmetry parameter g. The Henyey-Greenstein phase function is defined as: 

! 

p "( ) =
1# g

2

1+ g2 # 2gcos"( )
1.5

 (86) 

 
To accommodate more complex scattering phase functions, one can linearly combine 

different Henyey-Greenstein phase functions to realistically mimic a naturally occurring 

phase function. Figure 12 illustrates the effect of the asymmetry parameter g on the 

probabilistic version of the Henyey-Greenstein function. For many applications, this 



68 

empirical phase function is adequate; however, one can also leverage Mie scattering theory to 

find the scattering phase function as is discussed in Section 3.6. A sample plot of a scattering 

phase function for C1 cloud model water droplets is shown in Figure 13. The phase function 

is shown for an effective particle diameter of 6 µm at λ=650 nm.  

 

 
 (a) g = 0.0 (b) g = 0.3 

 
(c) g = 0.9 

Figure 12: Henyey-Greenstein phase functions for g=0, 0.3, and 0.9 
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Figure 13: Scattering phase function for water using Mie theory 

(log scale, λ=650 nm, m=1.33, aeff=6 µm) 

For a significant number of derivations and analytical approximations, the scattering phase 

function must be expanded into something that can be integrated or at least estimated. One 

common method is to expand using Legendre polynomials:  

! 

p "( ) = glPl cos"( )
l= 0

#

$  (87) 

 
The coefficients of this expansion are: 
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where the first five Legendre polynomials are: 
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(89) 

 
where 

! 

µ = cos"  in this case. One should note that the second expansion coefficient (l=1) is 

usually referred to as the asymmetry parameter and indicates the degree of forward or 

isotropic scattering.  

3.3.2 Radiative Transfer Equation 

The basic concepts and definitions were introduced for absorption and scattering in a 

participating medium in the previous subsection. Now let’s employ those basic concepts and 

develop a governing equation of transfer for radiation as it travels through a dispersive, 

participating medium. The derivation in this subsection is most appropriate for media with 

low volumetric concentrations of scatterers (cv< 0.01-0.1). Fortunately, almost all natural 

media and most plumes are characterized by extremely low values of volumetric 

concentration. For instance, cv is in the range of 10-11 to 10-7 for water clouds and is 0.3 to 0.4 

for snow and soil (Kokhanovsky, 2001). Closely packed media require that the correlation of 

the particles be accounted for and the RTE is much more complicated.  

 

Consider light propagating within an absorbing, emitting, and scattering medium traveling in 

the direction 
  

! 

r 
" = # ,$( ) , as shown in Figure 14. In the absence of absorbing, emitting, or 

scattering events, the radiance will be considered to be constant. For now, the localized 

portion of the medium under consideration is assumed to be homogenous. If linearity is 

assumed, the change in intensity after traversing the thickness dS is: 

 

! 

dI" = #$
ext
I"dS + I

em
dS  (90) 
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where 
ext

!  is the extinction coefficient as described earlier and 
em
I  is the radiant intensity 

emitted into the observation path per unit distance. Although this equation does not account 

for nonlinear effects, the approximation is appropriate for a localized area. The emission 

component can be broken down into two portions: 

! 

I
em

= I
src

+ I
sca

 (91) 

 
where 

src
I  is due to internal sources of radiation inside a medium and 

sca
I  is the radiant 

intensity due to the photons scattered from other directions into the direction 
  

! 

r 
" = # ,$( ) . If 

only elastic scattering is considered and the medium is in local equilibrium, then the emission 

contribution can be assumed to be characterized as black body radiation. Thus, the internal 

sources of radiation can be written using the Planck equation: 

! 

I
src
T( ) ="

abs

2h# 3

c
2

1

e
h# kT $1

% 

& 
' 

( 

) 
*  (92) 

 
where 

abs
!  is the absorption coefficient, υ is the frequency, c is the speed of light, T is the 

temperature, h is the Boltzmann constant, and k is the Planck constant. If one is considering 

the visible or ultraviolet region, then the internal source function is typically presumed to be 

zero; however, if the system is operating in a thermal region then the internal source function 

must be accounted for. The intensity that is scattered into the observation direction 
  

! 

r 
" = # ,$( )  

from all of the other directions 
  

! 

r 
" # = " $ , " % ( ) can be found using (Chandrasekhar, 1950): 

! 

I
sca

"( ) = #
sca

d ", $ " ( )I $ " ( )d $ " 
4%

&  (93) 
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Figure 14: Scattering into direction !

r
 through distance dS in a participating medium 

Therefore, the RTE can be written as: 

! 

dI " ,#( )
dS

= $%
ext
I " ,#( ) + d & # d & " sin & " %

sca

d " , & " ,#, & # ( )I & " , & # ( ) + I
src
" ,#,T( )

0

2'

(
0

2'

(  (94) 

 
For dispersive media, one can use Equation 83 for the definition of the scattering phase 

function and rewrite the RTE as: 

! 

dI " ,#( )
dS

= $% ext I " ,#( ) +
% sca

4&
d ' # d ' " sin ' " p cos(( )I ' " , ' # ( )

0

&

)
0

2&

) + Isrc " ,#,T( )  (95) 

 
where θ is the scattering angle and is defined as: 

! 

" = cos#1 cos$ cos$
o

+ sin$ sin$
o
cos % # %

o( )( ) (96) 

 
where 

! 

"
o
,#

o( )  and 

! 

" ,#( ) defines the angle of incidence and the observation angle in 3-D 

space respectively. If one examines the plane defined by 0=!
o
"" , then the scattering angle 

θ is merely: 

! 

" =# $#
o
   if % = %

o
 (97) 
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The scattering angle is then the difference between the observation and incident angle. The 

RTE divided by the extinction coefficient and we obtain: 

! 

" ext

#1 dI $ ,%( )
dS

= #I $ ,%( ) +
&
0

4'
d ( % d ( $ sin ( $ p cos)( )I ( $ , ( % ( ) +

0

'

*
0

2'

* " ext

#1
Isrc $ ,%,T( )  (98) 

 
where 

0
!  is the single scattering albedo and can be expressed as: 

! 

"
0

=
#
sca

#
sca

+#
abs

 (99) 

 
One should note that many texts do not introduce the single scattering albedo term, but rather 

leave the RTE in terms of the scattering and extinction coefficient; however, 
0

!  property is 

commonly used in the remote sensing community and is included here for that reason. 

Additionally, one should note that the polarization effects have not been directly addressed 

thus far in the RTE derivation. For an isotropic medium, the polarization effects reduce to a 

scalar. If the medium is not isotropic, then one must revert to the vector form of the RTE, 

which will be introduced shortly to account for the polarization effects. 

 

Now if the medium is assumed to be homogenous over the distance dS, then the change in 

optical depth can be written as a constant: 

! 

d" =#
ext
dS  (100) 

 
and the RTE equation becomes: 

 

! 

dI " ,#( )
d$

= %I " ,#( ) +
&
0

4'
d ( # d ( " sin ( " p cos)( )I ( " , ( # ( )

0

'

*
0

2'

* ++ ext

%1
Isrc " ,#,T( ) (101) 

 
As intended, Equation 101 accounts for the localized change in intensity as the radiation 

travels through a dispersive participating medium excluding non-elastic effects.  
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A more complete and generalized vector form of the RTE is: 

  

! 

" ext

#1 r 
n $( )It

r 
r ,

r 
n ( ) = #It

r 
r ,

r 
n ( ) +

%
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4&
p
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r ,

r 
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)  (102) 

 
where rr  is the observation point vector, nr  determines the direction of the beam with 

intensity It, !  is the gradient operator, and 
  

! 

B
0

r 
r ,

r 
n ( )  describes the internal sources of 

radiation. The internal sources of radiation may include sources such as fluorescence, but is 

often limited to self-emission for simplicity. Note that Equation 98 can be derived from 

Equation 102 where: 

  

! 

r 
n "( )It

r 
r ,

r 
n ( ) #

dI
t

r 
r ,

r 
n ( )

dS
 (103) 

 

if 
  

! 

B
0

r 
r ,

r 
n ( )" 0. This is the most general form of the RTE and can be used in a variety of 

situations. It is the basis of many numerical techniques, including photon mapping, used to 

evaluate complex gaseous media. 

3.3.3 Radiative Transfer Equation for a Plane-Parallel Gaseous Layer 

The RTE for a plane-parallel gaseous layer is the most widely used approach for evaluating 

even more complex geometries. In the previous subsection, the RTE equation was derived 

for the medium case and then generalized into a vectorized equation. The layer of  dispersive 

medium has thickness 
0
!  and is assumed to be infinitely wide and deep. The top and bottom 

form parallel planes, and the top boundary is illuminated at every point by a unidirectional 

beam. The general geometry for the situation is shown in Figure 15 and follows the general 

conventions established in the preceding derivation of the RTE. Note that although the 

observation point is currently indicated to be below the layer, the derivation will examine 

observation points within the medium as well.  
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Figure 15: Geometrical construct for RTE of plane-parallel layer 

 
Although presented without formal derivation, the RTE can be written as: 

 

! 

cos"
dI #," ,"

0
,$( )

d#
= %I #," ,"

0
,&( ) + B #," ,"

0
,&( )  (104) 

 
where 

! 

B ",# ,#
0
,$( ) =

%
0

4&
d ' $ I ", ' # ,#

0
, ' $ ( )p ' ( ( )sin ' # ( )d ' # 

0

&

) +
0

2&

)
%
0
I
0

4
p (( )e*" cos# 0  (105) 

 
is the source function, τ is the optical thickness of the layer, !  is the incidence angle, 

0
! is 

the observation angle, !  is the azimuth of the observed radiation, 
0

!  is the single scattering 

albedo, 

! 

p "( ) is the phase function, 

! 

I ",# ,#
0
,$( )  is the diffused intensity at the optical 

thickness in the direction 

! 

" ,#( ), and 

! 

" I
0
is the net flux per unit area normal to the incident 
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light beam. Note that the emission is ignored and that the scattering angle for this setup is 

defined as: 

! 

cos " # = cos$ cos$
o

+ sin$ sin$
o
cos % & %

o( ) (106) 

! 

cos" = cos# cos#
o

+ sin# sin#
o
cos$  (107) 

 
where the angles are as described previously and shown in Figure 15. Equation 104 is more 

restrictive than Equation 102 because it only accounts for the diffuse component of the 

radiant intensity. The total intensity It including the direct contribution is: 

! 

I
t
",# ,# 0,$( ) = %I ",# ,# 0,$( ) + &I0 exp %

"

cos# 0

' 

( 
) 

* 

+ 
, - .%.0( )  (108) 

 
where 

! 

" #( ) is the dirac-delta function.  

 

It is reasonable to assume that diffused radiation does not enter a scattering layer at the 

boundaries specified by 0=!  or 
0
!! = . Based upon this assumption, a set of boundary 

conditions can be established such that: 

! 

I 0," ,"
0
,#( ) = 0  at  " <

$

2
 (109) 

! 

I "
0
,# ,#

0
,$( ) = 0  at  # >

%

2
 (110) 

 
Then one can solve the differential equation presented in Equation 104. The result is: 

! 

I ",# ,#
0
,$( ) =

e
%" / cos#

cos#
B & ' ,# ,#

0
,$( )e% & " / cos#

d & " 
0

"
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and 

! 

I ",# ,#
0
,$( ) =

e
%" / cos#

cos#
B & " ,# ,#

0
,$( )e% & " / cos#

d & " 
" 0

"

'   at  cos# < 0 (112) 
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In many derivations, authors elect to simplify the notation by substituting the following 

variables into the RTE equation: 

! 

" = cos#  and  $ = cos#
0
 (113) 

 
Based upon the geometry and the definitions,  the scattering angle is: 

! 

" = cos#1 #1( )
l

$% + 1#$2( ) 1#% 2( ) cos&( )  (114) 

 
where l=1 for reflected cases and l=2 for transmitted cases. If the source function 

! 

B ",# ,#
0
,$( )  is known, Equations 111 and 112 can be used to find the intensity for any depth 

within or outside the layer. Essentially, Equation 111 is the upward radiation and Equation 

112 is the downward radiation in the layer.  

 

The real interest is focused on the radiant intensity coming out of the layer from the top or 

the bottom. Equations 111 and 112 define the intensity for those situations as: 

! 

I" 0,# ,#
0
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1
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0
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0
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Once again, the issue is whether the source function is truly known. In most cases, the source 

function is not analytically known. Using Equations 105, 111, and 112, the integral to find 

the source function is: 
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 (117) 

 
Unfortunately, this integral cannot be solved analytically, but a number of numerical methods 

may be used to solve the set of equations to find the source function 

! 

B ",# ,#
0
,$( ).  
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3.3.3.1 Thin Layers 

While the source function can be difficult to determine analytically in many cases, 

! 

B ",# ,#
0
,$( )  can be found from Equation 105 for an optically thin layer. Essentially, if the 

layer is thin enough, then the multiple scattering contributions are negligible and the 

dominant term is from the singly scattered photons. Based upon this assumption, the source 

function is: 

! 

B ",# ,#
0
,$( ) =

I
0
%
0

4
p &( )e'" / cos# 0  (118) 

 
By substituting Equation 118 into Equations 115 and 116 and assuming that the layer is 

homogenous, the upward and downward radiant intensity are found: 

! 
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where 

! 

I"
d  and 

! 

I"
d  are the downward and upward diffused light intensity. The reflection and 

transmission functions are a common way to characterize the scattering of a gaseous layer. 

The reflection function is the ratio between the upward diffused light intensity and the 

normal light intensity component such that: 

! 

R =
I"
d

cos#
0
I
0

 (122) 
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The transmission function is the ratio between the downward diffused light intensity leaving 

the medium and the normal light intensity entering the medium such that: 

! 

T =
I"
d

cos#
0
I
0

 (123) 

 
Substituting in the expressions for d

I
!

 and d
I
!

 the reflection and transmission functions 

become: 
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and 
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   (125) 

 
where θ is defined according to Equation 114.  

 

Now, consider a few simple cases. Although these equations were derived for a thin layer, if 

the layer thickness goes to infinity (

! 

"
0
#$), then the transmission function goes to zero and 

the reflection function becomes: 

! 

R =
"
0
p #( )

4 cos$ + cos$
0( )

 (126) 

 
Equation 126 can be used to calculate the single scattering contribution to the reflectance 

function for a very thick layer. A few useful observations can be made from this equation. 

First, the amount of reflected energy is directly proportional to the albedo term. If the 

absorption dominates 

! 

"
0
# 0( ) , then less energy is reflected from the layer. Secondly, for an 

isotropically scattering phase medium, as the incidence and observation angle increase, the 

amount of reflected radiation is greater.  



80 

3.3.3.2 Thick, Homogenous Non-absorbing Layer 

If the layer is optically thin, then the contribution from multiple scattering is minimal; 

however, the contribution is non-trivial for optically thick layers and an alternate RTE is 

necessary. In this subsection, the reflection function for a thick, homogenous non-absorbing 

medium is introduced. Specifically, we shall examine a model that was derived for use with 

cloud layers. Stated without proof, the reflection function is (Kokhanovsky, 2001): 

! 

R"
0 =#

1

2
+

cos$ cos$
0

cos$ + cos$
0

% 

& 
' 

( 

) 
* + +

p ,( )
4 cos$ + cos$

0( )
 (127) 

 
where α and β are unknown constants. The first term of the equation represents the multiple 

scattering contributions, while the second is proportional to the amount from single 

scattering. Note the similarity for the second term with Equation 126. The value for the 

unknown constants is often obtained from experimental data. For instance, liquid water 

clouds exhibit characteristics such that the constants are (Kokhanovsky, 2001): 

! 

" =1

# = 8 $ 4.5e
$5 % $&( ) $ 5e

$5 & *$&( )  (128) 

 
where θ is the scattering angle and θ* is the rainbow angle in radians (θ*=2.4 in the visible).  

 

For isotropic scattering, both constants are equal to unity: 

! 

" = # =1 (129) 

 

Models of the reflection and transmission function of clouds using the equations and 

parametric coefficients have been found to be very consistent with real-world datasets 

(Kokhanovsky, 2001). Figure 16 is a sample plot of the predicted reflectance values using 

Kokhanovsky’s cloud approximation. The effective optical depths of the curves range from 

10-70. The surface albedo rs was set to 0. Mie theory was used to predict the optical 

characteristics of the cloud layer based upon a gamma particle size distribution with the 

effective mean particle size of 6 µm and a coefficient of variance equal to 71 . The solar 

angle was set at 45°. This approximation is fairly accurate for optically thick media, but it 
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does tend to overestimate the reflection functions for optically thin clouds. Kokhanovsky 

(2001) claims that the error is less than 15% in the visible and near infrared region for 

reasonable optical depths. In general, many researchers use this approach to derive empirical 

models for specific scenarios. The problem is that the solutions are highly specialized and do 

not adequately describe general cases, such as a scattering and absorbing layer with a 

“medium” optical thickness. 

 

 
Figure 16: Reflection function of a water cloud with different liquid water paths  

(aeff=6 µm, µ=1, µ0=0.707, rs=0) 

3.3.4 General Solutions and Approximations for Plane-Parallel Layers 

The focus of the previous section was upon optically thin layers. Ideally, one would like to be 

able to analytically evaluate the reflection and transmission functions or the upward and 

downward observed radiance for optical layers of any size. Unfortunately, this is not always 

feasible. Solutions for thick layers under a very limiting set of conditions do exist in the 

literature; however, many of the solutions require numerical integration or Monte Carlo 

techniques to evaluate the final expression. For now, we examine a few of the key 

approximations and their basic premises. There are four common approaches to evaluating 
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the radiative transfer equation for plane-parallel participating media: the diffusion 

approximation, the small angle approximation, the small angle diffusion approximation, and 

the discrete ordinate approximation. An expanded discussion is included for the diffusion and 

discrete ordinate approximations because of their relevance for this research effort and for 

evaluating multiple scattering effects. 

 

3.3.4.1 Diffusion Approximation 

The diffusion approximation (DA) is based upon techniques first applied in neuron transfer 

theory (Kokhanovsky, 2001). Many of the other approximations are only valid when the 

volume density of the medium is considerably small, less than 0.1%. In contrast, the 

diffusion approximation is best suited for cases where the volume density is >> 1%. The 

underlying assumption for the diffusion approximation is that the diffuse intensity is 

scattered by a large number of particles such that its angular distribution is almost uniform. 

In truth, this cannot be the case. If the angular distribution were constant, then the flux would 

be zero and no net power would propagate through the medium. Thus, the angular 

distribution of the diffuse intensity is assumed to be skewed slightly so that it has more 

magnitude in the direction of the net flux flow than in the reverse direction. Then one can 

proceed to simplify the governing equations and evaluate important asymptotic cases. The 

diffusion approximation is most relevant for considering isotropic sources; however, the 

equations can be modified to account for a mono-directional and non-stationary sources, such 

as a collimated or divergent pulsed laser beam. Significant complications are encountered 

due to the effects of surface boundaries and the corresponding assumptions generally restrict 

the accuracy of the diffusion approximation to photons deep within a scattering layer. The 

next few paragraphs will introduce a way of developing the diffusion approximation. There 

are multiple derivation paths throughout the literature. This one is primarily based upon the 

work by Zege, Ivanonv, and Katsev (1991), but also leverages the work by Ishimaru (1978) 

and Kokhanovksy (2001). One should refer to all three for a more complete derivation and 

additional applications of the diffusion approximation for radiative transfer theory. 
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First, let’s start with the generalized vector form of the RTE which we introduced earlier that 

can be written as: 
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where rr  is the observation point vector, nr  determines the direction of the beam with 

intensity It, !  is the gradient operator, and 
  

! 

B
0

r 
r ,

r 
n ( )  describes the internal sources of 

radiation. If we move the extinction coefficient to the right-hand side and integrate the RTE 

over all nr  directions, the result is: 

  

! 

" #
r 
F 

r 
r ( ) = $%

abs
w

r 
r ( ) + B

00

r 
r ( ) (131) 

 
where ( )rF

rr
 is the flux density vector, ( )rw

r  is the radiation density, and B00 is the zeroth 

moment of the source function, which is defined as: 
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Equation 131 relates the flux density vector to the radiation density within the medium. We 

shall use this equation later to formulate the diffusion approximation, but we need to first 

develop another set of equations to allow us to find an expression that relates the source 

function and the radiation density function. If both sides of Equation 130 are multiplied nr  

and integrated with respect to the solid angle, the resulting equation is: 
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where 
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and is the first moment of the source function. The first portion of the integral was simplified 

using the definition of the asymmetry parameter, g, so that: 
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According to classical diffusion theory, the scattered light radiance for weakly anisotropic 

thick layers can be represented as (Zege, et al., 1991): 
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If we combine Equations 133 and 136, then: 
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From Equation 133 and 137, we can infer another relationship between the radiation density 

and the flux. The flux density vector can be expressed as: 
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which is known as Fick’s law (Zege, et al., 1991). Based upon Equations 131 and 138, we 

can then find the direct relationship that we have been seeking between the radiation density 

and the moments of the source function. If we substitute Equation 138 into Equation 131 and 

express the optical coordinates to be in terms of optical depth, we get the well-known 

diffusion equation: 
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where the !  is the asymptotic attenuation coefficient and ( )!

r
G  is an expression based upon 

the angular moments of the source function: 
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 (140) 

 
One should note that one of the most difficult issues to deal with when solving the diffusion 

equation is establishing the boundary conditions.  This is one of the reasons that the diffusion 

approximation is not very accurate near the surface boundaries of a semi-infinite layer.  
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One common use of the diffusion approximation is to find the radiation density for an 

isotropic-unit point source lying at the top surface boundary of a semi-infinite medium 

! 

P
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=1; " = # " ; $ = 0( ). For simplicity, we shall rely upon the axial symmetry of the scenario 

and use a cylindrical coordinate system. Using the definition for 
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point source: 
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where ρ is the radial component for the cylindrical coordinate system and q is the scattering 

indicatrix parameter (also called the scatter phase function parameter) which is defined as: 

! 

q =
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We now impose a set of reflection conditions at the layer boundaries by introducing different 

extrapolated lengths for the upper (d1) and the lower (d2) boundaries of the layers where: 
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This assumption basically states that the radiation is zero at some distance outside the layer 

boundaries.  

 

Based upon these boundary conditions and Equations 139 and 141, the resulting radiation 

density is: 
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where 
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As noted by Zege, et al., (1991), the structure of Equation 144 can be interpreted intuitively. 

Figure 17 illustrates the geometry for conceptual, virtual sources in a diffusion 

approximation of an isotropic point source in a semi-infinite medium for an observation point 

M.  Ignoring the scalar, the first term in Equation 144 is the solution for an isotropic point 

source in an infinite medium. The second term acts like a sink located above the upper 

boundary. Combined, these two terms provide a solution for a semi-infinite medium. The 

third term adjusts for the finite thickness of the layer. If the layer is semi-infinite 
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then the radiation density is simply: 
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Later, we shall revisit the solution for an isotropic point source presented here to eventually 

derive an approximation for a pulsed monodirectional, point source. The latter will provide a 

good benchmark for the backscattered returns deep within a layer of the DIRSIG LIDAR 

model. 
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Figure 17: Geometry for virtual sources in a diffusion approximation of an isotropic point 
source in a semi-infinite medium for an observation point M 

 

3.3.4.2 Small Angle Approximation 

The small angle approximation (SAA) assumes that the light scattered by the particles in the 

medium is largely restricted to a small angle in the forward direction.  This assumption is 

most valid if the particle size is much greater than the wavelength under consideration; 

however, the small angle approximation can be applied in more general cases if the medium 

is dominated by highly anisotropically scattering and is illuminated by directional localized 

sources. The SAA forms the foundation for deriving the optical transfer functions of 

scattering media and for radiative transfer theory of multiple scattering by moving particles. 

Along with the benefits, the SAA carries two primary restrictions. First, it cannot be applied 

to optically thick media or used to describe the temporal deformation of a pulse signal 

propagating through a participating medium. Secondly, calculation of the results for the SAA 

requires the capability to evaluate multidimensional Fourier transforms. The latter restriction 

is of less concern today and is also one of the attractions for many researchers.  
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For instance, using the SAA, the radiance can be mathematically described as (Zege, et al., 

1991): 
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where 

  

! 

I
0
0,

r 
r ,

r 
n ( )  is the incident radiance at the boundary and the modified multidimensional 

Fourier transforms are: 
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For an isotropically radiating point source located at the surface boundary, the modulation 

transfer function (MTF) for an inhomogeneous layer can be found to be (Zege, et al., 1991): 
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If one then considers a plane-parallel layer that is homogenous, the MTF simplifies to (Zege, 

et al., 1991): 
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The SAA approach was considered as a potential solution for analytically tractable cases that 

can be used as a reliable benchmark for the accuracy of the photon mapping algorithm; 

however, the diffusion approximation and the multiple scattering LIDAR equation were 

selected to form the baseline of the verification process.  

 

3.3.4.3 Small-Angle Diffusion Approximation 

The small angle diffusion approximation (SADA) is a combination of the DA and the SAA. 

Essentially, the optical characteristics of the participating media are assumed to be 
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characterized by forward scattering and the angular radiance distribution is described by 

smooth functions. The degree of smoothness is restricted such that the variance of the 

angular radiance distribution must be greater than the phase function variance. Because of the 

angular radiance distribution requirements, the SADA is not valid for weakly or strongly 

absorbing media; however, the optical depth does not directly restrict the SADA. Therefore, 

the SADA complements both the SAA and DA methods and generates results that both 

overlap and bridge the gap between the other approximations.  

3.3.4.4 Discrete Ordinate Approximation 

Another approach is the discrete ordinate approximation (DOA), which calculates the 

complicated integral in the governing radiative transfer equation by first removing the 

azimuth dependence, then introducing a set of Fourier series, and finally converting the 

integrals to quadrature sums. The quadrature sums transform the integro-differential equation 

into a system of ordinary differential equations that can be solved using standard linear 

algebra. The DOA approach published by Stamnes and Dale (1981) is the core of the Fortran 

code developed in 1988 called DISORT, which is the gold standard for radiative transfer 

codes for vertically inhomogeneous layered media in the remote sensing community. 

DISORT is the underlying code embedded in larger atmospheric models such as MODTRAN 

for the purpose of calculating multiple scattering effects. The implementations of DOA and 

DISORT are designed to calculate the radiative transfer for a set of stacked plane-parallel 

scattering, absorbing, and emitting media with a lower surface boundary that has a specific 

bidirectional reflectivity function and that is illuminated by a parallel beam or diffuse 

radiance. One can then calculate the diffuse and direct radiance anywhere within the 

described media.  

 

Equations 104 and 105 are the radiative transfer equations for a plane-parallel layer. They are 

repeated below for ease of reference: 
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where 
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is the source function, τ is the optical thickness of the layer, !  is the incidence angle, 

0
! is 

the observation angle, !  is the azimuth of the observed radiation, 
0

!  is the single scattering 

albedo, 

! 

p "( ) is the phase function, 

! 

I ",# ,#
0
,$( )  is the diffused intensity at the optical 

thickness in the direction 

! 

" ,#( ), and 

! 

Q ",# ,#
0
,$( ) is the external source function. The 

external source function includes the incident beam and the thermal contribution of the 

layer(s) and can be written as: 
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where 

! 

" I
0
is the net flux per unit area normal to the incident light beam and 

! 

I
src
",T,# ,$( )  is 

typically Planck’s blackbody equation. The azimuthal 

! 

"  dependence is then removed 

through two modifications. First, the scattering phase function is written as a series of 2M 

Legendre polynomials such that: 

! 

P ",cos#( ) = 2l +1( )gl "( )Pl cos#( )
l= 0

2M $1

%  (154) 

 
where the expansion coefficients are given by: 
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Note that the expansion assumes that the scattering phase function depends only on the angle 

between the incident and scattered beams. This assumption is very reasonable. The second 

stage transforms the scattering phase function and the intensity into a Fourier cosine series. 

The expanded scattering phase function then becomes: 
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where 

! 

µ = cos"  and 

! 

"
l

m µ( )  is the normalized associated Legendre polynomial defined by: 
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where 

! 

P
l

m µ( )  is the associated Legendre polynomial.  

 

The azimuth dependence is removed by a Fourier cosine series expansion: 
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Substituting Equations 156 and 158 into Equations 104 and 105, the RTE is split into 2M 

different equations such that: 
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where the internal source function becomes: 
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and the additional terms are: 
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The next step is to convert this set of equations to a form that can be calculated numerically. 

If you examine the internal source function, the integral is formed appropriately so that we 
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can replace the integrals with Gaussian quadratures. This generates a system of ordinary 

differential equations where: 

! 
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where µi and wi are the quadrature points and weights respectively. Each of the 2N equations 

is often referred to by the community as a “stream”.  If we presume that the atmosphere or 

our system of participating layers can be divided into L homogeneous layers, then for any 

particular layer we can rewrite Equation 162 in matrix form as: 
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where the associated matrices are:  
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Equation 164 now represents a linear system of coupled differential equations that can be 

solved using common linear algebra techniques. In general, DISORT attempts to first find 
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the homogenous and then the particular solutions based upon the internal source function. 

The resulting answer is then the sum of the two solutions. A thorough discussion and 

derivation for the DISORT algorithm is presented in the DISORT Documentation of 

Methodology (Stamnes, et al., 2000). 

 

If one is considering plane-parallel layers illuminated by an infinitely wide plane wave, 

discrete-order radiative transfer codes like DISORT are very valuable. For instance, the 

assumptions are generally valid for analyzing the passive reflection functions for a cloud 

layer. Figure 18 shows DISORT’s predictions for the nadir reflection function of a cloud 

with an optical depth of 30 that is illuminated by the sun at 45° and for a ground albedo as 

indicated by the values of rs. The optical properties were generated based upon a gamma 

distribution via Du’s Mie code, which is discussed in Section 3.6. At longer wavelengths, the 

bulk returns are from backscatter of the layer and the impact of the ground albedo is minimal. 

In contrast, the ground albedo differences for rs=0.5 to 0.9 results in a 10% increase in the 

apparent reflectance of the cloud in the visible region. Figure 19 is a companion plot that 

compares Kokhanovksy’s cloud approximation (Equation 127) and DISORT for this specific 

cloud layer scenario. Notice that the approximation is a reasonable fit to the more accurate 

DISORT calculations; however, this is not always the case. Both Figure 18 and Figure 19 

show the reflection function as a function of wavelength. Another instructive scenario is to 

examine the change of the reflection function at a particular wavelength with respect to 

optical depth. Figure 20 compares the cloud approximation and DISORT for cloud layers of 

varying thicknesses. The reflection function is plotted at a wavelength of 2130 nm and a solar 

angle of 60°. Once again, the two solutions are very similar for optical depths greater than 1. 

Although we have demonstrated that similar results can be achieved using reasonable 

approximations, radiative transfer codes such as DISORT are significantly more robust and 

accurate over a wider range of input parameters. This is because the RTE is calculated 

numerically as opposed to making restrictive assumptions to reduce it to a manageable form. 

Naturally, the accuracy of discrete ordinate radiative transfer codes depend upon the number 

of streams and Fourier cosine terms that one employs.  
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Figure 18: Reflection function of water clouds at τ=30, µ=1, µ0=0.707, aeff=6 µm for different 
ground albedos 

 

Figure 19: Reflection function of water clouds from DISORT and Kokhanvosky’s cloud 
approximation (Equation 127) (τ=30, µ=1, µ0=0.707, aeff=6 µm) 
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Figure 20: Reflection function of water clouds from DISORT and Kokhanvosky’s cloud 
approximation (Equation 127) 

 

3.3.4.5 Approximation Applicability Diagram 

Figure 21 is a conventional applicability diagram for a particular medium with an asymmetry 

parameter of 0.9. The curve AB bounds where the SAA is valid and the curve EF bounds 

where the DA is valid. The DOA is not restricted to a specific case for this example and is 

therefore not directly represented on the chart. Such a diagram is often used to guide 

selection of an appropriate method to calculate the reflection or transmission functions for 

the participating medium. As stated previously, the supporting theory for these 

approximations is not presented in this dissertation. The method of discrete ordinates was not 

included in this applicability diagram, because the derivation is theoretically applicable over 

a wide range of parameters depending upon the number of streams and quadrature weights 

that one employs to solve for the diffuse flux or intensity. For the purposes of verification of 

the scattering contributions, we shall primarily consider a range of optical depths from thin to 

thick with a high scattering albedo (low absorption). The DIRSIG LIDAR model is designed 

to be similar to DISORT in that the module is applicable in all of the situations described in 

the applicability diagram (presuming you shoot enough photons into the scene). 
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Figure 21: Applicability domains of approximation methods (Zege, et al., 1991) 

3.3.4.6 Non-stationary Diffusion Approximation 

Thus far, we have only considered RTE for stationary sources. The sources illuminate the 

participating media for an infinite amount of time such that the light field reaches steady 

state. The assumption is not valid for pulsed sources, such as lasers. In this subsection, we 

will discuss the general process of deriving a nonstationary solution from a stationary 

solution and then eventually converge to an expression for a monodirectional-pulsed point 

source. The latter mathematical relationship will then be evaluated using the backscatter 

noise (BSN) approximation to find the received power from deep within a scattering layer 

when illuminated by a narrow laser pulse. 

 
The nonstationary RTE can be mathematically expressed as: 
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where 

! 
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ct  is a dimensionless parameter. To solve this equation, one first finds the 

impulse response of the medium 
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Once the impulse response of the medium is known, the radiance for a different source can 

be found by integrating the source function with the impulse response using the equation: 
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and the alternative source function is expressed as: 
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 may be considered to be the Green’s function of the nonstationary transfer 

equation. Another common description is the propagating pulse spread function or the photon 

time-of-arrival fluctuations or the photon path distribution function. All of these descriptions 

refer to the physical reality of the fluctuations of the photon time-of-arrival at a particular 

point in space. If one can find 
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n ,u( ) for a weakly or non-absorbing media, then the 

impulse response can be adjusted to account for the true absorption of the media. One such 

relationship is: 
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To find the impulse response, we need to utilize the Laplace transform in conjunction with 

the stationary solution. First, the Laplace transform of the impulse response is defined as: 

  

! 

I"
r 
# ,

r 
n , p( ) = I"

r 
# ,

r 
n ,u,( )e$pu

du
0

%

&  (171) 

 



98 

We can find the Laplace transform of the impulse response 
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where p is the Laplacian space coordinate. Then we take the Laplace transform of the 

nonstationary RTE (Equation 166) and insert 
  

! 

I"
r 
# ,

r 
n , p( ) into the resulting equation. The final 

step is to take the inverse Laplace transform to obtain a solution for the nonstationary RTE. 

Unfortunately, the solution is not generally applicable over a wide range of u. The asymptotic 

solutions where u >> 1 or <<1, however, are very useful.   

 

Take a specific example of a monodirectional-pulsed point source for a semi-infinite layer 

that is optically thick and has strong scattering characteristics.  For a diffuse point source 

located at the coordinate ( )!" #= ,0 , we found earlier that the radiation density is: 
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If we then make the substitutions in Equation 172 and take the inverse Laplace transform for 

1
0
=!  and u>>1, the radiation density becomes: 
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This is Green’s function for the boundary-value problem presented. After applying Equation 

168 to adjust for a monodirectional point source and examining the region where 

! 

u"# , the 

asymptotic solution for a semi-infinite medium illuminated by a monodirectional-pulsed 

point source located at the upper medium boundary is: 
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Although we now have an expression for the radiation density including its fluctuations with 

respect to time, we would like to be able to predict the received power at the aperture as a 

function of time. While there are a number of ways to proceed, we shall invoke the 

backscatter noise (BSN) approximation that assumes that the receiver and source axis are 

parallel. The receiver FOV is assumed to be much larger than the transmitter beam. If these 

conditions are met, then the backscattered power as a function of range r is: 
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where P0 is the source power, 

rec
!  is the receive aperture area, z is the physical depth, 

rec
!  is 

solid angle or the receiver, 
s

!  is the solid angle of the transmit beam, and 
s

!  is the cross-

section of the transmit beam. To evaluate this integral, we first have to find the irradiance 

using the radiation density solution found earlier. Stated without proof, the specific 

irradiances S1 and S2 can be found using (Zege, et al., 1991): 
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Therefore, the specific irradiances for a monodirectional-pulsed point source are: 
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If we now evaluate the BSN approximation for a pulsed source and receiver located at τ=0, 

the backscattered power is: 
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where W0 is the pulse energy and Q is similar to the geometrical form factor in the LIDAR 

equation. Note that for a collimated source and an irradiance receiver results in Q=π. 

Technically, the solution above is valid only for non-absorbing media. If we apply equation 

170 to adjust for an absorbing medium and convert back to real time units, then the received 

backscattered power is approximately: 
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A comparison of the normalized power observed from a laser pulse for this approximation, 

the multiple scatter LIDAR equation, and the single scatter LIDAR equation is shown in 

Figure 22. The scattering layer has an extinction coefficient of 0.1 m-1 and a scattering albedo 

of 0.9. The asymmetry parameter was 0.863 and the incident beam was collimated. As 

expected, the diffusion approximation significantly underestimates the received power from 

ranges near the boundary edge. The single scatter scattering and multiple scattering equations 

provide a much better estimate. The multiple scattering LIDAR equation and the diffusion 

approximation are equal at about 600 ns (τ=18). If the diffusion approximation holds 

asymptotically, then the modeled LIDAR returns should transition at about that optical depth 

for this scenario. One of the interesting questions is why the multiple scattering LIDAR 

equation underestimates the backscattered return from deep within the layers. This is likely 

due to a variety of factors, but is heavily correlated to the assumptions made for the multiple 

scattering LIDAR equation. For instance, the mean path length of multiply scattered photons 

begins to differ greatly from that of singly scattered photons as one proceeds deeper into the 

layer; therefore, the temporal distribution and the spatial distribution of the photons at large 

optical depths are affected. Additionally, the diffusion approximation makes allowances for 

photons to undergo multiple large scattering events.  Lastly, the photons were assumed to be 

normal to the plane where they backscatter for convenience in the multiple scattering LIDAR 
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equation derivation. Intuitively, we know that this is cannot be true deep within a highly-

scattering medium. The distribution of incident angles may be wider which could result in a 

higher backscatter.  Regardless, the diffusion approximation offers a reasonable benchmark 

for model verification of multiple scattering deep within a layer.  

 
Figure 22: Predicted backscattered return from a laser pulse for (1) BSN diffusion 

approximation, (2) Multiple scatter LIDAR equation, and (3) Single scatter LIDAR equation 

 

3.4  Photon mapping 

Photon mapping is fundamentally based upon bidirectional Monte Carlo ray tracing and uses 

what are referred to as photon maps to increase the computational efficiency over traditional 

approaches. Jensen (1996), who is the recognized father of photon mapping, synthesized a 

suite of stochastic ray tracing methods together with a method for using records of what 

occurred during the ray traces to estimate the actual radiance received by the sensor. 

Although the techniques themselves were not unique, the combined approach was and is 

being utilized heavily within the computer graphics community. Initially, researchers focused 
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on the direct illumination component, which cannot adequately address multiple scattering. 

As introduced earlier in this dissertation, this approximation is valid for an optically thin 

medium; however, the approach breaks down for denser media. Brute force tracing the 

additional rays required to accommodate the multiple scattering effects is computationally 

prohibitive for complex scenes with objects such as clouds or plumes. This is where photon 

mapping may be very valuable.  

 

Photon mapping essentially runs in two phases. The first stage, called photon tracing, traces a 

series of rays through the scene and records the interactions in a surface or volume photon 

map. The second stage, called rendering, casts rays to calculate the direct illumination 

component and incorporates the information within the photon maps to calculate the in-

scattered radiance and surface caustics. Because the principles of photon tracing are rooted in 

the physics of how light propagates and interacts with matter, including gases and aerosols, 

photon mapping should be able to adequately address multiple scattering effects within a 

plume. Additionally, the use of a volume photon map and a statistical method to accurately 

estimate the radiance enables photon mapping to handle multiple scattering in a 

nonhomogenous participating medium. One is not restricted to representing the plume as a 

set of homogenous parallel-plane layers. Because the volume photon maps record the 

particular direction of scattering for each event, one is not limited to isotropic scattering 

phase functions. Instead, any scattering phase function that can be inverted or importance 

sampled can be used. The Monte-Carlo ray tracing roots of photon mapping also decouples 

the geometric limitations of a complex scene from the problem. In essence, anything that can 

be ray-traced can be simulated using photon mapping. Thus items such as clouds, fog, and 

plumes can have complex boundaries and shapes, anisotropic scatterers, and arbitrary particle 

size distributions. The one caveat is that non-stationary sources can pose significant 

challenges for traditional photon mapping methodologies. In general, photon mapping 

presumes that the source is at least somewhat wide-sense stationary about the simulation 

time. The sources are not restricted to a particular orientation, shape, or irradiance pattern; 

however, they are assumed to have been relatively constant for the time interval of interest. 

Thus a variation of photon mapping is necessary to handle the temporal nature of multiple 

scattering for a LIDAR pulse. The traditional approach to time-dependent photon mapping 
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will be discussed at the end of this section and the modeling approach adopted for this 

research effort will be discussed further in Chapter 4. For now, we examine the fundamental 

principles of traditional photon mapping and radiative transfer theory. 

 

This section reviews the governing equation for radiative transfer in a participating medium 

in the context of photon mapping, briefly reviews the basic principles of the photon mapping 

approach, discusses the traditional radiance estimation for a volume of participating media, 

and provides sample results from the computer graphics community to showcase the 

potential. The implementation details of photon mapping are not directly addressed in this 

section. For more information with regards to photon mapping, particularly for surfaces and 

“standard scenes”, one should consult Jensen’s book on photon mapping (2001). Additional 

materials are continuously being published within the computer graphics community and are 

an excellent place to review specific aspects not directly addressed here. As stated 

previously, the specific implementation and modifications necessary to model a LIDAR 

pulse in a participating medium are addressed in more detail in Chapter 4. 

3.4.1 Governing Radiative Transfer Equations for Photon Mapping 

The governing equation for radiative transfer in a participating medium was derived 

thoroughly in Section 3.3 and the general vectorized form of the RTE was mathematically 

expressed as: 
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where rr  is the observation point vector, nr  determines the direction of the beam with 

radiance L, ( )nrB
rr
,

0
 describes the internal sources of radiation, and Li is the in-scattered 

radiance from a particular direction. This equation is repeated in this section merely for 

reference. To review the underlying theory, the reader is referred to Section 3.3. The 

vectorized form of the RTE for a participating medium is the most flexible and applicable for 

the scenario under consideration. For photon mapping, let’s consider an observation vector 

along the x-axis. This is a reasonable assumption since one is primarily concerned with the 

incremental change in radiance along a cast ray. Although the equation has a spectral 
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component to it, the spectral effects shall not be directly addressed in this section. 

Unfortunately, one might need to account for the spectral effects on a case by case basis or 

based upon a parametric empirical model. For now, the light shall be assumed to be of one 

wavelength, which is reasonable for the DIAL systems under consideration. When rewritten 

under these conditions and with the extinction coefficient moved to the other side of the 

equation, the RTE becomes: 
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where the emission term ( )nxL

src

r
,  is: 
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where 

abs
!  is the absorption cross-section and Le is the radiance emitted along the path.  

 

Equation 183 is valid under the assumption of self-emission. Essentially, the change in 

radiance is due to the difference between the loss in scattered radiance and the gain by in-

scattered radiance and internal sources of radiation. Although the internal sources of 

radiation will be carried throughout this derivation, the emission term is not currently 

modeled within the DIRSIG LIDAR module using the photon mapping architecture. The 

passive and emissive terms are incorporated using traditional radiance solvers built-in to 

DIRSIG that operate in conjunction with photon mapping in the enhanced model. The 

derivation below is a more thorough treatment but is not as computationally efficient for 

simulating LIDAR returns. When combined the previous equations yield: 
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The first step in solving this differential equation is to define a function, which calculates the 

optical depth from a point along the cast ray s1 to another point along the same ray s2. The 

function is: 
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Let’s consider the solution of the differential equation along the straight path from x0 to x. If 

one multiplies both sides of Equation 184 by an exponential with the optical depth function 

defined above as the input term, then the RTE becomes: 
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where ( )nxB

r
,  is defined for convenience as: 
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The optical depth exponential term was chosen because the derivative with respect to x of the 

radiance, L, times the optical depth exponential term is: 
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Substituting Equation 188 into Equation 186 and integrating over a small, straight path from 

x0 to x results in: 
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which can be evaluated on the left-hand side and rearranged such that: 
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One should note that when the exponential attenuation term on the left-hand side is 

transferred to the right side of the equation that one uses the relationship: 
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When expanded the solution of the RTE equation becomes: 
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Equation 192 can be interpreted physically as the radiance at x along the cast ray to be 

comprised of three terms (illustrated in Figure 23). The first term is the direct illumination at 

x0 attenuated exponentially by the optical depth. The second and third terms are due to the in-

scattering and emission along the path from x0 to x reduced along the way by the optical path 

difference between each point between x0 and x.  

 
Figure 23: Illustration of key terms in radiance calculation for a participating medium 

 

Equation 192 can be simplified if the media is presumed to be homogenous or scatters 

isotropically. Thus far, the assumptions are broader than those made when considering 

homogenous, plane-parallel layers in the previous section and encompass many more cases 

of interest for interrogating plumes. Solving Equation 192 directly is not feasible under most 

conditions; however, one can iteratively calculate the radiance along a cast ray if one has a 

feasible methodology to estimate the in-scattered radiance as the ray passes through a 

participating medium. The statistical casting of rays and recording of events into a volume 

photon map enables the estimation of the multiple scattering and emission terms along a path 

within the map. Equation 192 is the underlying equation for the iterative equations presented 
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in this section for simulating light propagating through a participating medium with photon 

mapping. 

3.4.2 Photon Mapping Concept 

As indicated previously, the traditional photon mapping concept is comprised of two basic 

phases, photon tracing and rendering. The first phase, photon tracing, casts photons from the 

light sources into the scene and traces them. As they propagate through the scene, the 

photons will interact with the surfaces or volumes of participating medium and a record of 

the events are stored in the photon map(s). For surfaces, all hits upon a nonspecular surface 

are stored. The effective result is that each surface has a distribution of photons spread over 

them. Typically, one utilizes multiple photon maps to account for the caustic and indirect 

illumination effects. For participating media, events such as absorption and scattering are 

recorded in a separate photon map to be used in the rendering phase to account for the in-

scattered radiance. Based upon the physics of the physical process involved, all of the 

interactions are simulated using a Monte-Carlo technique called Russian roulette1 (Szirmay-

Kalos, 2003; Jensen, 2001). Figure 24 illustrates the Monte-Carlo ray tracing performed 

during the photon tracing phase. After completing the ray tracing, one has a set of photon 

maps that describes the events that occurred during the tracing stage such as is represented in 

Figure 25. The second phase, illustrated in Figure 26, renders the scene by calculating the 

direct illumination using traditional ray tracing approaches and the indirect and multiple 

scattering effects using the information stored in the photon maps. The key to this phase is 

the radiance estimation for the surfaces and participating volumes that will be discussed 

shortly. Combined with the photon maps, the direct illumination calculations provide an 

adequate representation of the observed scene radiance, presuming that a statistically 

significant number of photons are cast and traced in the initial phase. 

 

                                                
1 Russian roulette solves the infinite-dimensional integration that utilizes randomization and importance 
sampling. The technique is routinely used in Monte-Carlo and quasi-Monte-Carlo random walk ray tracing and 
numerical methods. A thorough discussion is available in Szirmay-Kalos (1998) and Jensen (2001). 
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Figure 24: Pass 1 - Photon tracing 

 
Figure 25: Pass 1 - Recorded photon map 
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Figure 26: Pass 2 - Rendering 

3.4.3 Photon Tracing (Phase 1) 

When considering a scene without participating medium such as gases or aerosols, photon 

interactions are primarily limited to surfaces. At the surfaces, the photons may be absorbed or 

reflected. Russian roulette is used to determine the nature of the event because it is a 

probabilistic sampling technique that allows one to reduce the computational requirements 

for photon tracing. In the case of reflection for a surface that has both a specular and diffuse 

reflectance, Russian roulette is once again employed to determine whether the photon will 

count towards the specular or diffuse cases. If specular scattering is selected, then the 

direction is determined from the geometry and the tracing continues. If diffuse scattering is 

selected, then the photon is stored within the photon map and another photon is emitted from 

the source. Alternatively, one could importance sample a BRDF model to determine the 

reflected direction and stop only when an absorption event is recorded. The latter method is 

what was selected for the LIDAR model described in Chapter 4. 

 

When a photon passes through the boundary of a participating medium such as a gaseous 

plume, the photon interacts with the particles or molecules by being scattered or absorbed. 

Naturally, this ignores the emitting of new photons and can be accommodated by creating a 
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separate internal source function that emits photons that are subsequently traced. The mean 

distance that a photon will travel in the medium before an absorption or scattering event 

occurs is inversely proportional to the extinction coefficient. The cumulative distribution of 

the probability of a photon interacting with a participating medium at position x is: 
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where x0 is the previous position of the photon. Importance sampling this distribution results 

in the following formula: 
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where 

! 

" # 0,1[ ]  is a uniformly distributed random number and d is the distance traveled by 

the photon prior to the next event. This relationship can then be used to determine the next 

location of an event within a participating medium. Special cases must be considered for thin 

media or when the photon leaves the media; however, the relationship above defines the 

general case. Given that an event occurred, Russian roulette is then leveraged to determine 

whether the photon was scattered or absorbed. The probability that a photon is scattered 

given an event occurred is proportional to the scattering albedo and can be mathematically 

expressed as: 
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In a practical implementation, one randomly picks a number from a uniform distribution 

from [0,1] and uses the rule: 
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where 

! 

" # 0,1[ ]  is a uniformly distributed random number. Whenever a photon interacts with 

the medium, it is stored in the volume photon map, which is separate from the other photon 

maps.  

 

If a photon is scattered, the new direction of the photon is determined based upon the 

scattering phase function. The Henyey-Greenstein phase function is often used to 

characterize the medium because it is easily invertible and can be generated using a simple 

uniformly distributed random number generator. The new pseudorandom generated angle for 

the scattered photon can be calculated as: 
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! 

" # 0,1[ ]  is a uniformly distributed random number. The azimuth rotation φ is then presumed 

to be uniformly distributed and is generated using a random number generator.  

 

Alternatively, many scattering phase functions cannot be directly inverted and the 

approximation using the Henyey-Greenstein function may not be desirable. In this case, one 

can importance sample the scattering phase function using the acceptance/rejection method. 

The acceptance/rejection method is based upon von Neumann’s theorem. If the probability 

distribution function of interest, f(x), can be written such that: 
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f x( ) = c g x( ) h x( )  (198) 

 
where h(x) is an arbitrary probability distribution function, c is a constant > 1, and g(x) is a 

correction function < 1, then:  

! 
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Based upon this statement, the new scattering angle for an arbitrary scattering phase function 

can be determined by the following steps: 

(1) Find a and b such that 

! 

f x( ) = 0 when 
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x " a,b( ) . 

(2) Find a constant c such that 
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1> c " b # a( ) $ f x( ). 
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(3) Sample x uniformly over the interval 

! 

a,b( ) . 

(4) Sample y uniformly over the interval 

! 
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( . 

(5) Evaluate 

! 

f x( ) . 

a. If 

! 

y " f x( ), then accept x. 

b. If 

! 

y > f x( ), then reject x and go back to step (3). 

The functions involved are illustrated in Figure 27.  

 
Figure 27: Importance sampling of f(x) with uniform distributions 

 

This method can be very inefficient and the computational time can increase exponentially. 

The efficiency of the acceptance rejection method is defined as: 
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Essentially, the efficiency is driven by the ratio of the areas of the two functions. An 

alternative is to find a different h(x) to reduce the number of excess iterations, such as one 

illustrated in Figure 28. Thus one might be able to use an invertible function such as the 

Henyey-Greenstein phase function to importance sample a more complex function without 

incurring too great of a computational burden. 
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Figure 28: Importance sampling of f(x) with distribution h(x) 

3.4.4 Rendering in Participating Medium (Phase 2) 

The second phase of photon mapping involves using ray tracing to calculate the direct 

illumination and using the photon mapping information to factor in the additional terms in 

the radiative transfer equation. The two most important aspects of this phase are the volume 

and surface radiance estimate.  

3.4.4.1 Volume Radiance Estimate 

The volume radiance estimate provides a way to account for the in-scattered radiance Li 

within a medium. For many simulations, this is the most troublesome calculation. Let’s begin 

by examining the relationship between the scattered flux and the radiance at any point within 

the participating medium, which is: 
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where !  is the flux and dV is the volume. The in-scattered radiance can then be expressed 

as: 
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where 

  

! 

f x,
r 
" n ,
r 
n ( ) is a valid probability distribution for the scattering phase function, n!r  is the 

in-scattered radiance vector, and r is the radius of the smallest sphere containing at least n 

nearest photons. This is essentially a nth nearest neighbor estimate and is illustrated in Figure 

29. The sphere is expanded until it contains at least n nearest photons so that a reasonable 

estimate of the local photon density can be obtained. Then the in-scattered radiance can be 

calculated based upon the local photon density estimate and the normalized version of the 

scattering phase function using Equation 202. Note that the exponential attenuation term was 

dropped from within the integral because the integration step is assumed to be small enough 

that the in-scattered contribution along the path from x to x+dx is negligible. Calculating the 

in-scattered contribution at each point along the path presumably accounts for the dominant 

contributors. This assumption should not introduce significant error provided that the step 

size is small enough such that the gradient of the radiance is not very great. 
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Figure 29: Photon mapping volume radiance estimate 

 
As mentioned previously, the direct portion of the radiance is calculated using an adaptive 

ray marching approach described by Jensen (2001). The radiance is iteratively computed at 

points along the ray as the ray traverses the participating medium. At each step, the emitted 

and in-scattered radiance is approximated using the equation: 
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where Li,d is the direct component due to single scattering computed by the ray marching and 

Li,i is the indirect portion of the in-scattered radiance which is computed using: 
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The indirect contribution is calculated using all of the photons in the photon map including 

those that were absorbed; therefore, the scattering albedo term is necessary to adjust the 

indirect contribution to the overall in-scattered radiance. The emission contribution is 

computed based upon the local temperature using Planck’s blackbody equation or upon a 

defined source function. The latter would be employed to simulate the effects of a fire.  
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With these approximations, the radiance at points xk along a ray in the direction nr  is 

computed iteratively as shown in Figure 30 using: 
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where 

1!!="
kkk
xxx  is the step size, and x0 is the nearest intersection point of the ray with 

a surface or backside of the volume. The adaptive portion of the ray marching algorithm 

randomly selects a step size and then divides the step size in half or by some predetermined 

amount if the radiance along the ray significantly differs over adjacent points. In addition, a 

random jittering technique is used to set the final step size. These features reduce the jittering 

and aliasing effects associated with a fixed step size when marching through rays. 

 

 
Figure 30: Adaptive ray tracing calculation of radiance at points xk 
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3.4.4.2 Surface Radiance Estimate 

Similar to the volume estimate, the surface estimate (illustrated in Figure 31) attempts to 

infer the radiance at any point on a surface based upon the photon density in the photon map 

near that point. The primary difference is that the photons only exist on the surface areas 

instead of a volume. The rendering algorithm finds the smallest distance on the surface that 

contains n photons and uses the area to estimate the reflected radiance as: 
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where fr is the bidirectional reflectance distribution function and r is the distance to the nth 

nearest photon. The approach is commonly visualized as expanding a sphere centered at x 

until it contains n photons and then calculating the projected area that the sphere 

encompasses on the surface as shown in Figure 31. Because the primary focus is on using 

photon mapping with the participating medium, the details for handling surfaces is not 

completely covered here. For additional details on traditional photon mapping, one should 

consult the details in Jensen (2001). Chapter 4 will discuss the modifications that were made 

to the surface radiance estimate to enhance DIRSIG’s LIDAR module. 

 

 
Figure 31: Photon mapping surface radiance estimate 

3.4.5 Sample Results 

The computer graphics community has consistently demonstrated that photon mapping 

generates more visually appealing results than traditional ray tracing approaches when 
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rendering scenes with participating medium. This subsection contains a handful of relevant 

sample images that demonstrate the viability of the photon mapping approach for these 

situations. For more examples, one could review the computer graphics publications on 

rendering smoke and clouds listed at the end of the proposal. 

 

The first set of images shown in Figure 33 is of a simple cloud. The cloud was generated 

using a distribution function to generate 10 blobs and turbulent noise. The medium is 

nonhomogenous and the scattering phase function is very anisotropic. The top image is a 

simulation using the single scattering approximation only. The bottom image was generated 

using photon mapping to account for the multiple scattering effects within the cloud. The 

bottom image was rendered using only ~10,000 photons and could be improved by casting 

more photons; however, the image is obviously brighter and more realistic. The increase in 

radiance towards the center of the cloud is largely due to the multiple scattering effects. 

 

Figure 33 is a more complex scene with clouds above a mountain landscape. The image is 

actually a snapshot from a movie sequence that Jensen created of the clouds forming and 

moving over a representation of Little Matterhorn. A large number of photons were cast for 

this rendering and demonstrate the possibility of using photon mapping to account for the 

multiple scattering effects due to clouds. The radiometric accuracy of the simulation is not 

known, but the scene is certainly visually appealing. 
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Figure 32: Photon mapping simulation of a non-homogeneous cloud 

(Jensen and Christensen, 1998) 
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Figure 33: “Little Fluffy Clouds” over mountain landscape 

(Jensen 2001) 

Another impressive image is of sunlight scattering through a stained glass window into a 

dusty room (shown in Figure 34). According to Jensen and Christensen (1998), the scattering 

phase function used was Schlick’s approximation of a murky Mie scattering phase function. 

The purpose was to demonstrate the scattering of light off of dust particles. This is applicable 

to plumes that contain soot and other dust particles, particularly when the concentration 

levels are fairly low and the plume is optically thin. The stained glass added a spectral 

component to the demonstration and the streaming light source is different than previous 

sources that simulated a more diffuse source. 
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Figure 34: Dusty room illuminated by sunlight through a stained glass window 

(Jensen and Christensen, 1998) 

 
The final set of images are of smoke plumes rising in a small scene (Figure 35). The primary 

purpose of the images was to demonstrate that the fluid dynamics modeling Fedkiw, Stam, 

and Jensen employed in conjunction with photon mapping could render a realistic smoke 

plume. The smoke plume appears natural because it has a proper amount of swirling and also 

because the solver correctly handles how the smoke would interact with the boundary surface 

of objects immersed in the smoke. The theory indicates that photon mapping should be able 

to handle the multiple scattering and absorption in a participating environment and the 

examples shown in this subsection are additional evidence towards that conclusion. 

However, the crucial temporal issues and the casting of a sufficient number of photons in 

order to generate reasonable estimates of the in-scattered radiance contribution are still 

challenging. 
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Figure 35: Photon mapping rendering of smoke 

(Fedkiw, Stam, and Jensen, 2001) 

3.4.6 Time-dependent Photon Mapping 

In 2001, Cammarano and Jensen introduced an approach to account for the time-dependence 

of motion within the scene. The primary interest was in simulating motion blur due to 

moving objects within the scene. They decided to augment traditional photon mapping using 

super-temporal-sampling techniques. Cammarano and Jensen rejected analytical, geometric 

distortion, and post-processing methods because they were too restrictive and did not offer 

the robustness and flexibility for generating complex scenes. The critical modifications to 

traditional photon mapping were (1) adding time to the photon event map records, (2) casting 

a set number of photons at each time sampling interval, and (3) modify the photon radiance 

estimate to generate a temporal estimate leveraging the recorded event times. The first 

modification is fairly straightforward and is one which we will adopt for our modeling efforts 

described in Chapter 4. During the Monte Carlo tracing phase, photon bundles are cast into 

the scene and events are recorded into a photon map. When an event occurs, one simply adds 

the time of the event to the photon map record. To generate a representative temporal and 

spatial sampling of the photons within a scene, Cammarano and Jensen shot a set of photon 

bundles from the source at a specific rate. This is the second modification. The intent was to 

cast the same number of bundles into the scene for a variety of different times so that the 

temporal aspect of the light distribution was accounted for. This modification is essentially 

similar to generating a set of temporal spaced photon maps and then combining them into 
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one large photon map structure. Because one is tracking time, the sorting of the photon map 

was converted to a searchable 4-D data structure. Finally, the radiance estimate is now a 

function of time. The third major modification involves deriving a new radiance estimate 

based upon the information within the 4-D photon map. The temporal radiance through a 

specific pixel p can be expressed as: 
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" # x ,
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where Lp is the radiance through pixel p, ts is the total frame time, AD is the area of the pixel, 

( )xg !  is the filter function, ( )txs ,,!
r

"  is the shutter function for each pixel, and  
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L " x ,
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the radiance through location x!  on the image plane in the direction of the observer at time t. 

The challenge is to find an expression to describe ( )txL ,,!
r

" , the radiance at a specific 

location and time. If we consider the first surface intersection, then the observed radiance 

leaving the surface as a function of time is: 
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where Le is the emitted radiance, 

r
f  is the surface BRDF, Li is the incident radiance in the 

direction !"r  at time t. Using a similar approach to Section 3.4.4, we can approximate the 

reflected radiance from a surface based upon the local photon density as: 
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where Lr is the reflected radiance, r is the smallest radius of a sphere which contains np 

photons within a nearest time frame t! , and Qp is the value of the nearest np photon bundles. 

Note that the search criteria has been altered to encompass time as well. The photon bundles 

within a specific time interval are then gathered and the local temporal density is calculated. 

This is done for all of the sampling intervals of interest. The propagation of the radiance 

estimate back to the sensor is then completed in the traditional manner.  
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Although we will also add the time information to the photon event map, the super-sampling 

approach selected by Cammarano and Jensen is too computationally expensive for an 

arbitrary time-gated LIDAR simulation. The pulse durations are very short and the sampling 

required is orders of magnitude greater than what Cammarano and Jensen were considering 

at the time. We would need to shoot a very large number of photons to get a decent temporal 

and spatial distribution of photon bundles. Otherwise the estimate would not be accurate. 

Instead, we shall adopt a blend of an analytical technique and this approach. Implementation 

details are discussed further in Chapter 4. In general terms, we will (1) trace the photon 

bundles through the scene, (2) record the event information including time into the photon 

map, (3) parametrically spread each bundle temporally based upon the pulse shape and 

duration, and (4) accumulate each photon bundle at the sensor. One should note that this 

introduces some complexity and computational burden during the rendering phase, but the 

benefits far outweigh shooting enough photons within the scene to get an adequate temporal 

and spatial photon density. 

3.5   Particles and Polydiverse Media 

The focus of this section is to examine the characteristics of the participating medium that 

drive the characterization of light in a scattering and absorbing medium. The particles in the 

scattering medium are generally described by six characteristics: concentration, shape, 

orientation, size, structure, and chemical composition. The complexity of describing a 

gaseous elementary volume is exacerbated by the fact that particles of different sizes, shapes, 

structures, and chemical compositions can simultaneously exist. While the scattering theory 

can handle many different variations on these parameters for a single particle, the real world 

is dominated by a mixture of these individual particles. Given this fact, the local optical 

statistics of an elementary volume are often described by a statistical averaging over various 

representative particles. The final portion of this section will address how to calculate the 

localized statistical properties of the particles for a given particle size distribution. 

 

For simplicity, one can assume that the particles are uniform, isotropic spheres. This 

assumption is often employed as a 1st-order approximation for selected atmospheric aerosols, 

water droplets, and ice crystals. Particles of different shapes can generally be approximated 
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as a summation of smaller spherical particles. Figure 1 shows pictures of irregular shaped 

particles including fly ash. For the purposes of this research, the assumption is that the 

particles are uniform, isotropic spheres.  

 

 
 (a) quartz (b) activated charcoal (c) fly ash 

Figure 36: Photographs of typical irregular terrestrial particles (Kokhansky, 2001) 

Media comprised of uniform, isotropic spheres are then defined by complex index of 

refraction, !inm += , which is determined by the chemical composition and by the number 

concentration of particles, N.  The volumetric concentration of particles, Cv, is defined as: 

! 

C
v

= N V  (210) 

 
where V  is the average volume of particles in a unit volume of a medium. For spherical 

particles, the average volume of particles in a unit volume of medium is: 
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where a is the radius of a particles and f(a) is the normalized particle size distribution (PSD). 

As with any probability distribution, the PSD is normalized such that: 
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The mean particle size is defined as: 
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However, the mean particle size is not typically used to represent the media if the properties 

are known only for a few radii. Instead one uses the effective radius which is expressed as: 

! 
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#

a
2
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"

#
 (214) 

 
All of these characteristics depend upon the PSD for the particulate of interest. The most 

common PSD functions used for atmospheric research are the Junge, Gamma, and Log-

normal distributions. The Junge PSD was introduced in 1963 in connection with atmospheric 

aerosols and is commonly used today because of its simplicity. The Junge distribution can 

mathematically be expressed as: 
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where a is the radius of a particles, k is a constant, the interval from a1 to a2 defines the 

interval over which the PSD is valid, and υ depends upon the type of aerosol. Typically, the 

input parameters must be found using empirical data and curve fitting the results. 

 

Another common PSD is the gamma distribution. Figure 37 shows a gamma distribution with 

the input parameters µ=6 and a0=4 µm. The gamma distribution can be defined as: 
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where µ+1 is the shape parameter, a0/µ is the location parameter, and 

! 

"( ) is the standard 

gamma function which is defined as: 
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Some typical parameters for common dispersive media are recorded in Table 2.  
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As indicated in Table 2, the log-normal distribution is also used to describe disperse media. 

The table shows some standard parameters for different particles when using the log-normal 

distribution which can be defined as: 
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where σ is the shape parameter and am is the scale parameter. Figure 37 is a plot of a log-

normal distribution such that the coefficient of variance is the 0.38, which is the same as the 

gamma distribution on the same plot. 

 
 

Table 2: Particle size distributions of selected disperse media  
(Kokhanovsky, 2001) 

Disperse Medium PSD aeff (µm) Δ  

Cloud C1 Gamma (µ=6, a0=4µm) 6 0.38 

Stratospheric aerosol Gamma (µ=2, a0=0.1µm) 0.25 0.58 

Water soluble aerosol Log-normal (σ=1.09527, am=0.05µm) 0.1 1.52 

Dust aerosol Log-normal (σ=1.09527, am=0.5µm) 10.0 1.52 

Soot aerosol Log-normal (σ=0.69317, am=0.0118µm) 0.04 0.79 

Oceanic aerosol Log-normal (σ=0.92028, am=0.3µm) 2.5 1.15 
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Figure 37: Gamma and Log-normal particle PSDs 

(aeff=6 µm and coefficient of variance Δ=0.38) 

 
If one knows the PSD for a medium and the individual properties for each particle size, then 

the localized statistical average of the optical characteristics for the particles can be 

calculated. For instance, the extinction and scattering coefficient is calculated using the 

following equations: 
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where 

sca
C  is the average scattering cross-section and 

ext
C  is the average extinction cross-

section which is the sum of the average scattering and absorption cross-sections.   

 

Similarly, the scattering phase function for a medium with different particles sizes can be 

calculated using: 
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where i1 and i2 are the scattered irradiance per unit incident irradiance for the perpendicular 

and parallel components respectively and !" /2=k . The key is that one must be able to use 

particle scattering theory to predict the properties for each particle size within the 

distribution. Additionally, one needs to know or estimate the particle size distribution within 

the localized medium. 

3.6  Scattering Theory for Spheres of Arbitrary Size (Mie Theory) 

This section introduces the fundamental components of Mie scattering theory and then 

discusses a robust implementation algorithm. The primary interest is driven by the 

requirement to calculate the necessary optical properties of a particular gaseous effluent or 

aerosol based upon its complex index of refraction and particle size distribution. While one 

could examine Rayleigh-Gans approximations for small particles or scalar diffraction theory 

for large particles with respect to the wavelength of light, Mie theory stems from a rigorous 

derivation of scattering for spheres of an arbitrary size and encompasses the accepted 

approximations. The challenge with Mie theory is in implementing a calculation algorithm 

that is stable over the very small and very large regimes. Historically, stable Mie calculations 

also tend to be computationally intense. Hence the research community routinely leverages 

Rayleigh-Gans theory for small particles where the absolute value of the index of refraction, 

m, times the particles size parameter x is much less than 1 ( 1<<mx ). For many of the 

wavelengths of interest in this research, the nominal particle size of a factory stack consituent 

leads to particle size parameters which are not small enough to invoke the Rayleigh-Gans 

scattering theory. The particle size parameter is inversely proportional to the wavelength and 

is defined as: 

! 

x =
2"a

#
 (222) 

where a is the particle’s effective diameter and λ is the wavelength of light. Specifically, 

water vapor and soot are also typically in the middle regime between “small” and “large” 

particles. Thus, Mie scattering theory was selected for the generation of the required optical 

properties of the gaseous medium.  
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A thorough treatment of Mie theory is beyond the scope of this effort. For a more formal 

treatment, the reader is encouraged to review van de Hulst (1957) or Bohren and Huffman 

(1983). Both contain detailed derivations and explore scattering theory for various particles 

sizes and shapes. The general nomenclature introduced by van de Hulst will be adopted 

throughout this section with some adaptation when addressing practical Mie scattering 

calculation algorithms. After introducing Mie scattering theory and a robust algorithm, the 

section will finish by examining some of the preliminary results obtained and some practical 

considerations. 

3.6.1 Mie Formulation 

Let’s consider investigating the scattering of an incident plane wave by a homogenous 

sphere. For simplicity, the outside medium is a vacuum with m2=1 and the material of the 

sphere has an index of refraction, m. The incident radiation is linearly polarized and is 

traveling in the positive z-axis direction such that the x-axis is in the plane of electric 

vibration (as shown in Figure 38). The origin of the coordinate space is set to be at the center 

of the sphere. The problem is to find a closed form solution that describes the 

electromagnetic wave fields inside and outside the sphere.  

 

 



131 

 
Figure 38: Geometry of incident and scattered fields for spherical particle and plane wave 

 

As with most theoretical optics problem sets, the starting place is Maxwell’s equations and a 

set of appropriate boundary conditions. Maxwell’s general equations are: 

! 

" #E =
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 (223) 
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" #E =
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! 

" #B = 0 (226) 

 

where E is the electric field, B is the magnetic field, ρ is the charge density, ε is the electric 

permittivity, µ is the magnetic permeability, and j is the electric charge. Applying the 

appropriate boundary conditions, one can then work through the mathematics and find a 

solution set for inside and outside of the sphere. The result is an expression for an outgoing 

spherical wave with amplitude that is dependent upon the direction.  
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Although shown here without proof, the amplitude functions for the perpendicular and 

parallel components can be mathemaically written as: 
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where an and bn are known as the Mie coefficients and πn and τn are associated Legrendre 

polynomials.  The special functions, πn and τn, for the Mie scattering formulation are defined 

as: 
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where Pn(cosθ) is a Legendre polynomial. Figure 39 is a polar plot of the first six realizations 

of πn that would be used to calculate S1 or S2. A similar set of graphs for τn is shown in 

Figure 40. Both special functions are introduced into the Mie scattering theory derivation as 

general solutions of the scalar wave equation associated with Maxwell’s equations. 
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Figure 39: Polar plots of first six angle-dependent functions for πn 

 
 
 



134 

 
Figure 40: Polar plots of first six angle-dependent functions for τn 
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The Mie coefficients, an and bn, are parts of the solution to the applied boundary conditions 

and constraints. In particular, they are introduced as a result of requiring the waves inside or 

outside of the sphere at the sphere boundary (r=a) to be equal. The notation was then 

simplified by introducing this new set of functions which differ from spherical Bessel 

functions by a factor of the argument. The Mie coefficients may be expressed as: 
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where the special functions 

n
!  and 

n
!  are a subset of the Riccatti-Bessel functions which 

are defined as: 
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where Jn+1/2 is a spherical Bessel function of the first kind, Yn+1/2 is a spherical Bessel 

function of the second kind, and )2(

2/1+nH  is also a spherical Bessel function. This notation was 

first introduced by Debye in 1909 and is the predominant notation.  For calculation, one often 

introduces the relationship between the Riccati-Bessel functions which is: 
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The critical spherical Bessel functions of the first and second kind are shown in Figure 41 for 

the first few values of n. The derivatives of these functions are denoted by the primes in 

Equations 231 and 232. 

 

 
Figure 41: Spherical Bessel functions of the first (Jn) and second (Yn) kind for 

! 

n = 0,1,2,3{ }  

 

The actual calculation of the coefficients and polynomials will be addressed shortly in 

Section 3.6.2; however, for now consider the optical properties of interest that can be gleaned 

from the amplitude functions. The scattered irradiance per unit incident irradiance for the 

perpendicular and parallel components is respectively: 

! 

i
1

= S
1
"( )

2

  and  i
2

= S
2
"( )

2

 (237) 

 
While these expressions do not provide the scattered irradiance by the particles because they 

do not depend upon the incident irradiance I0, they are routinely used to calculate the optical 

properties of the scattering particle. The actual scattered irradiance is: 
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where r is the distance from the particle and !" /2=k . Although the incident wave was 

linearly polarized, the scattered light may or may not be depending upon the particle. The 

degree of polarization of the scattered light is expressed as: 
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While the scattered irradiance can be important, the most critical parameters for modeling the 

multiple scattering and absorption effects are the extinction efficiency, the scattering 

efficiency, the absorption efficiency, and the scattering phase function. The efficiency factor 

for extinction (Qext) may be determined based upon the value of the amplitude functions at 

θ=0. Both S1(0) and S2(0) are equal for a homogenous spherical particle and may be 

mathematically written as: 
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Therefore, the efficiency factor for extinction (Qext) can be calculated as: 
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where x is the particle size parameter. This indicates that Qext  is independent of the 

polarization of the incident wave. Evaluating the cross sections over the entire scattering 

pattern, Debye showed that the scattering efficiency Qsca can be written in terms of the Mie 

coefficients as: 
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Because of the conservation of energy, the absorption efficiency can then be easily found 

using the relationship: 
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Qabs =Qext "Qsca
 (243) 
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The scattering phase function, which as described previously, is the scattered irradiance in 

direction divided by the irradiance that would be scattered in that direction if the scattering 

were isotropic is one of the other optical properties of interest. The scattering phase function 

can be mathematically expressed as: 
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Combined with the extinction, absorption, and scattering efficiency parameters, the phase 

function forms the primary optical properties required to model the multiple scattering and 

absorption within a gaseous plume. 

3.6.2 Practical Mie Calculations 

Putting the Mie theory presented in the previous section into practice can be quite 

challenging. Although Mie theory has been around for a very long time (early 1900s), the 

computational history of Mie theory really only began recently, in the 1960s. Still, Mie codes 

were used only in limited cases because they were time consuming and we now know that 

they were not all that accurate. In the 1960s, the calculations were restricted to particle size 

parameters (x=2πa/λ) between 1 and 100. With the introduction of Dave’s 1968 and 1969 

papers, much larger size parameters were considered up to about 1000. The principle 

algorithms established by Dave in those papers still form the foundation of most Mie codes 

today. The bulk of the alterations to those Dave’s algorithms are centered on expanding the 

range of particle size parameters over which the algorithm is stable or reducing the iterations 

and computational cycles necessary for convergence. For most cases, the primary differences 

lie in tweaks to take advantage of memory and computational precision of today’s computers. 

In addition, the commonality of vectorized computations has permitted greater accuracy and 

operational size parameter range than previously thought possible.  
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Two of the research community work-horse Mie codes are Wiscombe’s MIEV0 code and the 

simplistic Bohren and Huffman (BHMIE) code. MIEV0 was a direct outcome of an extensive 

study published by Wiscombe in 1980. Wiscombe studied the variety of algorithms and 

variants that had emerged and developed the foundation for MIEV0. BHMIE was developed 

by Bohren and Huffman (1998) to augment their text on absorption and scattering of light.  

The primary algorithm discussed in this section is another variant that was first published by 

de Rooij and van der Stap (1984) and is based upon some concepts rooted in van de Hulst’s 

(1957) discussion of the Riccatti-Bessel functions. This subsection shall discuss the 

fundamental instability and overflow problems associated with Mie scattering codes and the 

traditional approaches to circumvent those issues. Then the subsection will introduce a new 

algorithm published by Du (2004) that was used as the workhorse Mie code for this research 

effort. A more detailed discussion of the accuracy of these Mie codes will follow in a 

subsequent subsection. 

 

The first step is to determine the number of iterations required for the summations in the 

amplitude equations to achieve an acceptable accuracy. The optimum decision point is highly 

dependent upon the wavelength and the complex index of refraction. Instead of establishing 

an elaborate methodology, one typically follows the community standard where: 

 

24
3/1
++= xxNstop  (245) 

 
This cutoff is not entirely analytically defensible, but is supported by empirical data and by 

the communities experience at large. 

 



140 

Calculation of the angular functions πn and τn is relatively straightforward. They both are 

stable and can be calculated using an upwards recurrence relationship as long as at least 

double precision mathematics is used. πn is calculated using the following initial conditions 

and recursive relationship: 
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Similarly, τn  is calculated using the following initial conditions and recursive relationship 

based upon the values calculated for πn : 
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In contrast, the calculation of the Riccatti-Bessel functions can be problematic. If the 

argument, mx, has a very large imaginary component, then both ( )mx
0

!  and ( )mx
0

!  will 

overflow even if one uses double precision. This limitation prevents the application to larger 

particles sizes. To alleviate this problem, the logarithmic derivative of ( )mx
n

!  is introduced. 

This logarithmic derivative is often written as: 
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and is very well behaved over a large range of mx from the Rayleigh limit to very large 

particles with an imaginary components as large as 100,000.  
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When An(mx) is substituted  into Equations 231 and 232, the Mie coefficients are then 

reduced to: 
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Although this approach does allow for consideration of larger particles sizes, the calculation 

of An(mx) is non-trivial. A variety of methods have been developed, but they all essentially 

use the upward recurrence of An(mx) where feasible and rely on the downward recurrence of 

An(mx) when necessary because it is always stable. Additionally, most Mie codes either warn 

the user or use an alternative method of calculation for An(mx) when 0!mx . Wiscombe’s 

MIEV0 code for instance actually uses a power series expansion for smaller particles. Since 

an alternative will be presented to actually calculating An(mx), the algorithms will not be 

presented here and the reader is referred to the open literature or to Bohren and Huffman 

(1997).  

 
To avoid the complicated algorithms and separate treatment for small particles, the algorithm 

published by Du (2004) establishes a ratio of the Riccatti-Bessel functions which allows one 

to avoid the calculation of An(mx). The ratio is defined as: 
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Equations  231 and 232 are then expressed as: 
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Although not required for calculating the results, the associated identity for An(mx) can be 

written in terms of the ratio rn(mx) as: 

! 

A
n
mx( ) = r

n
mx( ) "

n

mx
 (254) 

 
This concept is not revolutionary and has been theoretically discussed by a variety of 

respected experts in the field of scattering. In fact, the idea of the ratio of Riccatti-Bessel 

functions and more complicated ratios are commonly invoked to solve the problem of 

multilayered spheres (Du, 2004). The ratio, rn(mx), can be calculated using either upward or 

downward recursive means and exhibits similar stability as the underlying Riccatti-Bessel 

functions. Both sets of functions are stable when calculated with the downward recurrence 

presuming that the starting iteration is sufficiently large so that the answer converges 

correctly. Unfortunately, the downward recurrence relationships are extremely inefficient and 

at times can cost thousands of unnecessary iterations (Du, 2004). Du suggests that one can 

estimate the number of significant digits lost when using the upwards recurrence and then 

determine based upon the desired accuracy which recursive relationship to invoke.  

 

Prior to discussing Du’s “rule of thumb”, let’s examine the recursive relationships for the 

Riccatti-Bessel functions and for the associated ratio. The first Riccatti-Bessel function, 

( )mx
n

! , can be calculated using the following initialization values and upwards recursive 

relationship: 

! 

"#1 z( ) = cos z( )

"
0
z( ) = sin z( )

"
1
z( ) =

sin z( )
z

# cos z( )

"
n+1 z( ) = 2n +1( )"n

z( ) /z #"n#1 z( )

 (255) 
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Similarly, the imaginary component of ( )mx
n

!  can be calculated using the upwards 

recurrence relationship: 

! 

"
0
z( ) = cos z( )

"
1
z( ) =

cos z( )
z

+ sin z( )

"
n+1 z( ) = 2n +1( )"n

z( ) /z # "n#1 z( )

 (256) 

 
where z=mx for the Mie coefficient calculations. Alternatively, the Riccati-Bessel functions 

can be calculated using the downward recurrence: 

! 

"
N*
z( ) = 0.0 + 0.0i

"
N*#1 z( ) =1.0 + 0.0i
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where N* is large enough to make the downward recurrence converge at the cutoff 

order Nstop. Du suggests that one method of determining N* is to start with: 

! 

N* = MAX 4mx
1

3  ,  5
" 
# 
$ 

% 
& 
' 

 (259) 

 
and to leverage his “rule of thumb” for calculating the number of lost significant digits to 

incrementally increase N* to find the minimum necessary to meet the convergence criteria.  

is also appropriate and produces consistent results.  

 

Additionally, the defined ratio, rn(mx), can be calculated using a Taylor series, an upwards 

recurrence, or a downwards recurrence. The general properties and behavior of rn(mx) follow 

the properties of ψn(mx); therefore, when one should utilize the downwards recurrence is at 

the same decision point.  
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The upwards recurrence of rn(mx) can be calculated using: 

! 

r
0
z( ) = cot z( )

r
n+1 z( ) =

2n +1

z
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n
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$ % 
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' ( 

"1 (260) 

 
One of the caveats is that many default implementations of cot(z) may not suitable when mx 

has a large imaginary component. Instead one can implement a more direct calculation of the 

cot(z) using the formula: 

! 

cot z( ) =
i + tan Re z{ }[ ] " exp "2Im z{ }tan Re z{ }[ ] + iexp "2Im z{ }[ ][ ]
"1+ i tan Re z{ }[ ] + iexp "2Im z{ }tan Re z{ }[ ] + exp "2Im z{ }[ ][ ]

 (261) 

 
and the complex division in the above equation can be calculated using double precision 

operators and the equation: 
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The downward recurrence of rn(mx) can be expressed mathematically as: 

! 
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where N* is sufficiently large to converge at Nstop and is set to obtain the desired precision. 

 

How does one decide when to use the upward or downward recurrence and where to set N*? 

Du states that it is possible to estimate the number of significant digits lost when using either 

technique. He observes that the complex function ψn(mx) is monotonically decreasing and 

that whenever it becomes one order smaller then the most significant digit is lost. This 

implies that if the modulus or absolute value of ψn(mx) decreases by l orders compared with 

ψ0(mx) then ψn(mx) will have l less significant digits. The Kapteyn inequality (Du 2004) 

provides the upper bound for the modulus of the complex function Jn(z) and is in the limit 

approximately on the same order as ψn(mx).  
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The inequality states that: 
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In addition, the moduli for the upward recurrence starting values are approximately: 
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Combined with the Kapteyn inequality stated in Equation 264, the approximate number of 

lost significant digits, ln(mx), can be found using the following “rule of thumb”: 
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One calculates the anticipated number of lost significant digits using the upwards recurrence 

relationships and if the number is greater than desired thenn the downwards recurrence 

methods are invoked. For instance, the value of ( )il 100100
75

+  is approximately 5.93. The 

calculation indicates that 6 most significant digits were lost after recurring from N=0 to 

N=75. When using single precision, one only has about 2 most significant digits left which 

can lead to erroneous results; therefore, the downward recurrence would be advisable. In 

order to calculate the downward recurrence, one must first find an appropriate value for N*. 

Using Equation 259 as a starting point, one can incrementally increase N* and determine the 

actual number of significant digits. Stated here without proof, this is done by calculating:  

! 

l
N*
mx( ) " lN*"1 mx( ) (267) 

 
which is approximately the number of significant digits for a downward recurrence of the 

Riccatti-Bessel functions and associated ratio (Du, 2004).  Thus if the number of significant 

digits is too small, then N* is incremented again. This process is repeated until the desired 

number of significant digits is achieved. The starting point designated in equation 259 was 
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chosen to reduce the number of incremental updates required to get to reasonable N* while 

not overshooting. 

3.6.3 Performance and Accuracy 

Once the component functions have been found, then the Mie coefficients (an and bn), the 

amplitude functions, the scattering phase functions, and the efficiency factors can be 

calculated. The advantages of Du’s algorithm are that it is simple, accurate, and robust for a 

variety of situations. The algorithm was tested thoroughly by Du over a wide range of 

refractive indices and particle sizes. For this research effort, I coded an IDL implementation 

of Du’s algorithm (denoted MIEDU) and ran a battery of stressing test cases to verify the 

accuracy of the Mie code performance. Appendix A contains a detailed description of the 

sources of errors in Mie codes, potential pitfalls, some of the differences between the Mie 

codes mentioned thus far, and the resulting accuracy of the codes. The benchmark code 

written by Wiscombe (MIEV0) is an industry standard and uses a variety of different 

algorithms to calculate the necessary parameters depending upon the particle size and 

distribution. An IDL implementation of Bohren and Huffman’s Mie code (BHMIE) was also 

included in the comparison. A summary of the overall operational restrictions and accuracies 

for the various Mie codes presented (MIEV0, BHMIE, and MIEDU) are shown in Table 3 

below:  

Table 3: Operational restrictions for MIEV0, BHMIE, and MIEDU 
Size Parameter (um) Accuracy

MIEV0 0.02 < x < 20,000 1 < Re{m} < 9 0 < Imag{m} < 10 >6

IDL BHMIE 1 < x < 1,000 1 < Re{m} < 2.5 0 < Imag{m} < 2 5 to 6

IDL MIEDU 0.02 < x < 20,000 1 < Re{m} < 9 0 < Imag{m} < 10 dialable up to 14

Indices of Refraction

 
 
Smaller particles can pose significant challenges for some Mie codes; however, all three of 

these codes operate admirably within this range. As a demonstration of the performance for 

smaller particles where the Rayleigh approximation is valid, the amplitude functions for a 

very small particle with an index of refraction of 1.77 and a particle size parameter of ~0.05 

were calculated. The normalized results are shown in Figure 42. The behavior for the 

unpolarized, perpendicular, and parallel amplitude functions are consistent with scattering 

behavior in the Rayleigh scattering regime. Table 4, Table 5, and Table 6 show a comparison 

of the results from the three different Mie codes (BHMIE, MIEV0, and MIEDU). Note that 
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any disagreements, however small, are highlighted in red. Du’s algorithm performed as 

advertised and is in good agreement for these stressing cases with the industry standard, 

MIEV0. BHMIE did not achieve the same accuracy over the entire range of input parameters, 

but performed admirably within its published input parameter range.  

 

Overall, all of the Mie codes evaluated have demonstrated a very high degree of accuracy for 

the calculating the scattering and absorption properties of a spherical particle over a very 

wide range of input parameters. The precision and accuracy for Du’s algorithm is also truly 

deterministic and could be increased if necessary or reduced for improved computational 

efficiency. Any of the Mie codes explored in this subsection are more than adequate for 

generating optical properties of plume constituents such as water vapor or soot. 

 

 
Figure 42: Normalized Rayleigh scattering amplitude functions 
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Table 4: Comparison of MIEDU and MIEV0 results 

Re{m} Imag{m} x Qext Qsca Qabs gsca Qext Qsca Qabs gsca

0.75 0.099 7.41786E-06 7.41786E-06 0.00000E+00 0.001448 7.41786E-06 7.41786E-06 0.00000E+00 0.001448

0.75 0.101 8.03354E-06 8.03354E-06 0.00000E+00 0.001507 8.03354E-06 8.03354E-06 0.00000E+00 0.001507

0.75 10 2.23226E+00 2.23226E+00 0.00000E+00 0.896473 2.23227E+00 2.23227E+00 0.00000E+00 0.896473

0.75 1000 1.99791E+00 1.99791E+00 0.00000E+00 0.845093 1.99791E+00 1.99791E+00 0.00000E+00 0.844944

1.33 -1.0E-05 1 9.39520E-02 9.39233E-02 2.86810E-05 0.184517 9.39520E-02 9.39230E-02 2.90000E-05 0.184517

1.33 -1.0E-05 100 2.10132E+00 2.09659E+00 4.72690E-03 0.868961 2.10132E+00 2.09659E+00 4.72700E-03 0.868959

1.33 -1.0E-05 10000 2.00409E+00 1.72386E+00 2.80232E-01 0.907784 2.00409E+00 1.72386E+00 2.80232E-01 0.907840

1.50 -1.0E+00 0.055 1.01491E-01 1.13169E-05 1.01480E-01 0.000491 1.01491E-01 1.10000E-05 1.01480E-01 0.000491

1.50 -1.0E+00 0.056 1.03347E-01 1.21631E-05 1.03335E-01 0.000509 1.03347E-01 1.20000E-05 1.03335E-01 0.000509

1.50 -1.0E+00 1 2.33632E+00 6.63454E-01 1.67287E+00 0.192136 2.33632E+00 6.63454E-01 1.67287E+00 0.192136

1.50 -1.0E+00 100 2.09750E+00 1.28370E+00 8.13805E-01 0.850252 2.09750E+00 1.28370E+00 8.13805E-01 0.850252

1.50 -1.0E+00 10000 2.00437E+00 1.23657E+00 7.67793E-01 0.846272 2.00437E+00 1.23657E+00 7.67793E-01 0.846310

10.00 -1.0E+01 1 2.53299E+00 2.04941E+00 4.83588E-01 -0.110664 2.53299E+00 2.04941E+00 4.83588E-01 -0.110664

10.00 -1.0E+01 100 2.07112E+00 1.83679E+00 2.34339E-01 0.556215 2.07112E+00 1.83679E+00 2.34339E-01 0.556215

10.00 -1.0E+01 10000 2.00591E+00 1.79539E+00 2.10521E-01 0.548191 2.00591E+00 1.79539E+00 2.10521E-01 0.548194

IDL version of Du's Algorithm Wiscombe's MIEV0 (FORTRAN)

 
 

Table 5: Comparison of MIEDU and BHMIE results 

Re{m} Imag{m} x Qext Qsca Qabs gsca Qext Qsca Qabs gsca

0.75 0.099 7.41786E-06 7.41786E-06 0.00000E+00 0.001448 7.41786E-06 7.41786E-06 0.00000E+00 0.001448

0.75 0.101 8.03354E-06 8.03354E-06 0.00000E+00 0.001507 8.03354E-06 8.03354E-06 0.00000E+00 0.001507

0.75 10 2.23227E+00 2.23227E+00 0.00000E+00 0.896473 2.23226E+00 2.23226E+00 0.00000E+00 0.896473

0.75 1000 1.99791E+00 1.99791E+00 0.00000E+00 0.844944 1.99791E+00 1.99791E+00 0.00000E+00 0.844944

1.33 -1.0E-05 1 9.39520E-02 9.39230E-02 2.90000E-05 0.184517 2.02490E+00 2.02490E+00 0.00000E+00 0.184517

1.33 -1.0E-05 100 2.10132E+00 2.09659E+00 4.72700E-03 0.868959 2.15784E+00 2.15335E+00 4.49140E-03 0.859799

1.33 -1.0E-05 10000 2.00409E+00 1.72386E+00 2.80232E-01 0.907840 2.00436E+00 1.93166E+00 7.26961E-02 0.887362

1.50 -1.0E+00 0.055 1.01491E-01 1.10000E-05 1.01480E-01 0.000491 1.01491E-01 1.13169E-05 1.01480E-01 0.000491

1.50 -1.0E+00 0.056 1.03347E-01 1.20000E-05 1.03335E-01 0.000509 1.03347E-01 1.21631E-05 1.03335E-01 0.000509

1.50 -1.0E+00 1 2.33632E+00 6.63454E-01 1.67287E+00 0.192136 2.33632E+00 6.63454E-01 1.67287E+00 0.192136

1.50 -1.0E+00 100 2.09750E+00 1.28370E+00 8.13805E-01 0.850252 2.09750E+00 1.28370E+00 8.13805E-01 0.850252

1.50 -1.0E+00 10000 2.00437E+00 1.23657E+00 7.67793E-01 0.846310 2.00437E+00 1.23657E+00 7.67793E-01 0.846310

10.00 -1.0E+01 1 2.53299E+00 2.04941E+00 4.83588E-01 -0.110664 2.53299E+00 2.04941E+00 4.83588E-01 -0.110664

10.00 -1.0E+01 100 2.07112E+00 1.83679E+00 2.34339E-01 0.556215 2.07116E+00 1.83683E+00 2.34327E-01 0.556209

10.00 -1.0E+01 10000 2.00591E+00 1.79539E+00 2.10521E-01 0.548194 2.00591E+00 1.79539E+00 2.10521E-01 0.548194

IDL version of Bohren/Huffman AlgorithmWiscombe's MIEV0 (FORTRAN)

 
 

Table 6: Comparison of MIEV0 and BHMIE results 

Re{m} Imag{m} x Qext Qsca Qabs gsca Qext Qsca Qabs gsca

0.75 0.099 7.41786E-06 7.41786E-06 0.00000E+00 0.001448 7.41786E-06 7.41786E-06 0.00000E+00 0.001448

0.75 0.101 8.03354E-06 8.03354E-06 0.00000E+00 0.001507 8.03354E-06 8.03354E-06 0.00000E+00 0.001507

0.75 10 2.23226E+00 2.23226E+00 0.00000E+00 0.896473 2.23226E+00 2.23226E+00 0.00000E+00 0.896473

0.75 1000 1.99791E+00 1.99791E+00 0.00000E+00 0.845093 1.99791E+00 1.99791E+00 0.00000E+00 0.844944

1.33 -1.0E-05 1 9.39520E-02 9.39233E-02 2.86810E-05 0.184517 2.02490E+00 2.02490E+00 0.00000E+00 0.184517

1.33 -1.0E-05 100 2.10132E+00 2.09659E+00 4.72690E-03 0.868961 2.15784E+00 2.15335E+00 4.49140E-03 0.859799

1.33 -1.0E-05 10000 2.00409E+00 1.72386E+00 2.80232E-01 0.907784 2.02447E+00 2.01513E+00 9.33560E-03 0.883624

1.50 -1.0E+00 0.055 1.01491E-01 1.13169E-05 1.01480E-01 0.000491 1.01491E-01 1.13169E-05 1.01480E-01 0.000491

1.50 -1.0E+00 0.056 1.03347E-01 1.21631E-05 1.03335E-01 0.000509 1.03347E-01 1.21631E-05 1.03335E-01 0.000509

1.50 -1.0E+00 1 2.33632E+00 6.63454E-01 1.67287E+00 0.192136 2.33632E+00 6.63454E-01 1.67287E+00 0.192136

1.50 -1.0E+00 100 2.09750E+00 1.28370E+00 8.13805E-01 0.850252 2.09750E+00 1.28370E+00 8.13805E-01 0.850252

1.50 -1.0E+00 10000 2.00437E+00 1.23657E+00 7.67793E-01 0.846272 2.00437E+00 1.23657E+00 7.67793E-01 0.846310

10.00 -1.0E+01 1 2.53299E+00 2.04941E+00 4.83588E-01 -0.110664 2.53299E+00 2.04941E+00 4.83588E-01 -0.110664

10.00 -1.0E+01 100 2.07112E+00 1.83679E+00 2.34339E-01 0.556215 2.07116E+00 1.83683E+00 2.34327E-01 0.556209

10.00 -1.0E+01 10000 2.00591E+00 1.79539E+00 2.10521E-01 0.548191 2.00591E+00 1.79539E+00 2.10521E-01 0.548194

IDL version of Du's Algorithm IDL version of Bohren/Huffman Algorithm

 
 
 

3.7  Plume Dynamics Modeling 

The fundamental theory associated with modeling the dynamics and dispersion of gaseous 

plumes is well established in the literature. The modeling of turbulence and turbulent 

diffusion from discrete sources has been for the last century and continues to be a vast topic 

for ongoing research. The focus of this dissertation is not on modeling the dynamics of the 

plume itself, but on the interaction of light with the plume; therefore, for the purposes of this 

disseration, only a brief summary of the key relationships for the plume models utilized will 
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be provided. The primary purpose of the plume dynamics models for this research effort was 

to produce a gas makeup, species, temperature, concentration levels, and velocity, time-

sequenced truth map to be used by DIRSIG for the LIDAR simulations. One should consult 

Blackadar (1997) or the Quick Urban & Industrial Complex Plume Model (QUIC-PLUME) 

documentation (Williams, et al., 2004) for additional theoretical development as appropriate. 

Additionally, one might consider reviewing Kuo’s (1997) and Bishop’s (2001) thesis 

regarding early plume modeling within the DIRSIG framework. 

 

Modeling the dynamic nature of a gaseous plume is a very complex task. The task involves 

considering molecular and macro-scale motion, eddies, and energy transfer. Each localized 

area within the plume is dependent upon the nature and action of the surrounding particles or 

environments. The impact of a simple motion change in a particles ripples throughout the 

plume to some degree. Additionally, one must consider the effects of drag, convection, 

diffusion, the changing pressure gradient, and buoyant forces simultaneously on a very small 

time scale. Although each of these forces is related to familiar properties such as the velocity 

vector field, the pressure, the temperature and the kinematic viscoscity of the gases involved, 

solving the problem for even the simplest realistic cases is not trivial. Much of the work in 

this area and in the general field of fluid dynamics for the last few decades has been 

dedicated to finding techniques, algorithms, and numerically based analytical tools for 

predicting the behavior of a wide range of fluid flows. The compressibility or ability to be 

deformed significantly complicates this problem for gases over fluids such as water. The best 

models utilize intricate and computationally intense computational fluid dynamic (CFD) 

techniques. Even with the increase in computing power, a full-blown CFD model can take 

days to weeks to run for even a basic scene. In response, the research community initially 

adopted simpler models, such as the JPL Gaussian plume model. Although not rigorously 

true, the Gaussian model predicts the behavior of the factory stack plumes adequately for 

many applications and is based upon a set of statistical assumptions and a simple diffusion 

transport model. The Gaussian model was incorporated into DIRSIG in the late 1990s and is 

the current standard for many research efforts. In parallel, higher fidelity models that require 

much less computer time than a typical CFD run were also pursued. While many exist today, 

the Los Alamos National Lab QUIC-PLUME is the plume model that was selected to be 



150 

incorporated into DIRSIG. QUIC-PLUME was designed to handle the complex flows and 

dispersion of airborne contaminants released in an urban environment with the constraint that 

the predictions must be obtained quickly. While ranging from fairly straightforward to 

extremely complex, the analytical and numerical plume models essentially all attempt to 

solve a single set of governing equations, the Navier-Stokes equations, with respect to the 

time interval of interest.  Unfortunately, the integration of QUIC-PLUME into DIRSIG has 

not yet been completed. As an alternative, a simple voxelized plume model based upon a 

model described in Blackadar’s book on turbulence and diffusion (1997) was incorporated 

into DIRSIG. The Blackadar plume model offers a more realistic puff model of a plume than 

the Gaussian plume model, but is certainly less accurate or robust than the QUIC-PLUME 

model. 

3.7.1 Governing Equations (Navier-Stokes Equations) 

Before getting into the various aspects of the plume models, let us first consider a fluid that is 

at rest. At the localized level, the pressure exerts itself equally in all directions and is the only 

stress on the fluid. When a fluid is in motion, then the stress due to the pressure is not the 

only component present. Based upon the second law of thermodynamics, one typically 

removes the pressure term from the field and the remainder denotes the viscous stress. 

Although the gradient of the viscous stress is small, the effect is prominent when considering 

the dissipation of a fluid. The difficulty lies in determining how to find the viscous stress 

contribution. 

 

Now consider the motion of a fluid in the neighborhood of any selected point. The localized 

motion can decompose into some fundamental invariants. For a two-dimensional (2-D) case 

shown in Figure 43, the simple shear motion can be decomposed into four components. Note 

that the last component, divergence, is not shown in the figure. Essentially the motion in the 

local neighborhood is comprised of a uniform velocity known as translation, a rotation of the 

particle, and a stretching and squeezing of the particle or fluid.  When expressed in three 

dimensions, translation causes the volume of fluid to move in a specific direction as a whole, 

the vorticity (previously referred in 2-D as rigid rotation) causes it to rotate around a local 
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axis, divergence causes the volume to expand at an equal rate in all directions, and pure 

deformation causes the shape to change.  

 

 
Figure 43: Decomposition of a simple shear flow into fundamental invariants 

 

In 1845, Stokes (and Navier to some degree 20 years earlier) proposed that the viscous stress 

was proportional to the rate of pure deformation of the fluid motion. Based upon this 

proposition, the decomposition of the motion into the fundamental invariants, and the second 

law of thermodynamics, Stokes surmised that the governing equations for a turbulent fluid 

(or gas) can be mathematically expressed as: 

 

(268) 

 

(269) 

  

! 

"#
r 
u = 0    Navier-Stokes Constraint Equation (Conserves mass) (270) 

 

where !  is the gradient operator, ur  is the velocity vector of the gas, p is the pressure of the 

gas, gv is the gravity in the vertical direction, β is the coefficient of thermal expansion, T0 is 

the initial reference temperature, and Tk is the average temperature on the boundary between 

a gaseous cell and the one above it, and λ is chosen to represent both molecular and turbulent 

diffusion processes in the gas. It is this set of governing equations that form the foundation of 

fluid dynamics with respect to gaseous plumes. While simple in appearance, solving the 

Navier-Stokes equations for even the simplest situation is non-trivial. 
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3.7.2 JPL Gaussian Plume Model 

The JPL Gaussian plume model was originally designed to model gas plumes released from 

factory stacks by the U.S. Environmental Protection Agency (EPA) (Bishop, 2001). The 

model was then modified by Kaman Corp and the Jet Propulsion Laboratory (JPL) and 

incorporated into DIRSIG in 1997. The JPL Gaussian plume model is a standard Gaussian 

plume model based on the Brigg’s equation for plume dynamics (Bishop, 2001). While not 

rigorously accurate, the model is consistent with empirical results observed downwind of 

factory stacks and is very straightforward. The fundamental premise is that the concentration 

downwind can be found as a function of three independent probability distribution functions 

whose means are distributed about the plumes centerline such that: 

! 

" x,y,z( ) =Q # F x( )G y( )H z( )  (271) 

 
where Q is the source strength expressed as the emission rate per unit of time. In truth, the 

distribution functions are correlated and not independent. For simplicity, let’s initially fix the 

plume’s centerline to be the height of the release point. The situation is depicted in Figure 44, 

where the plume is approximated by successive point sources. The concentration in the x-

direction can be expressed as: 

! 

F x( ) =
1

u dt
 (272) 

 
where u  is the mean wind velocity and dtu  is the width of the slab of interest. When one 

examines the concentration between two vertical slabs at tux =  over a very small distance 

dtu  as 0!dt , then to a reasonable assumption the distribution in the x direction is uniform 

over that slab.  
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Figure 44: Gaussian plume approximated by successive point sources 

The overall concentration can then be expressed as: 

! 

" x,y,z( ) =
Q

u 
G(y)H(z)  (273) 

 
Intuitively, the notion that the concentration of pollutant everywhere is proportional to the 

emission rate and inversely proportional to the wind speed is appropriate. The next step is to 

find the forms and parameters of G(y) and H(z). When one solves Fick’s equations 

(Blackadar, 1997) using K-theory or some other means, the concentration of gases or 

aerosols from the plume centerline downwind is found to be Gaussian distributions. The 

concentration can be mathematically expressed as: 
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where x is the downwind distance, y is the lateral distance from the centerline, z is the 

vertical distance from the ground, Q is the source intensity (mass released per unit time), µ is 

the mean wind speed, and σy and σz are the lateral and vertical coefficients of dispersion 

respectively. Note that this formulation assumes that the height of the source is at 0=z . 
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When one takes into account the effective height of the stack, heff, then the concentration 

becomes: 
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Obviously, this equation is only valid for 0>z . One could choose to assume that the 

particles that touch the ground are absorbed or one could assume that all of the particles are 

reflected from the surface. If the latter were true, then the concentration levels indicated in 

Equation 275  would be too low. For that reason, regulatory agencies and most researchers 

simply reflect the subsurface plume back into plume above the ground. This is illustrated in 

Figure 45. Thus the concentration at any point above or at the surface is: 
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where h is the height of the centerline of the plume and is usually found from Briggs 

equations, which will be discussed later in this section. The true concentration probably lies 

somewhere between Equation 275 and 276.  

 
Figure 45: Reflected plume created by use of a virtual source at z=-heff 
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Thus far, the plume centerline has been assumed to be at the same height as the source 

release. As noted earlier, the plume centerline can be found based upon the comprehensive 

theory of plume rise developed by Briggs (Blackadar, 1997). In a neutral atmosphere, the 

Briggs equation assumes a buoyant rise of the plume.  For a neutrally buoyant effluent, the 

plume height is:  

! 

h = heff + 3x
1/ 3 rstackvratio

2

vratio + 3
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# 
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& 
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2 / 3

 (277) 

 
Where heff is the effective stack height, rstack is the stack radius, x is the downwind distance, 

and vratio is the emission velocity ratio which is defined as the vertical emission velocity 

divided by the wind velocity. Alternative forms can be used to find the plume centerline 

depending upon the level of information that one has about the heat emitted from the stack 

and surrounding environment and the detailed wind vector fields. The model implemented 

into DIRSIG incorporates one of these variations based upon some statistics about how a 

plume centerline wanders. A sample ACAD drawing of a Gaussian plume with multiple 

regions defined and a “wander” is shown in Figure 46. 

 

 
Figure 46: ACAD of JPL “Wander” Gaussian Plume Model 

Although many of the parameters in Equations 275 and 276 are straightforward, the values 

for σy and σz  must often be derived by fitting curves to empirical to measurements. 

Additionally, the form of Equations 275 and 276 do not readily indicate that σy and σz are 

functions of x. The most widely accepted method of determining σy and σz is to use a set of 

diagrams based upon the work of Pasquill and Gifford (Blackadar, 1997). The diagrams are 
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based upon a simple classification scheme attributed to Pasquill shown in Table 7. Using the 

guidance based upon the generalized scene conditions in Table 8 and diagrams similar to 

those shown in Figure 47, one can then determine the values for σy and σz. The diagrams are 

typically based upon measurements of tracers released above a smooth terrain. Although this 

method is very simple, the potential for error is great. The largest source of error is in 

estimating the stability based upon measurements for a smooth terrain. Additionally, this 

method does not account for all of the turbulent effects within a plume, such as fanning. 

Another factor to consider is that the model does not handle the complex turbulent motion or 

turbulent diffusion present in an urban environment. The assumption is that the plume 

essentially transverses without interruption or dramatic change in the wind velocity field. 

Despite these caveats, the approach is commonly accepted and deemed adequate. As such, 

the JPL Gaussian plume model is still the primary workhorse plume model for many 

researchers. 

Table 7: Pasquill Stability Classes  

Letter Class 

A Extremely unstable 

B Moderately unstable 

C Slightly unstable 

D Neutral 

E Slightly stable 

F Moderately stable 
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Table 8: Pasquill Stability Types Guidance 

 Daytime Insolation Night-time  

Surface wind 
speed (m/s) 

Strong Moderate Slight Thin overcast 
(≥ 4/8) 

Cloudiness 
(≥ 3/8) 

< 2 A A-B B   

2 A-B B C E F 

4 B B-C C D E 

6 C C-D D D D 

> 6 C D D D D 

 
 

 
Figure 47: Gaussian plume model diagrams for 

y
!  and 

z
!  for release heights of 100m over 

rough terrain (Blackadar, 1997) 
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3.7.3 LANL QUIC-PLUME Model 

It is possible to create a more accurate simulation of how a plume will disperse without 

making the restrictive assumptions of homogeneity and stationarity as was done for the 

Gaussian plume model. The approach is to issue particles sequentially from the source and 

stochastically conform to the Navier-Stokes equations over a very small time. The motion of 

each particle is assumed to be independent from the influence of the other particles over that 

small time scale, but is primarily driven by physics-based statistics. Often the particles 

undergo a drunkard’s walk, which is defined as being a random walk where the particle 

“remembers” the previous motion to some degree. One such model is Los Alamos National 

Lab’s (LANL’s)  Quick Urban & Industrial Complex (QUIC) dispersion modeling system of 

which QUIC-PLUME is the primary dispersion model (Williams, et al., 2004). The other 

primary modules essentially determine the wind velocity vector field, particularly around 

buildings. QUIC was designed to model the dispersion of airborne contaminants released 

near buildings where the results must be computed quickly (Williams, et al., 2004). 

Currently, the QUIC-PLUME model is being assimilated into DIRSIG as an optional model 

and is anticipated to be operational within the near future. QUIC-PLUME is a Lagrangian 

dispersion model that uses a Langevin random-walk approach based upon the mean and the 

turbulent wind fields. The code attempts to account for the inhomogeneity of the flow around 

buildings and updates rotation terms to account for the lateral and vertical motion gradients 

in the turbulence parameters. Figure 48 and Figure 49 are renderings of a sample QUIC-

PLUME simulation that appears in the literature (Williams, et al., 2004). The simulation is of 

a smoke release in the West Village area of New York City and demonstrates QUIC-

PLUME’s ability to model dispersion in urban environments. While the computer graphics 

rendering was not intended to be radiometrically accurate, the concentration variations and 

the small fluxuations between time-steps and within the plume structure are still evident. This 

is most evident in the close-ups shown in Figure 49. For either the detailed derivation or 

implementation guide, one should review both of the LANL QUIC-PLUME references 

(Williams, et al., 2004). 
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Figure 48: Rendered snapshots of a QUIC-PLUME simulation of a release in West Villiage 

area of New York City (Qui, et al., 1997) 

 
Figure 49: Rendered close-up views for a QUIC-PLUME simulation of a release in West 

Villiage area of New York City (Qui, et al., 1997) 
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3.7.4 Blackadar Plume Model 

The Blackadar plume model was recently incorporated into DIRSIG primarily as an interface 

test-bed for more advanced voxelized or puff-based plume models. The Blackadar plume 

model is based upon the fundamental turbulence and diffusion theory introduced in 

Blackadar’s book, Turbulence and Diffusion in the Atmosphere (1997). Because Blackadar’s 

intent was to create a simplified, particle-based plume model that users could utilize to 

explore the effects of various environmental parameters or the plume’s fundamental 

characteristics, the model accurately represents the fundamental physics and behaviors of 

plumes. However, the plume model has not been validated and should be used with caution. 

 

As stated above, the Blackadar plume model is a particle-based model. The general flow 

diagram is shown in Figure 50. Small particles are created at the defined release point within 

the user-defined stack diameter with known material properties, a concentration, exit 

velocity, and a dispersion coefficient. The particles are released individually and then move 

based upon a drunkard’s walk random process and the simulation parameters, such as the 

wind velocity. Between time increments, the particle essentially remembers a portion of its 

previous velocity and the model uses that information to predict the new velocity vector. The 

rate of memory loss for each particle is defined by the Lagrangian time scale, which is a 

function of the stability classes described in Table 7 and Table 8. At the moment, DIRSIG 

has the stability class hardwired to Pasquill’s moderate stability class. Note that the particle’s 

initial velocity is determined by a suite of different factors including the mean wind velocity, 

the particle mass, the emission rate, and the variability in the emission rate. The latter 

attribute is also intimately linked with the chosen stability class. Blackadar’s plume model 

incorporates the buoyant (rise and fall) tendencies of the plume based upon Brigg’s equation 

(Equation 277) which was the basis of the plume center-line for the Gaussian plume model. 

As the particles traverse the simulation space, the mass of the each particle remains the same, 

but the size, and thus the volume, is expanded using the assigned puff dispersion coefficient. 

The effect is shown in Figure 51 which is a DIRSIG height truth map of a Blackadar plume. 

The small particles grow in size as they drift downwind. Thus, the concentration is 

effectively diluted. Additionally, the temperature profile of the particles is dependent upon 

the stack release temperature, the ambient air temperature, and the dispersion coefficient. 
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Adjustments to the temperature are made for each time-step; however, the law of 

conservation of energy is not strictly enforced by design to reduce the complexity of the 

calculations. One should not confuse the puff dispersion coefficient with the plume 

dispersion coefficient. The plume dispersion coefficient impacts where the puffs go and how 

quickly they spread apart. Plume dispersion is primarily affected by large eddies and 

turbulence. The puff dispersion coefficient describes how the individual puffs dilute and are 

influenced by very small eddies. Finally, the Blackadar plume model deals with collisions 

with solid surfaces in a very straightforward manner. If the particles hit a surface, then the 

deposition probability defined by the user determines statistically whether that particle is 

deposited or “bounces” off of the surface. The Blackadar plume model does not account for 

the changes in wind velocity through an array of buildings, such as QUIC-PLUME. For a 

more complete treatment of collisions, plume models need to have some knowledge of the 

wind velocity and acceleration vector fields to accurately predict a particle’s likely behavior. 

Unfortunately, this added complexity incurs a significant computational penalty. Overall, the 

Blackadar plume model is an excellent representation of a particle-based plume model which 

offers an added degree of realism for the temporal movement over the standard Gaussian 

plume model. At the same time, some basic assumptions and limitations are imposed for the 

sake of simplicity and computational speed. 

 

 
Figure 50: Conceptual diagram for DIRSIG’s Blackadar plume model 
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Figure 51: Annotated DIRSIG truth map image of a Blackadar plume 

3.8  Summary 

This chapter forms the theoretical and analytical foundation for this research effort. We have 

reviewed the principles of the DIAL/DAS method and discussed some of the potential 

impacts that multiple scattering may have upon a DIAL sensor’s concentration sensitivity 

and accuracy. In addition, we derived a multiple scattering LIDAR equation which accounts 

for most of the multiple scattering effects in a strongly forward scattering medium in Section 

3.2. Section 3.2 also stressed the importance of accounting for multiple scattering effects for 

optically thick and “medium” scattering layers. As note previously in this chapter, the 

modeling approach infused into the DIRSIG framework is based upon this multiple scattering 

LIDAR equation in conjunction with the core photon mapping principles discussed in 

Section 3.4. Although one could employ the multiple scattering LIDAR equation for some 

instances, plumes are not semi-infinite or always predominantly forward scattering in nature. 

Section 3.3 went through the underlying physics of radiative transfer theory and common 

approximations for the RTE, including a useful derivation of the BSN diffusion 

approximation for a monodirectional-pulsed point source. Chapter 4 will leverage the 

diffusion approximation and the multiple scattering LIDAR equation as a key analytical 
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verification tool for the scattering portion of the LIDAR model. As a direct extension of the 

theoretical development of the radiative transfer equation within a plume, Section 3.4 

discussed the theoretical, mathematical, and practical implementation of photon mapping for 

modeling multiple scattering and absorption of light within a dispersive, participating media. 

The emphasis for Section 3.4 was on the traditional photon mapping approaches which form 

the enabling paradigm for the DIRSIG LIDAR module; however, the specific 

implementation details and new adaptations were left to Chapter 4. The last three sections of 

this chapter then shifted to discuss the theory and practical considerations necessary to 

simulate complex scenes. Section 3.5 introduced the types of particle size distributions that 

are relevant to this area of research and the impact of those distributions on the optical 

properties of the medium. Section 3.6 focused on the absorption and scattering of arbitrarily-

sized small particles. This section introduced the basis for Mie scattering theory and a 

practical algorithm to physically calculate the necessary optical properties for a particular gas 

or aerosol based upon its complex index of refraction and particle size distribution function. 

Rayleigh and non-selective scattering was also addressed; however, the emphasis was on Mie 

scattering because the typical particles of interest for this dissertation fall within this regime. 

The final section, Section 3.7, addressed plume dynamics modeling very briefly. The section 

introduced the overall governing equations for modeling the flow of effluent concentrations 

within a scene and the two plume models fully integrated into DIRSIG, the Gaussian model 

and the Blackadar model. The Blackadar model is currently the only plume model which is 

capable of interacting with the DIRSIG LIDAR module; however, future plans are also 

mentioned in Section 3.7 with regards to the incorporation of higher fidelity plume models, 

such as QUIC-PLUME. 
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Chapter 4  

Approach 

The core of this research effort and this chapter is the development and verification of a 

physics-based modeling approach to simulate the multiple scattering and absorption in a 

participating medium for a LIDAR sensor, particularly for a DIAL system. The chapter 

begins by introducing the current first-principles, physics-based elastic LIDAR model. After 

reviewing the historical development, motivation, and potential requirements for the LIDAR 

model in Section 4.1, the specific requirements, innovations, and numerical approaches are 

presented in Section 4.2. These innovations and numerical approaches enable the DIRSIG 

LIDAR module to support rigorous atmospheric interactions, participating media, multiple 

bounce/scattering, thermal and reflective region passive returns, complex scene geometries, 

moving platform and scanning effects, detailed material optical descriptions (BRDF and 

scattering models) and time-gated returns. Section 4.3 then discusses some practical 

implementation considerations, such as generating the optical parameters, photon density 

requirements, the benefits of multiple photon maps, and utilizing the Blackadar plume model. 

In addition, the chapter discusses the verification methodology and a series of 

phenomenological case studies designed to investigate the viability and accuracy of the 

model in Sections 4.4 and 4.5 respectively. The phenomenological case studies provide 

crucial insight into the model performance for realistic collection scenarios. Section 4.6 

discusses the simplified approach crafted to demonstrate the potential effects of multiple 

scattering on DIAL concentration measurements and the construction of an exemplar DIAL 

dataset using the water treatment plant in Megascene 1 and the Blackadar plume model. 

4.1  Model History  

The initial development of the Digital Imaging and Remote Sensing Image Generation 

(DIRSIG) model began at the Rochester Institute of Technology (RIT) in the late 1980’s as a 

3D simulation environment for predicting images that would be produced in the thermal 

infrared systems. Since that time, the model has been expanded to cover the 0.35 to 20.0 µm 

region of the spectrum. DIRSIG is employed throughout the research community as a tool to 

aid in the evaluation of sensor designs and to produce imagery for algorithm testing 
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purposes. The model is designed to produce passive broad-band, multi-spectral, and hyper-

spectral imagery through the integration of a suite of first-principles, physic-based radiation 

propagation modules. These object-oriented modules address tasks ranging from bi-

directional reflectance distribution function (BRDF) predictions of a surface, to instruments 

on agile platforms (Schott, etal., 1999). In addition to the myriad of DIRSIG-specific objects 

that have been created, a suite of interface objects leverage externally developed components 

that are the modeling workhorses for the mulit- and hyper- spectral community. Some of 

these models include atmospheric codes such as MODTRAN (Berk, et al., 1989) and 

FASCODE, as well as the thermal model, THERM (DCS Corporation, 1990). Key 

components of the model and some aspects of the model’s overall performance have been 

gauged by several validation efforts over the past decade (Mason, et al., 1994; Brown, etal., 

1996). 

4.1.1 Historical Modeling Approach 

The modeling philosophy that has driven DIRSIG model development over the years is one 

that favors first-principles radiation transfer mechanisms over statistical or empirical 

modeling approaches. Most statistical or empirical models have been derived from specific 

data sets that feature specific conditions. The fit of empirical models to the respective 

original data may be exceptional, but depending on the underlying approach, the model may 

not be applicable for a different time of day, for a different season, for a different sensor, etc. 

Such models may have a high degree of accuracy for specific cases, but very little flexibility 

for modeling alternative scenarios. These same limitations may also be applicable to some 

classes of statistically based models. In contrast, the historical DIRSIG approach is to model 

as many physically based interactions as possible by utilizing model inputs that 

predominantly consist of geometric, optical, and thermodynamic inputs. The underlying 

radiative transfer model then interacts with this combined geometric and optical scene model 

to predict the radiational flux into a given direction for a specific set of collection conditions. 

Although this approach may not model a specific data set as accurately as an empirical or 

statistical model that is derived from imagery, this modeling approach has a higher degree of 

flexibility by allowing the user to change the imaging conditions, scene conditions, etc.  
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The general approach of mating high fidelity geometric models with high fidelity optical and 

thermodynamic models prevails throughout the DIRSIG model and carries over to the 

LIDAR model. Some empirically and statistically driven models appear in the lower levels of 

the overall model, but the higher level modeling capabilities are driven from the integration 

of a myriad of lower level representations. Historically, researchers have found this modeling 

architecture capable of reproducing specifically sought phenomenology as well as 

unexpected collateral phenomenology that might not be realized using other techniques 

(Ientilucci and Brown, 2003). The images in Figure 52 visually illustrate some of the spatial 

and spectral fidelity resulting from the modeling approach and the vast optical properties 

database used by the DIRSIG model. As stressed earlier, this modeling philosophy pervades 

the DIRSIG LIDAR model approach. 

 

 
(a) DIRSIG RGB image of a portion of RIT’s campus  

also known as Microscene (Barcomb, 2004) 
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 (b) RGB DIRSIG image of (c) MWIR DIRSIG image of CH4 plume 
 a urban residential scene 
 

Figure 52: Representative DIRSIG passive images 
 

4.1.2 Active System Justification 

Until 2002, the DIRSIG model was focused on simulating passive multi- and hyper-spectral 

sensing systems in the visible through thermal infrared regions. At that time, the ability to 

perform trade studies between passive and active laser systems required the use of separate 

modeling packages that used different geometric, optical, and thermodynamic descriptions. 

In addition, the available LIDAR scene simulation tools did not offer many of the key 

requirements considered necessary for in-depth trade studies and algorithm development. 

The LIDAR model must appropriately support rigorous atmospheric interactions, 

participating mediums, multiple bounce/scattering, thermal and reflective region passive 

returns, complex scene geometries, moving platform and scanning effects, detailed material 

optical descriptions (BRDF and scattering models), and arbitrary time-gated returns. The 

additional benefits of an integrated active LIDAR and passive multi- and hyper-spectral 

passive simulation environment that leverages a unified set of model inputs and underlying 

radiation propagation models were deemed significant. This type of simulation tool allows 

users to simulate active and passive sensors using the same scenes and scenarios. Thus 

researchers can evaluate alternative passive versus active approaches to specific problems 

and explore the potential benefit of data fusion between the two imaging paradigms. 
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Additionally, the rigorous and robust treatment of elastic LIDAR interactions would permit 

us to investigate issues such as the potential effects of scattering within a plume on DIAL 

concentration measurements and eventually research mitigation techniques using both active 

and passive data sets. 

4.1.3 Prototype DIRSIG LIDAR Model 

A prototype of this combined simulation environment was completed by Burton (2002). In 

general, Burton’s challenge was to model the returned fluxes from the scene as a function of 

time with respect to the shooting of the source laser for topographic targets. The research 

objectives were to investigate potential development options and to implement a rudimentary 

elastic LIDAR model for topographic targets. The prototype model was limited, but did 

demonstrate the fundamental physics and the potential of an integrated LIDAR model within 

the DIRSIG architecture. Figure 53 shows the simulated time slices of the returned intensity 

from a single pulse fired at a T-72 tank on a flat plate using the prototype LIDAR model. The 

next two subsections describe the general modeling approach and limitations of the prototype 

LIDAR model. These limitations and a requirement for a more robust and rigorous model 

drove the design decisions for the improved and expanded DIRSIG LIDAR module 

presented and verified in this dissertation. 
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Figure 53: Prototype DIRSIG LIDAR module time slices for a T-72 tank (Burton, 2002) 

 
4.1.3.1 Description 

The core foundation of Burton’s prototype LIDAR model is the standard, single scattering 

LIDAR equation presented in Chapter 3 previously and is included below for convenience. 

The detected return signal power from a single pulse is: 
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(278) 

 
where ( )R,!"  is a system function determined by the geometric considerations of the 

receiver optics, the quantum efficiency of the detection system at each wavelength, and the 

overlap between the transmitted laser beam and the field of view of the receiver; 
r
A  is the 

area of the entrance pupil; 2
RA

r
 is the acceptance solid angle of the receiver optics with a 

collecting area 
r
A ; ( )!

L
P  is the average power in the transmitted pulse at wavelength λ; c is 

the speed of light; 

! 

"
L
 is the pulse width; ;

! 

"# $,R( )  is the backscattering cross-section at 

wavelength λ and range R; and 

! 

"# $,R( )  is the extinction cross-section at wavelength λ and 

range r. The elastic LIDAR equation does not include multiple scattering effects, but at the 
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time, the scattering requirement had not yet been considered tractable. The most challenging 

aspect was the calculation of the geometric form factor at each range. The photon mapping 

concept of using two passes, a forward ray tracing followed by a reverse ray tracing using a 

recorded event data structure, afforded a practical approach to account for the geometrical 

form factor even in a complex scene. However, a full photon mapping implementation or 

even a true variant was not used, and thus, the full benefits of photon mapping were not 

realized. 

 

Figure 54 is a simplified illustration of the modeling approach for the prototype model. The 

prototype LIDAR model first loads the scene and the LIDAR system characteristics. A set of 

parallel plane layers were then defined based upon the receive window and desired sampling. 

The primary purpose of these range planes was to accrue information to calculate the 

atmospheric backscatter and the geometric form factor for each range sample from the 

atmosphere. Effectively, these planes defined the range bins for the received signal and were 

assumed to be larger than the transmit pulse width. The 2D range planes were required to be 

perpendicular to the transmitter, the receiver, and the scene-wide xy-plane. Bi-static 

configurations were permitted, but only under the constraint that the FOVs were parallel. The 

prototype model did permit alternate geometries for the receiver; however, the temporal and 

radiometric characteristics of the results would not be accurate. Due to these restrictions, the 

transmitter and receiver were effectively required to be pointing nadir. Additionally, the 

platform and instrument motion necessary to model a scanning system were not supported. 
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Figure 54: Illustration of the prototype DIRSIG LIDAR model approach in 2002 

 

Once the range planes were setup, a set of randomly generated photon bundles were shot into 

the scene for each layer. The power from the laser pulse was divided equally into a preset 

number of photon bundles. For each photon bundle, the starting location and path vector 

were generated based upon a random Gaussian spatial distribution, the beam divergence, and 

the predicted effects of turbulence. The importance sampling algorithm that was used to 

generate the random transmit vectors was maintained and enhanced in the current DIRSIG 

LIDAR model. This approach easily permits modeling of alternative transmit spatial 

distributions and turbulence effects. The forward ray tracing vectors were cast into the scene 

until they hit the first range plane and the event was recorded. This would proceed until the 

predetermined number of photon bundles had been traced to the first range plane. Then the 

model would proceed to do the same procedure for each range plane. Unfortunately, this 

approach is very computationally inefficient.  
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For instance, if you had 100 range bins and wanted 50,000 photon bundles to be cast. The 

prototype would first cast 50,000 photon bundles until they intersected the first range bin. 

Then the model would proceed and shoot another 50,000 to the second range bin after 

removing the first range bin from consideration. This process would repeat until all of the 

parallel plane layers were complete. At each intersection for the layer under consideration, 

the localized peak power was calculated and recorded. The photon bundles were not 

randomly walked through the scene and did not deviate from the initial assigned vector. In 

addition, each bundle ended up with representing a different power. Thus, the 

implementation was not a true representation of the photon mapping paradigm and was not 

guaranteed to converge to the true photon distribution at those ranges. 

 

For surfaces, random photon bundles were cast from the transmitter using the same 

importance sampling algorithm and traced until they hit a specific scene element. The 

localized incident power of the bundle was then recorded based a fixed atmospheric 

coefficient. If scene element is the first surface that the bundle hit, then the ray would be 

automatically reflected with a power due to the reflectance of a Lambertian surface. The 

BRDF function was not incorporated at this point, but such a modification could have been 

accommodated. If the photon bundle had already been reflected once, then it was 

automatically absorbed. In essence, the model only permitted one bounce (and actually 

forced bounces), but this could have been relaxed. Additionally, the entire process is not truly 

Monte Carlo based and is more parametric in nature. Thus  the statistical accuracy of the 

approach does not guarantee radiometric accuracy for many situations.  

 

To calculate the received power at the detector(s), rays from each detector element with a 

corresponding FOV were cast into the scene until they hit a surface. The localized power at 

the surface was then gathered based upon the events recorded at that surface. The time 

information of each of the recorded surface events was used to bin the power of each bundle 

into one of the range bins. The sampling was assumed to be coarser than the actual transmit 

pulse duration, thus the received power was merely added to the nearest range bin. The 

received power at the sensor from the intersected surface was calculated using the elastic 

LIDAR equation. Because of the use of forward and reverse ray tracing, the geometric form 
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factor was inherently already accounted for. The atmospheric backscatter term was calculated 

based upon the collected photon bundles within the FOV of the receiver for each pre-defined 

range plane. The atmospheric optical properties were hard-coded and could not be adjusted 

by the user. After adding the surface and atmospheric returns, fully developed speckle was 

incorporated statistically based upon user-defined inputs.  

 

4.1.3.2 Prototype Limitations and the Path Forward 

Before we proceed and discuss some of the important limitations of the prototype LIDAR 

model that were overcome by the new modeling approach presented in this dissertation, I 

must stress that the prototype played a very important role. The prototype model 

development established the viability of incorporating a LIDAR model into the DIRSIG 

framework and defined specific challenges that would need to be mastered. In addition, the 

concept behind photon mapping was introduced during the prototype development cycle. The 

power and flexibility of photon mapping was not really leveraged at the time. Eventually our 

understanding of photon mapping matured and now our arbitrary time-gated variant is the 

backbone of the current DIRSIG LIDAR model. The next few paragraphs walk through some 

of the challenges brought to light by the prototype LIDAR model development and briefly 

address the approach to solving those issues. 

 

The first challenge was to convert to a true Monte Carlo modeling approach. The primary 

reason is to ensure that the approach accurately models the time-gated returns in the 

statistical sense. To accomplish the conversion, the surface processes and eventually the 

volume ray tracing were updated to utilize the local optical properties in a random, 

statistically appropriate manner. This would ensure that if enough bundles were cast into the 

scene, then the simulation results would be fairly accurate in an absolute sense. For surfaces, 

this would also permit an accurate representation of multiple bounce phenomenon for such 

scenarios as tree canopy or camouflage penetration.  In addition, the prototype model 

assumed that the surfaces were Lambertian, and the material’s BRDF function should be 

used if available. The roadmap forward also indicated that we would want the hooks in place 

to permit polarized BRDF functions and the capability to simulate polarmetric LIDAR 
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systems. To do so, the surface interactions needed to be dictated by Russian roulette 

techniques based upon some type of user-defined input.   

 

Volume interactions, particularly scattering, were not supported in the prototype in any way. 

This included atmospheric returns from different atmospheres (mid-latitude summer versus 

sub-artic winter). Devising a means to access and randomly walk through volumes would be 

necessary to explore the returns from participating media, such as water or gaseous plumes. 

To support gaseous plume research, the DIRSIG LIDAR module should involve a rigorous 

treatment of scattering within a medium due to the considerable complexity involved. This 

had not been done before. The bulk optical property descriptions and ray tracing functions 

existed prior to the addition of the LIDAR capabilities, but their interfaces were enhanced for 

the new LIDAR model to facilitate efficient implementation of the photon mapping 

subsystem. Kuo (1997) researched simulating scattering in plumes, but the techniques were 

not deemed appropriate for modeling scattering for nonstationary LIDAR pulses traveling 

through a non-homogenous medium.  

 

At least three major inter-related issues drove the dramatic re-architecture of the LIDAR 

modeling approach to a more faithful representation of photon mapping. The first was 

computational complexity and memory requirements. The original prototype was very 

memory intensive due to the 2D parallel-plane range arrays and took approximately 45 

minutes per pulse to run. Simulating a nominal run with 1,000 pulses on a single dedicated 

Sun Blade 1000 workstation would have required about a month or so.  This was deemed to 

be cumbersome and did not even factor in the computational cost growth with the added 

complexity of volume interactions.  

 

The second issue was that the range gating was still fairly coarse in the prototype. Ideally, the 

model would handle an arbitrary sampled receive window that might have a very high 

sampling rate. To accommodate this requirement, the temporal distribution, as well as the 

spatial distribution, would need to be more carefully managed. The solution was to utilize the 

3D kd-tree photon map structure. The kd-tree was augmented to keep track of the time that 

events occurred, but maintained the advantage of rapid sorting and retrieval of photon events 
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during the collection process. This approach also accommodates more complex geometry and 

removed the constraints upon the location or relative geometry between the transmitter and 

receiver. Because the precise location of the events are stored in the photon map, the time 

that photons are scattered or reflected back to the sensor can be more accurately constructed. 

Arbitrary time-gated returns are now possible.  

 

The third issue is closely coupled with the Monte Carlo requirement. The prototype model 

predetermined how many photon bundles would be cast into the scene and then tracked the 

power for each bundle. Not only does this approach consume more memory than necessary, 

but the user is required to estimate how many photon bundles will be necessary to obtain the 

desired photon density throughout the scene. For topographic applications, this approach is 

fairly reasonable. The effective photon density is somewhat predictable and is well correlated 

to the number of photon bundles cast. The variability can be accounted for by casting slightly 

more photon bundles than deemed necessary to ensure performance. However, when a 

participating media is introduced, the photon density becomes less predictable and ideally 

should be treated differently than for surfaces. The photon event density within the plume 

determines the accuracy of the simulated return, but varies greatly depending upon the 

optical parameters of the volume and the geometry.  To ensure that the plume is sufficiently 

sampled to estimate the flux, the process must be driven by the required photon density or 

number of events within the associated photon map. Thus, the LIDAR architecture had to be 

overhauled. As I stated earlier, this is less of an issue for simulating a topographical LIDAR, 

but it is non-trivial for more complex scenarios, such as a DIAL simulation when scattering 

is present.  

4.2  DIRSIG LIDAR Module (New and Improved) 

Although the emphasis in this dissertation is on modeling the multiple scattering and 

absorption for a LIDAR pulse within a gaseous plume, broader LIDAR modeling 

requirements were always under consideration and drove many of the implementation 

decisions. As stated previously in this chapter, the DIRSIG LIDAR module was designed to 

support rigorous atmospheric interactions, participating media, multiple bounce/scattering, 

thermal and reflective region passive returns, complex scene geometries, moving platform 
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and scanning effects, detailed material optical descriptions (BRDF and scattering models) 

and time-gated returns. This is a challenging set of requirements. Table 9 is an expanded list 

of the critical DIRSIG LIDAR modeling requirements set, the prototype capabilities, and the 

current development status. The foundation for some items such as fully developed speckle 

and turbulence were carried forward from the prototype model developed by Burton (2002). 

Others were inherited from the DIRSIG architecture, particularly the passive and thermal 

returns, the detector/sensor effects, complex scenes and properties, and moving platform and 

scanning effects. The latter capabilities did require varying degrees of integration effort, but 

significantly enhance the LIDAR module’s capabilities. The remaining modeling 

requirements represent the focus of most of the research effort involved with this dissertation.  

 

The most stressing requirement was certainly the multiple scattering effects and devising a 

methodology to verify, at least to a reasonable degree, the validity of the model’s predictions. 

The next few subsections provide a broad overview of the current DIRSIG LIDAR model, 

the numerical approaches adopted, and some new innovations using the photon mapping 

paradigm. One should note that the requirements for inelastic interactions, polarametric 

returns, and partially developed speckle are not addressed in the model yet; however, the 

design enables the future integration of those capabilities into the model.  

 

Before we begin the discussion of the modeling approach, let’s take a look at a simple 

comparative example that demonstrates just how far the model has progressed over the last 

few years. Brown and Blevins (2005) published some initial results and a general description 

of the DIRSIG LIDAR model for topographic applications. The model has continued to 

progress so that it now handles volume scattering and absorption accurately. Figure 55 is a 

passive, monochromatic DIRSIG image of a T-72 tank on a flat plate. This setup is similar to 

the one shown for the prototype model in Figure 53. Figure 56 is a series of sample output 

slices from the current DIRSIG LIDAR model. The temporal sampling rate was set to 

achieve a range resolution less than 0.03 m (approximately 1.2 inches) whereas the nominal 

range resolution of the system was approximately 0.15 m. The sample intensity slices were 

extracted from the output LIDAR pulse cube and show the high degree of fidelity available. 

In particular, notice the multiple bounce photons in the bottom row, middle image. The 
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photons appear to have bounced off the turret, hit the body of the tank, and then returned to 

the sensor. We shall see later in the Chapter 5 that if the user supplies a model with sufficient 

spatial fidelity, even the few photons “lost” in the high grass may be observed. For now, let’s 

proceed and discuss the modeling approach for the current DIRSIG LIDAR module. 

Table 9: DIRSIG LIDAR modeling requirements and development status 

Driving Requirement Prototype 
Capability 

New 
Capability Verified Future 

Capability 

Complex Scenes & Properties     

Monostatic & Bistatic (limited)    

Topographic/Surface Returns     

Aerosol Returns (limited)    

Participating Medium Returns     

Rigorous Atmospheric Interactions     

Support BRDF and Scattering Models     

Elastic Interactions     

Inelastic Interactions  (framework)   

Polarametric Returns  (framework)   

Thermal & Refective Passive Returns     

Fully Developed Speckle     

Partially Developed Speckle  (framework)   

Atmospheric Turbulence Effects     

Multiple Bounce Effects (limited)    

Multiple Scattering Effects     

Arbitrary Signal Gating (limited)    

Detector/Sensor Effects (limited)    

Moving Platform & Scanning Effects     
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Figure 55: DIRSIG passive simulation of a T-72 tank on a flat plate (λ=768 nm) 

 
Figure 56: DIRSIG LIDAR module time slices for a T-72 tank on a flat plate 
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4.2.1 Numerical Modeling Approach 

The addition of an active, laser radar capability to the DIRSIG model was accomplished by 

the addition of a suite of new objects to the existing radiometry framework. As indicated 

earlier, the specific challenges of this imaging model were largely driven by the requirement 

to predict the received photon counts as a function of space and time. The photon flux 

arriving at a LIDAR system often approaches discrete photon events due to the low amount 

of backscattered radiation and can prove difficult for many traditional Monte-Carlo ray 

tracing techniques. Additionally, the temporal structure of these returns is driven and highly 

correlated with the spatial structure of the scene and the total travel time of the arriving 

photons accrued during multiple bounce and scattering events within the scene. Analytical, 

statistical, and existing passive radiometry solvers were found insufficient in many instances, 

particularly for low flux situations.  

 

The new approach that was identified leverages the modeling technique called photon 

mapping that was discussed in Chapter 3. One of the reasons that this technique was selected 

was because photon mapping has been demonstrated to be applicable to traditional solid 

geometry reflective illumination and scattering and absorption by participating mediums, 

particularly in multiple bounce and multiple scattering cases. For the purpose of LIDAR 

applications, some modifications to the basic photon mapping treatment were made, 

including the tracking of the total travel time and a literal photon counting process.  

 
Once the core photon mapping architecture was put into place within the DIRSIG software 

architecture, we began to develop the augmentations that would be necessary to produce the 

temporal returns from laser pulse with a complex scene. The modifications to the photon 

mapping treatment were devised based upon close examination of the underlying physics of 

the light interactions with both volumetric and surface elements and the standard RTEs. In 

parallel, the development of the verification methodologies included exploring the multiple 

scattering LIDAR equation developed by Eloranta (1972, 1998) that was derived in Chapter 

3. The basic construction and derivation of the multiple scattering LIDAR equation directly 

paralleled the current modeling approach for the DIRSIG model. The beauty of the 

realization was that the limiting constraints and assumptions that Eloranta was forced to 
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make so that the analytical solution was tractable could be lifted if the photon mapping 

paradigm was modified slightly.  

 
As introduced in Chapter 3, the total power Pt observed as a function of range R from a 

LIDAR pulse fired into a semi-infinite, forward scattering medium is: 
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where P1 is the return power predicted by the elastic LIDAR equation, 

! 

p"n R( )  is  the 

weighted average of the scattering phase function at range R, 

! 

p ",R( )  is the scattering phase 

function at range R for a backscatter angle of 

! 

" , 

! 

"
t
 is the angular half-width of the receiver, 

! 

"
l
 is the angular half-width of the transmit beam, 

! 

"  is the optical depth, 

! 

"  is the fraction of 

energy in the forward peak of the scattering phase function, and 

! 

"
sca

 is the scattering 

coefficient.  

 

While this equation was derived only for a semi-infinite scattering medium, let’s examine the 

general approach implicitly embedded in the formulation. First, the latter half of the complex 

integral represents the successive convolutions of photons from the laser with the front lobe 

of the scattering phase function. Effectively, this portion of the equation is calculating the 

temporal and spatial distribution of the flux (or photons) due to beam divergence and 

scattering. The expression in the middle line could be viewed as calculating the relative 

power at each of those locations weighted by the probability of scattering in that location. 

The spatial and temporal distribution of the photons are weighted by how much power they 
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each represent and how much of that power is scattered. The backscattered photon stream is 

then calculated by the weighted average of the backscatter lobe of the scattering phase 

function, 

! 

p"n R( ) p ",R( ) . This provides us with the power from each location within the 

scene. Those powers are then integrated and propagated back through the receiver to the 

detector elements.  

 

The more generalized LIDAR model that is presented in this dissertation parallels this basic 

approach. The photon mapping paradigm and the source model attempt to first generate a 

sufficient estimation of the temporal and spatial distribution of photons within the scene. The 

photon distribution is not just due to scattering and absorption, but also includes surface 

interactions including multiple bounces in complex scenes, such as forest canopies. This is 

done during the forward propagation or tracing stage of photon mapping. The photon map or 

maps generated represent the temporal and spatial distribution of photons. Each photon 

bundle within the map represents a specific portion of the power from the transmit pulse that 

reached that location within the scene. The fraction of the power that is scattered or reflected 

at each of these event locations is calculated using the local optical properties of the volume 

or surface element. Because the photon map records the event location and the incident 

angle, the actual BRDF or scattering phase function can then be applied to calculate the 

backscattered return for each event in the photon map. We are not limited to using the 

averaged backscattered component or to assuming Gaussian, forward scattering only. In fact, 

we can importance sample real-world BRDF or scattering phase function data if available in 

the DIRSIG optical properties library. Lastly, we can sum up all of those contributions, apply 

the appropriate optical transfer functions for the receiver, and sample the received signal 

according to the user-defined inputs. Traditional photon mapping utilizes density estimations 

that are carefully back-traced to sensor; however, this variant is more akin to a photon 

counting process and permits us to generate a high fidelity, time-gated return signal for very 

complex scenes, including scenes involving scattering media. Since the total travel time for 

each recorded event was added to the photon map data structure, the photon map represents 

the temporal distribution of flux in the form of the impulse response of the scene. If linearity 

is assumed, then the full temporal distribution can be obtained by convolving the back-

propagated signal with the transmitted pulse waveform. The next few subsections dive into 
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more of the details of this modeling approach: source and sensor modeling, modified photon 

mapping approach, passive and thermal contributions, atmospheric backscatter modeling, 

instrument and platform modeling, and the generalized modeling process. 

4.2.2 Source and Sensor Modeling 

Implementation of the laser source and sensor models entailed the development of a new 

software source object and modifications to the built-in sensor objects. The first new object 

was a flexible source model that supports directional characteristics and the spatial, spectral, 

and temporal distribution of source photons. In the current implementation, the system is 

modeled in a monochromatic mode at the peak wavelength of the source. The temporal shape 

of the pulse is stored parametrically in each photon bundle rather than shooting photons as a 

function of time. If linearity is assumed, then this approach is reasonable. The pointing and 

spatial distribution of the source is numerically modeled based on either Gaussian or top-hat 

spatial distributions; however, the hooks were put into place to support importance sampling 

of other spatial distributions so that one could opt to model specific systems or modes more 

accurately. The transmitter coordinate system is nearly arbitrary and is defined relative to the 

scene and/or to the detector positioning and pointing geometries. This allows the user to 

model most co-axial and bi-static systems, including the platform and scanning motion. 

 
A robust and flexible suite of sensor software objects was already available within DIRSIG 

and were directly incorporated into the DIRSIG LIDAR model. The available sensor model 

permits the user to specify very complex focal plane arrays or configurations of detectors in 

addition to a host of additional functions such as point spread functions, spectral responses, 

etc. The key DIRSIG input parameters for a LIDAR simulation, including the source and 

sensor characteristics, are illustrated in Figure 57. In future upgrades, the LIDAR model will 

likely expand to include spectral characteristics of the photon bundles and then the full 

spectral capabilities inherent in the sensor model will be become more crucial. For now, the 

source and sensor parameters shown in Figure 57 are adequate to generate synthetic LIDAR 

data sets for most elastic, incoherent LIDAR systems. 
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Figure 57: Key DIRSIG LIDAR source and sensor model inputs 

4.2.3 Modified Photon Mapping 

The photon mapping approach is the enabling paradigm for this modeling effort. As 

discussed in Chapter 3, photon mapping is a hybrid of traditional forward and backward 

Monte-Carlo ray tracing techniques. In this two-pass method, source photons are shot from a 

source into the scene using forward ray tracing during the first pass and then collected using 

a backward ray tracing during the second pass. The collection/rendering process utilizes the 

events recorded in during the first pass to calculate the sensor reaching radiance. The bulk of 

the modifications to the photon mapping approach for modeling a LIDAR system were to the 

collection/rendering phase; however, the total travel time tracking system was added to the 

forward propagation stage.  

 
4.2.3.1 Forward Propagation – Tracing 

During the first pass, a modeled photon is cast into the scene from the source and performs a 

pseudo-random walk through the scene based upon the local optical properties. The photon 

shooting function leverages the generic ray tracing support that already existed within the 

DIRSIG model. The ray tracer interacts with scene elements that have material specific 
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properties. Each material has a set of surface optical properties and an optional set of bulk or 

medium properties. The surface properties include a spectral reflectance and/or emissivity 

property. The currently supported BRDF models include importance-based sampling 

functions to support forward and backward Monte-Carlo ray tracing. The bulk properties 

include spectral extinction, absorption, and scattering coefficient models. When a volume 

scattering is modeled, a scattering phase function object is configured to describe the 

directional nature of the scattering. The scattering phase function objects also support 

importance-based sampling functions for the forward and backward Monte-Carlo ray tracing. 

Currently, the default convention for the scattering phase function is to use the Henyey-

Greenstein model and the user-supplied asymmetry parameter of the specified material. 

However, software hooks were put into place to support importance-based sampling of 

arbitrarily complex scattering phase function data. 

 

At the location of each interaction, information regarding the event is stored into a fast 3D 

data structure, referred to as a photon map. In some instances, a user may specify the use of 

multiple maps based upon material types. This is very useful for scenes involving elements 

requiring a high photon density, such as scattering media. The typical information stored is 

the location, incident direction, and event type. A critical addition for the LIDAR model was 

the total travel time. The time field accrues as the ray is traced throughout the scene; 

therefore, the additional time accrued due to multiple bounce/scattering events are accounted 

for and are used for time gating during the second pass. The modeled photon is then followed 

until it is absorbed somewhere in the scene or by the atmospheric boundary. This photon 

casting process is repeated until a specified number of interaction events have been recorded 

in the photon map(s) or until a user-defined maximum number of modeled photons have been 

cast. All of the transmitter spatial, spectral, and temporal characteristics are incorporated into 

the forward ray casting process to ensure the proper temporal and spatial distribution of 

photon events is generated. 

 
From an absolute radiometry perspective, each modeled photon represents a “photon bundle” 

emitted from the source. Similar to traditional photon mapping, the variance of the estimated 

received photon stream is intimately linked to the number of photon bundles cast into the 
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scene. The number cast must be sufficient to obtain a statistically significant number of 

events throughout the FOV of the sensor. Depending upon the angular extent of the beam, 

the FOV of the sensor and the spatial detail of the scene, approximately 50,000 to 1,000,000 

photon bundles must be utilized in the photon mapping process to create reliable statistics for 

topographic returns. For volume scattering returns, this number may need to be higher 

depending on the absorption and scattering coefficients and the spatial extent of the 

participating volumes. In some high scattering cases, I have utilized up to 2.5 million photon 

bundles.  

 

The final result of the tracing phase is a spatial and temporal distribution representation of 

the photons throughout the scene in a readily accessible data structure. For demonstration 

purposes only, Figure 58 was generated to show a sample what a side-profile of a 3D photon 

map looks like for a scattering medium. A pulsed plane wave was shot through a very high, 

generally forward, scattering layer with a 100% absorbing plate as a backdrop. The high 

scattering coefficient was selected so that the scattering paths of the photons and the pseudo 

random-walk nature of the process could be easily shown. While the scattering is primarily in 

the forward direction, the spreading of the beam and the random walk of some stray photons 

due to multiple scattering is readily evident. This photon map would then be used in the 

second pass/phase to calculate the backscattered return form the scattering layer. 
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Figure 58: Sample volume scattering photon map profile 

4.2.3.2 Backward Propagation – Rendering 

The second pass or backward propagation/rendering phase is driven by a “capture method” 

object within the system that directs how the outputs for the detectors on how the focal plane 

are computed. The capture method calls a series of radiometry solvers including the passive, 

emissive, and LIDAR-specific modules. Each radiometry solver encapsulates an approach to 

predict the energy reflected, scattered, and emitted by a surface or volume. These solvers 

utilize the material specific and bulk optical properties to predict their results and propagate 

the energy back to the sensor. One or more of the radiometry solvers can be assigned to each 

element in the scene. To support the active LIDAR returns, a new radiometry solver was 

created to compute the returns from a scene surface or volume by using the optical properties 

and the photon map to estimate the number of incident photons at the element’s point in 

space. Unlike the existing radiometry solvers that would place the final result in a time-

independent result object, the LIDAR-specific radiometry solver places the result into a time-

gated result object. The time gating process is governed by a user-defined signal gate 

consisting of a start, stop, and delta time.  
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Rays are cast from the image plane into the scene and the radiometry solver compiles a “hit 

list” with all of the interactions with scene elements. This hit list is then sorted and the 

appropriate radiometry solvers are run for each scene element (both passive and active). The 

LIDAR specific capture method then forward propagates the energy to the focal plane and 

then writes the arriving photon counts to the output file. The focal point of discussion for the 

rest of this subsection is the LIDAR radiometry solver that uses the recorded photon map 

from the tracing stage to determine the temporal signature returning from a particular scene 

element.  

 

Figure 59 through Figure 63 illustrate the general process that the LIDAR capture method 

and radiometry solver cycles through for each individual detector element. The initial 

recorded photon map (see Figure 59) contains the temporal and spatial distribution 

information for the photon bundles. Each bundle within a specified photon map has the same 

power and each entry in 3D kd-tree data structure has a location, time-of-arrival, and incident 

angle. Figure 59 is a cartoon of a volume photon map that we shall use for demonstration 

purposes. The scene is a simple gaseous layer covering a reflecting plate. The photon events 

recorded on the surface are not shown for convenience.  

 
Figure 59: Initial recorded photon map after forward ray tracing 

The capture method turns over a sorted hit list, the detector element vector, and detector 

element FOV. The LIDAR radiometry solver then projects the detector element FOV into the 

scene and filters the photon map to eliminate contributions from regions outside the FOV. 
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Figure 60 illustrates this process. The number of hits in the hit list is two for this situation, 

one for the surface and one for the volume element. The LIDAR radiometry solver will 

handle the solution for each of these elements slightly different. Traditional photon mapping 

would employ radiance estimation techniques based upon localized densities on the surface 

or with the volume element. However, to accommodate the temporal aspects of a LIDAR 

simulation, we elected to adopt more of a photon counting approach introduced in Chapter 3.  

 
Figure 60: Collection Step 1 – Trace ray from detector and project FOV 

For surfaces, the photon map is searched for all photon events that are within the detector’s 

footprint. The local reflectance property and the BRDF for each event are applied to calculate 

the number of photons that are reflected back to the sensor in the direction of the detector 

element. A parallel process is shown in Figure 61 for a volume element. As shown in Figure 

61, the LIDAR radiometry solver applies the probability of scattering and the scattering 

phase function to each and every volume event within the detector element FOV based upon 

the recorded incident angle. The result is that we now have an estimate of the number of 

photons at specific times within the detector element FOV.  
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Figure 61: Collection Step 2 – Apply phase function and scattering probability 

The final step is to forward propagate the energy back to the focal plane, convolve with the 

transmit pulse shape to temporally spread each photon bundle, range gate the received signal, 

and sample according to the user-defined inputs. This is illustrated in Figure 62. The 

convolution operation technically is applied to each individual photon event propagated back 

to the focal plane; however, if the process is assumed to be linear, the distinction is merely a 

matter of implementation. This process can be mathematically expressed as: 
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where 

total
!  is the temporal photon stream, surface

!  is the photon stream from the surface, 
0
!  is 

the optical path length from the surface to the focal plane, 
d
!  is the pulse duration, t0 is the 

accrued time of arrival at the focal plane, 
sca

!  is the scattering coefficient, ( )!p  is the 

scattering phase function of the nth photon in the map, 
n
!  is the accrued time of arrival at the 

focal plane for the nth photon in the volume photon map, 
rw
!  is the width of the receive 

window, np is the pulse number, and T is the pulse transmit period.  

 

Figure 63 shows the return from a range-gated pulse that is sampled. The 2.5 nsec wide pulse 

was fired at a flat plate at 1200 m. It was range gated and then sampled 0.1 nsec spacing. The 

smooth curve is the analog signal and the stepped-response is the digitally sampled signal. 
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This is far more than would be required for simulating most LIDAR systems; however, it 

demonstrates the rigorous nature and flexibility of this modified modeling approach to 

support more detailed external detector models. Users may use external detector models to 

incorporate design specific detector characteristics, such as dark current, blooming, fill 

factor, probability of detection, etc.  

 

The final responsibilities of the capture method are to run the appropriate passive, thermal, 

and atmospheric backscatter radiometry solvers and write the arriving photon counts and 

auxiliary data to the designated output file. The next few subsections will briefly address 

these three radiometry solvers and some of the assumptions that are made in the current 

model. 

 

 
Figure 62: Collection Step 3 – Sum, range-gate, and sample photon stream 

 



192 

 
Figure 63: Range-gated and sampled backscattered pulse 

4.2.4 Passive and Thermal Contributions 

As indicated in the previous subsection, the capture method may also call a variety of 

different radiometry solvers based upon which ones are assigned to a specific scene element. 

One of the requirements for this modeling effort was to ensure that the passive and thermal 

components were adequately captured. Because the LIDAR model was built within the 

DIRSIG framework, the capture method has direct access to the radiometry solvers that are 

the backbone of the DIRSIG passive and thermal model. As mentioned earlier in this chapter, 

the passive portion of the DIRSIG module has been validated and provides an inherent 

capability to the LIDAR model that is often missing in many research LIDAR scene 

simulation tools. The passive radiometery solvers already existed in the DIRSIG framework 

and were updated to work in concert with the LIDAR-specific radiometry solver and capture 

method. The options with the various passive radiometry solvers to disable the thermal model 

or the texture maps were maintained for user convenience and flexibility. 
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Figure 64 illustrates the physical processes for the solar and emissive contributions in a 

typical scene with a plume. The primary components for the solar terms are the direct and 

reflected solar flux, the upwelled radiance, and the solar radiance that is reflected and 

scattered. As illustrated in Figure 65a, the DIRSIG radiometry solvers currently account for 

the majority of these terms, with the exception of the effects of volume scattering by the 

reflected or direct solar radiance. The emissive contributions in the LIDAR model (Figure 

65b) are limited to primarily the direct and upwelled radiance. The scattering effects and the 

reflections off of scene elements for the self-emitted radiance are not directly addressed. The 

hot source scattering from the stack can be significant and could be added as another source 

object in the future. The baseline passive radiometry solvers do not readily handle the effects 

of multiple scattering; however, future research efforts may overcome this capability and the 

current passive radiometry solvers accurately predict the dominant contributions for a 

LIDAR return signal. 

 

The total passive contribution is highly dependent upon the receive window and the sampling 

rate. They are assumed to be wide-sense-stationary with respect to the receive window and 

are linearly added to the LIDAR return signal. The additional received power is also greatly 

dependent upon the specified time, day, location, viewing geometry, and atmosphere. All of 

these aspects were already built into the passive side of the DIRSIG and were directly 

leveraged. Additionally, the user can turn off any of the radiometry solvers so that the solar 

and emissive terms are in effect zero. This option may limit the complications associated 

with interpreting the results of a particular case study where the solar and emissive terms are 

not as relevant. In contrast, the passive contributions are not trivial even when collecting at 

night. The thermal aspects will be discussed in Chapter 5; however, an example of the 

difference between the solar contributions at midnight versus noon on a spring collect in 

Rochester, NY is shown Figure 66. The simulation is setup so that a single pulse is fired at a 

flat Lambertian plate and the entire beam is collected by the receiver. The results are then 

plotted for different plate reflectances. The validity of these results will be discussed further 

in Chapter 5.  
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Solar contributions 

 

    
(b) Emissive contributions 

Figure 64: General passive contributions for the LIDAR return signal 
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(a) Solar contributions 

 
(b) Emissive contributions 

 
Figure 65: Passive contributions to the LIDAR return signal modeled in DIRSIG 
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Figure 66: DIRSIG simulation of passive solar contribution for a pulse fired a Lambertian 

plate with different reflectances (mid-latitude summer atmosphere; Rochester, NY) 

4.2.5 Backscattered Atmospheric Returns 

In the current LIDAR model, the atmosphere is assumed to be spatially uniform as a function 

of position and altitude, which may not be accurate for some real-world applications. The 

horizontal and vertical structure of the atmosphere results in different absorption and 

scattering characteristics as a function of location. Ideally, robust atmospheric optical models 

like MODTRAN and FASCODE would drive both the extinction and scattering optical 

properties of the atmosphere. DIRSIG currently uses the extinction coefficients extracted 

from the existing MODTRAN and FASCODE derived tables. However, extraction of the 

vertically structured scattering coefficients and phase functions from MODTRAN 

(FASCODE does not support scattering) would require custom modifications to the 

MODTRAN code. As an alternative, the user can create their own scene elements with user-

defined extinction and scattering properties to replace the atmosphere if this level of control 

is critical. Additionally, the user could then determine if photon mapping was used for a 

specific layer, such as a cloud or fog layer, or if the default atmospheric radiance solver was 

called. 
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Under most conditions, the extinction and backscatter coefficients of the atmosphere are 

extremely small, which means that the probability of absorption and scattering events within 

the atmosphere is very low. For example, the scattering coefficient for a dry atmosphere 

might be 1x10-5 m-1, which means that you would need to shoot 105 photons into a 1-meter 

long box of atmosphere to witness one scattering event.  Many systems are attempting to 

resolve vertical resolutions of a fraction of a meter and from an altitude of several thousand 

meters, which implies that you would need to model 1010 photons within each spatial 

detector element in order to get one scattering event within each numerical contribution 

element.  To achieve robust statistics, this number would be ideally several orders larger.  

 

To use the numerical approach utilized by the photon mapping technique, the number of 

photons that would need to be shot into the atmosphere to create a statistically accurate 

representation of the scattering events would be many orders of magnitude larger than the 

number of photons needed to model the topographic returns.  To avoid the problems of 

predicting the atmospheric returns numerically, the atmospheric returns from the model are 

currently modeled analytically using the formulation proposed by Measures (1984): 
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which was discussed in Chapter 3. For most of the LIDAR systems modeled to date, the 

atmospherically scattered photon returns amount to only a few photons accumulated over the 

entire path length, which is far below the detection level of the modeled systems; however, if 

these approaches are used to model a significantly longer path length or an optically thicker 

atmosphere (containing fog), then these numbers will grow to be large enough for 

consideration by the detection model.  

4.2.6 Instrument and Platform 

Most operational LIDAR systems, including DIAL systems, utilize some method of relative 

scanning to increase the spatial coverage of the system. The changes in viewing geometry 

during the scanning process and the location, orientation, and stability of the instrument 
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platform can affect the final data products, particularly for airborne systems. For example, 

the ability to resolve a specific object in a topographic data product derived from a dataset 

might be dependant on the angle from which it is illuminated. For a DIAL sensor, the 

measured concentration path length of a gaseous volume is also very dependent upon the 

relative geometry. The overall accuracy of a derived product might also depend upon the 

overall stability of the platform and knowledge of the platform’s position. The DIRSIG 

framework has a flexible platform model that allows the platform to be positioned and 

oriented as a function of time. Furthermore, the instrument can be pointed with respect to the 

platform either statically or dynamically using one of the available instrument mount objects. 

For instance, these mount objects support temporal scanning using basic sinusoidal across-

track scanning as a function of a user-defined scan rate. Another available option is for the 

user to provide a detailed platform position description file. The description file enables the 

user to define very complex platform and scanning geometries. The latter approach is very 

useful for defining custom collection scenarios, such as an extended-dwell, spotlight-imaging 

mode. The detailed information associated for each pulse is included in the DIRSIG LIDAR 

output pulse cube(s) and could be used to support pointing accuracy and knowledge 

sensitivity studies. This level of fidelity and sophistication already existed within the DIRSIG 

framework and was one of the inherent benefits of incorporating a robust LIDAR module 

into DIRSIG.  

4.2.7 Generalized Modeling Process 

With the basic components of the model now described, the overall modeling process can 

now be summarized. A modeling run consists of the user specifying the scene to be modeled, 

the instrument and instrument mount description, the source description, the platform 

positioning data, and a set of tasks that describe the time windows over which the data is to 

be generated. The data generation process begins by walking through each user-defined task 

according to a time step that is usually driven by the source pulse repetition rate. During each 

time step, the platform and instrument mount positions and orientations are computed for the 

current time, the source is fired and fills the photon map(s), the focal plane is captured which 

collects the photons and propagates them to the sensor, and the focal plane reaching photon 
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counts are written to the output file. This cycle repeats for each time in the task window and 

for each task in the list. 

 

The final product of the DIRSIG tool is a 3D cube consisting of the photon counts as a 

function of two horizontal spatial dimensions and one temporal dimension (Figure 67). The 

LIDAR data cube is typically ingested by an external focal plane model to handle instrument 

specific detection schemes (e.g. linear mode versus Gieger mode), noise sources, etc. In these 

situations, the data cube should be generated with a significant amount of over sampling in 

the spatial and temporal dimensions to allow for spatial and temporal integration by the 

external sensor model. Further external processing of the resulting modeled raw instrument 

outputs can be used to create final data products, such as topographic maps, concentration 

path length maps, etc. 

 

For the purposes of the DIAL case studies, the detector/sensor modeling process was 

simplified a great deal to avoid introducing sensor specific artifacts and over-complicating 

the process. For instance, neither noise nor pointing inaccuracies were introduced into the 

datasets and result in unique grid patterns in the topographic products. The processing 

algorithms used for both the topographic and DIAL simulations were fairly straightforward 

and did not use any advanced processing algorithms, such as co-coincidence processing; 

however, the output of the DIRSIG LIDAR module certainly does not prohibit such options 

for future investigations. 
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Figure 67: Conceptual end-to-end DIRSIG LIDAR simulation process flow 

4.2.8 Practical Implementation Issues 

With every modeling approach, some practical implementation concerns and issues must be 

considered. The DIRSIG LIDAR model is no different. Two of the most important 

considerations that drive the accuracy of the simulated datasets are establishing the desirable 

photon map density and calculating the optical parameters of the participating media or scene 

objects. The next few subsections briefly present the selected approach for these two critical 

factors and discuss some general guidelines when setting up LIDAR simulations in DIRSIG.  

 
4.2.8.1 Multiple Photon Maps and Required Photon Density 

Traditional photon mapping implementations typically use two photon maps when dealing 

with volumes or participating media, a global and a volume map. Each map uses slightly 

different estimation techniques and often has different sample density requirements due to 

the nature of the scene elements. Complex pheonmena, such as multiple bounces or multiple 

scattering, require very large numbers of photon bundles to ensure adequate statistical 

sampling. Simpler scenarios, such as a direct bounce or double bounces, require fewer Monte 
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Carlo traces and thus require less memory or computational time. Recording the photon 

events into multiple different maps affords the flexibility of increasing the sample density for 

complex portions of the scene while not adding unnecessary computations or memory 

allocations for the rest of the scene. Traditional photon mapping rarely uses more than two 

photon maps due to the increased complexity during the rendering phase; however, the 

computational and memory reduction due to multiple maps for the temporal return from a 

LIDAR pulse is very beneficial because the required photon density may vary significantly 

across the scene. Thus, the DIRSIG LIDAR model was built with the capability to specify 

and assign a large number of photon maps. Theoretically, every material in the scene could 

have a separate photon map. This would not be an efficient use of resources or memory; 

however, the flexibility was added to provide the user with more influence over the resulting 

photon density within a scene.  

 

As with traditional photon mapping, the estimation techniques within the DIRSIG LIDAR 

radiance solvers vary for volume versus surface elements. Thus, breaking the photon 

distribution approximation into two or more maps often avoids confusion and potential 

simulation artifacts. This feature also allows the user to drive the model to obtain a higher 

density of photon bundles in critical locations (such as in a gaseous plume) so that the 

variance of the estimate is greatly reduced. For instance, one might only need 50,000 photon 

bundles in the surface map, but a good estimate of the return signal from the plume may 

require 500,000 events due to the large amount of scattering. A similar case can be made for 

topographic LIDAR simulations of tree canopy penetration. The structure allows the user to 

specify the desired number of photon events to be recorded in each map. As a safety valve, 

the user also must specify the maximum number of photons to cast into the scene to avoid 

trying to fill a photon map that will never be filled (i.e., shooting at a plume that isn’t in the 

transmit beam for this pulse). The cost of this flexibility is complexity within the code. The 

radiometry solvers must be given the appropriate weighting of each photon bundle to ensure 

that the numerical estimates remain consistent.  
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4.2.8.2 Optical Parameter Generation Methodology 

The modeling described throughout this chapter demands that accurate physical and optical 

properties of the plumes or gaseous layers be generated or provided. Figure 68 illustrates the 

conceptual flow diagram for generating one of these properties, the scattering phase function. 

The scattering phase function is probably the most involved optical property required and is 

shown here as an exemplar of the overall approach. Portions of this diagram are not yet fully 

in place and the majority of the diagram is not automated and requires significant user 

interaction. One of the future upgrades of the DIRSIG LIDAR model may involve creating a 

more fluid and automated process; however, the general process and philosophy illustrated in 

Figure 68 was a driving factor for the front-end design of the LIDAR model.  

 
Figure 68: Scattering phase function generation methodology 

In this subsection, the process for generating the scattering phase functions used in this 

research effort and a few of the basic assumptions are discussed. The first piece of 

information necessary is fairly rudimentary, the species involved. Ideally, we would be 

interacting with a voxelized plume model so that the inhomogenous optical properties can be 
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more easily encapsulated for the DIRSIG radiometry solvers. The user either supplies a set of 

complex indices of refraction for the wavelengths under consideration or the information is 

pulled from a locally stored database. The plume model or the user also determines the 

particle size distribution. This may be a localized particle size distribution in the case of a 

voxelized plume model. The scattering phase function and other associated optical properties 

are then generated using the MIEDU code discussed in Chapter 3. Alternatively, the DIRSIG 

input parsers allow a user to input a predefined set of optical properties. Currently, the latter 

approach is the default mode of operations. If multiple species are present, then some form of 

linear combiner is used in conjunction with the concentration of each species to generate the 

actual optical properties, which is the scattering phase function in this case.  

 

Mie codes produce very detailed numerical descriptions of the scattering phase function; 

however, the functions are not readily reversible which causes some difficulty in the photon 

mapping paradigm. One option is to use importance sampling to replicate the stochastic 

behavior of the actual scattering phase function, but the computational time proved to be 

cost-prohibitive. Therefore, a more reasonable approach was adopted. The Henyey-

Greenstein function was used to approximate the actual scattering phase function. The 

necessary input parameter is the asymmetry parameter which is readily available from the 

Mie calculations. The Henyey-Greenstein function is reversible and works well for highly 

forward scattering or nearly isotropic scatterer, but could be a crude approximation for 

complex scattering phase functions. For many aerosols and plume constituents, the Henyey-

Greenstein approximation should be adequate. However, this is not necessarily true for every 

scattering phase function. This is where caution and discernment must be applied. One 

should carefully evaluate the degree to which the reversible approximation accurately 

represents the actual scattering phase function. In the future, one may consider using a higher 

order combination of Henyey-Greenstein functions to more accurately estimate the scattering 

phase function, but that was not done for this research effort. The modifications to the 

DIRSIG model necessary to support higher order Henyey-Greenstein functions are relatively 

straightforward and could be added as a future enhancement. 
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As noted previously in this subsection, the critical physical input parameters for a particular 

species are the particle size distribution and the complex indices of refraction. The complex 

indices of refraction are typically well known for many constituents of interest, such as 

atmospheric aerosols. For example, some of the complex indices of refraction for aerosols 

modeled in MODTRAN for common atmospheric remote sensing applications are plotted in 

Figure 69. The atmospheric aerosols range from very specific constituents, such as H2SO4, to 

broader categories, such as dust-like aerosols, over the wavelength region of 0.1 µm to 15.0 

µm. Unfortunately, the particle size distribution is often more difficult to ascertain for many 

real-world applications. Table 10 lists the particle size distributions assumed for common 

plume scatterers, such as soot, fly ash, and water vapor. The distributions do not fully 

describe the anticipated particle size distribution for a real-world plume, but they are 

sufficient for the purposes of verification of the model, demonstrating how one might 

generate the optical characteristics of a participating scene element, and exploring the 

impacts of scatterers on DIAL measurements.  
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(a) Real part 

 

 
(b) Imaginary part 

Figure 69: Typical atmospheric complex indices of refraction (MODTRAN database) 
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Table 10: Particle size distribution description for typical plume constituents 

Species Particle Size 
Distribution Type 

Distribution 
Parameters 

Water Vapor Gamma aeff = 6.0 
a0 = 4.0 

Fly Ash Gamma aeff = 6.7 
a0 = 10.8 

Fine Soot Lognormal am = 0.5 
σ = 1.09527 

 

Many databases exist for the complex indices of water. The dataset chosen for this effort was 

the Segelstein dataset published in 1981. Both the real and imaginary components of the 

indices of refraction are shown in Figure 70 from 0.1 µm to 3.0 µm. The water vapor particle 

size distribution was based upon the industry standard C1 cloud model, which is gamma 

distribution and is shown in Figure 71. To simulate a more realistic plume scene, the particle 

size distribution would likely need to be modified, but the C1 cloud model distribution was 

deemed adequate for a starting point and to demonstrate DIRSIG’s capabilities to model 

multiple scattering in a plume. The optical parameters of water vapor plotted versus 

wavelength in Figure 72 and Figure 73 were then generated using the process described in 

this subsection and the MIEDU code. The water vapor optical properties could then linearly 

combined with any other constituent based upon the relative and overall concentration. Note 

that the asymmetry parameter indicates that water vapor is generally forward scattering and 

could be broadly characterized as having gsca=0.85. For this reason, many of the pulse 

scattering simulations will involve participating mediums where gsca=0.85. 
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Figure 70: C1 water cloud complex indices of refraction (Segelstein, 1981) 

 

 
Figure 71: Sample particle size distribution for C1 cloud water vapor (gamma[aeff=6.0;a0=4.0]) 
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Figure 72: C1 water cloud extinction, scattering, and absorption cross-sections 

 

 

 
Figure 73: C1 water cloud asymmetry parameter 
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As with the broader categories of atmospheric aerosols in the MODTRAN database, soot and 

fly ash are more difficult to define with respect to material makeup and particle size 

distribution. The primary reason is that the term soot encompasses a wide range of 

constituents with very different core elements and species. Both the particle size distribution 

and the complex indices of refraction vary depending upon the process and materials by 

which the soot is generated and injected into the plume. Figure 74 shows the real and 

imaginary components for two different kinds of soot as described by Chang (1990) and 

Kokhanovsky (2001). In particular, the indices are for fine soot particles with a distribution 

similar to the one described in Table 10 and plotted in Figure 75. The particles are fairly 

small with a mean around 0.5 µm. The corresponding optical parameters using 

Kokhanovsky’s and Chang’s indices of refraction are plotted in Figure 77 and Figure 76 

respectively. Although the particle size distribution is the same for each case, the optical 

cross-sections for Chang’s fine soot particles are approximately half the size of 

Kokhanovsky’s and the scattering phase function generally is more in forward-scattering 

than Kokhanovsky’s.  

 

 

Figure 74: Complex indices of refraction for soot 
(Chang, 1990 and Kokhanovsky, 2001) 
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Figure 75: Soot aerosol particle size distribution (lognormal[am=0.5;σ=1.09527]) 
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(a) Optical cross-sections 

 

 
(b) Assymetry parameter 

 
Figure 76: Optical properties for soot using Chang’s indices of refraction 
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(a) Optical cross-sections 

 
(b) Asymmetry parameter 

Figure 77: Optical properties for soot aerosol using Kokhanvosky’s indices of refraction 

 

A typical factory stack plume is not solely comprised of molecular constituents, some water 

vapor, and few fine soot particles. In particular, the particle size distribution for the soot-like 

particles is often bi-modal with fine soot particles and something like fly ash involving larger 

particles. The fly ash distribution in Table 10 and plotted in Figure 78 are based upon the fly 

ash particle size distribution measured by WHO??? (WHEN). Since the specific complex 

indices of refraction were not available, Chang’s indices for fine soot particles were used for 

the optical parameter generation process. The results from MIEDU are shown in Figure 79. 
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The optical cross-sections for our fly ash are very similar to the fine soot particles based upon 

Chang’s indices of refraction; however, the asymmetry parameter is much closer to 0.9 and 

thus more forward scattering than our fine soot particles.  

 

 
Figure 78: Sample particle size distribution for fly ash (gamma[aeff=6.7; a0=10.8]) 
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(a) Optical cross-sections 

 

 
(b) Asymmetry parameter 

Figure 79: Optical properties for fly ash using Chang’s indices of refraction 

4.3  Topographic and DIAL Processor 

For the purposes of model verification and demonstration, a simple topographic and DIAL 

processor were constructed. The fundamental basis and description for both processors was 

discussed in Chapter 3. Essentially, the processors take the DIRSIG LIDAR cubes, ingest 

them, process them, and then output the data points into a standard topographic xyz-ASCII 

data format. The primary difference between the topographic and DIAL output files is that 
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the DIAL includes a fourth column indicating the measured concentration path length for the 

associated pulse set. Both processors are based upon very basic detection schemes, either 

Geiger counting mode or linear mode. Additionally, the processors do not employ co-

coincidence processing or pulse averaging to improve the accuracy of the data products. This 

could certainly be added into the software in the future.  

4.4  Model Development and Verification 

The DIRSIG LIDAR module was built using a spiral development methodology. The first 

step was to prioritize the broad range of requirements and identify the initial core photon 

mapping components that would form the foundation of the DIRSIG LIDAR model. Once 

those foundational components were put into place, the general development approach was to 

incrementally add specific capabilities or functionality to that foundation and then perform a 

series of verification tests at each stage of development. Additionally, the verification tests 

for the previous stages were repeated to ensure that the modifications to the model did not 

introduce unforeseen artifacts or errors. This iterative verification process was designed to 

build up a high level of confidence through analyzing a series of simplified scenes in 

conjunction with phenomenological demonstrations for more complex scenarios or 

capabilities. One should note that verification indicates a proper physical basis such that the 

results are consistent with the underlying physics. Validation would require real world data 

collection and associated truth data. Such LIDAR datasets were not readily available at the 

time of this research; however, the DIRSIG LIDAR model was verified at each stage using 

analytical predictions and qualitative demonstrations. 

 

Imbedded in the phenomenological demonstrations are some of the functional capabilities 

developed or inherited from the legacy DIRSIG modules. For instance, incorporating the 

existing moving platform and sensor scanning modules primarily involved developing a 

time-based, iterative calling interface within the LIDAR radiance solver. The testing of those 

modifications was focused on confirming that the integration was done properly. In this 

instance, simulating a scanning flight scenario over Microscene and examining the resulting 

topographic dataset accomplished the verification. In general, the legacy DIRSIG modules 

were not re-validated or re-verified unless significant modifications were required to 
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accommodate interaction with the DIRSIG LIDAR modules. A small fraction of the inherited 

prototype code, such as the fully developed speckle and turbulence effects components, were 

not re-verified because they were not utilized in this research initiative.  

 

For the critical analytical verification efforts, the basic plane-parallel light scattering layer 

setup introduced in Chapter 3 and illustrated in Figure 80 was advantageous. Not only could 

the scenario be analytically solved for a variety of cases, but the simple setup also decoupled 

the geometrical effects from the light scattering effects. The simple scene was comprised of 

either a semi-infinite or finite plane-parallel layer of participating media with an underlying 

Lambertian surface. For most of the verification runs, the planar surface was Lambertian 

with a known reflectance and was 1200 m downrange from the co-located transmitter and 

receiver. Because many of the generalized RTE boundary conditions do not account for any 

stray light re-entering the layer once it departs, the surface in some instances was defined to 

be 100% absorbing. Although DIRSIG’s BRDF model was tested for functionality, such 

reflection functions significantly overcomplicate the analytical predictions and were not 

introduced during the verification process. The homogenous participating layer had a 

specified optical thickness, a scattering phase function, an absorption cross-section, a 

scattering cross-section, and a constant particle density. To minimize atmospheric effects, a 

dry atmosphere was assumed with the extinction coefficient of 1x10-5 [1/m]. The primary 

exception was any simulations after the MODTRAN interface was established based upon 

the legacy passive DIRSIG modules.  
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Figure 80: Simplified verification scene setup 

 

The key LIDAR system parameters used for the DIRSIG verification runs are listed in Table 

11. The parameters were selected to represent a typical LIDAR system configuration. Due to 

numerical precision limitations, the optical throughput parameter was adjusted to ensure that 

the dynamic range of the output LIDAR cubes was accommodated. For comparison to the 

predictions, the simulated optical throughput was backed out so that the resulting throughput 

was 1.0. This throughput level was chosen because the results could then easily be scaled for 

a more realistic throughput. Unfortunately, the scaling operation causes a loss in numerical 

precision and ultimately accuracy. The specific impact and recommendations will be 

discussed at length in Chapter 5. The detector size was also varied for some of the 

verification tests to investigate the photon density required for different scenarios. The full 

beam could easily be collected from a surface at 1200 m downrange with a 50 mm detector.  

While DIRSIG supports much more complicated sensor architectures, a single detector 

element centered on the optical axis was used as often as possible to simplify the analytical 

predictions. 
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Table 11: LIDAR system configurations for DIRSIG verification runs  
Parameter Configuration A 

Wavelength (λ) 532 nm 
Pulse Energy (PL=NLhc/λ) 6 µJ 
Pulse Repetition Frequency (PRF) 5 KHz 
Pulse Length (τD) 1 ns 
Aperture Radius (r0) 100 mm 
Focal Length (f) 400 mm 
Transmit Beam Radius (w0) 5 mm 
Beam Divergence (φD) 8.0 mrad 
Optical Throughput 0.02 * 
Detector Size  50 mm ** 
*   Throughput selected to ensure dynamic range of output cube was accommodated 
** 50 mm detector represents collection of entire beam 

 

4.4.1 Time-gated Topographic Return and Temporal Pulse Spread 

The first key development milestone was the implementation of the core photon mapping 

components described previously in this chapter. The shooter function was adapted to handle 

a wider variety of input parameters, a more faithful representation of the photon mapping 

architecture was put into place, and the new collection/rendering phase was coded. Although 

the full capabilities of the model were somewhat limited, a simple topographic LIDAR 

capability was now available. A suite of verification tests was then established to ensure that 

the detected topographic return signal was accurately simulated. In particular, two of the 

most important tests were the temporal pulse spread demonstration and the analysis of the 

integrated return signal power. The temporal pulse spread demonstration stressed the 

arbitrary sampling and time-gating requirements, the fidelity of the range return bins, and the 

validity of the new photon mapping radiance solver approach. A LIDAR pulse was fired at a 

tipped Lambertian surface and the detected pulse was compared to a perpendicular surface 

return (illustrated in Figure 81). The latter should have retained the original pulse shape 

shifted to the range of the target. The tipped plate should result in a spreading of the pulse 

power over a broader set of range bins. The degree of pulse spread should correspond 

directly to the beam divergence and the angle at which the surface was tipped. The second set 

of tests verifies that the integrated return signal power from a surface element is accurate. All 

of these tests involved either a single or just a few pulses averaged together. 
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Figure 81: Illustrated comparison of the signal returns from a tipped and flat plate 

 

4.4.2 Impact of an Absorbing Layer 

The next development milestone was the addition of signal attenuation due to an absorption 

layer. While this milestone may appear to be a fairly straightforward, the modifications were 

fairly extensive because the entire architecture to support volume elements and their 

associated optical properties had to be developed and then incorporated into the existing 

model. By limiting ourselves to absorption by a participating layer, we could leverage the 

previous integrated return signal power tests and analytically predict the attenuation of the 

signal due to absorption by that layer. Additionally, absorption layers in the absence of 

scattering exhibit a very predictable exponential event distribution; therefore, statistical 

analysis of the resulting photon maps and the mean photon path lengths provided us with 

insight into how well the photon tracing stage was propagating the photons throughout the 

scene. The results of these tests are discussed further in Chapter 5 and eventually formed the 

basis for an early DIAL demonstration that was sub sequentially enhanced to form the 

baseline for the case studies on the impact of scattering on DIAL measurements. 

4.4.3 Impact of an Scattering Layer 

The next upgrade involved augmenting the volume properties to support scattering optical 

properties and then upgrading the LIDAR ray tracing engine to use the photon mapping 

techniques for photon tracing in a scattering medium as described in Chapter 3. In addition to 
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the scattering cross-section, the optical properties included a scattering phase function. As 

mentioned previously, the scattering phase function was implemented in two different ways: 

the Henyey-Greenstein approximation and a full importance sampled scattering phase 

function. The latter is embedded in the code, but currently lies dormant because the 

computational run-time was burdensome. Instead, the Henyey-Greenstein function 

approximation for the scattering phase function was adopted as the default for this research 

effort and the verification process. This is fairly reasonable for either isotropic or anisotropic 

scatterers; however, as will be discussed in Chapter 5, the layer statistics exhibit slight 

artifacts due to the inherent approximation errors.  

 

As discussed thoroughly in Chapter 3, solving the RTE for a non-stationary, directional 

LIDAR pulse is a formidable task. A straightforward, direct analytical comparison was no 

longer viable due to the in-scattered radiance and the temporal nature of the photon 

distribution throughout the scene. In lieu of a robust analytical approximation, the 

performance was verified using the RTE approximations derived in Chapter 3 for a non-

stationary, directional-pulsed source and statistical analysis of the photon events within the 

layer. Essentially, the model simulated a high-powered pulse that was fired into a weakly 

absorbing, highly scattering homogenous layer and the time-dependent backscattered signal 

was compared with the analytical approximations for the RTE: the multiple-scattering 

LIDAR equation and the non-stationary diffusion approximation. The near-surface returns 

should follow the multiple-scattering LIDAR equation fairly closely while the backscattered 

returns from deep within the layer should approach the non-stationary diffusion 

approximation. The traditional LIDAR equation was also included for reference in the results 

that are presented in Chapter 5. 

 

The suite of statistical evaluations was designed to determine if the ray tracing process 

through the scattering layer and in particular the scattering phase function was implemented 

correctly with respect to the theory described in Chapter 3. The results were not only 

evaluated qualitatively, but were also compared to specific test cases published in the 

literature for light scattering in a cloud layer (Platnick, 2001). This provides an excellent 

basis for asserting that the model is accurately simulating the photon distribution throughout 
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the scene. Lastly, a general characterization of the photon maps for various scattering phase 

functions was performed to confirm phenomenological behavior such as beam spreading and 

blooming due to scattering. Early in the stages of development, the statistical analysis of the 

photon map combined with the general investigation into the photon bundle tracing engine 

discovered a potential bias in the random number generation process used by the scattering 

phase function. The issues were then corrected and the LIDAR model performance was re-

verified. The final results for this development milestone were very encouraging and 

indicated that the modeling approach can indeed accurately model the multiple scattering 

effects on a LIDAR pulse. Final results from this portion of the verification process is also 

presented and discussed in more detail in Chapter 5.  

4.4.4 Atmospheric, Passive, and Emissive Contributions 

The atmospheric, passive, and emissive contributions were incorporated into the LIDAR 

capture method using the existing DIRSIG framework and community standard models such 

as MODTRAN and THERM. Since these components have already been validated, the focus 

of the verification efforts was to ensure that the implementation within the capture method 

was appropriate. For instance, the difference in the solar contribution for a pulse shot at 

midnight versus at noon in mid-lattitude summer (presented earlier in Figure 66) was verified 

against the data within the MODTRAN output file. A similar approach was taken for each of 

these components. 

4.5  Phenomenological Case Studies 

Not only were the phenomenological case studies selected to demonstrate the capability of 

the model to handle complex scenes and properties, but also to showcase the versatility and 

robust nature built into the new DIRSIG LIDAR module. The case studies explored in 

Chapter 5 demonstrate a host of the requirements listed previously in Table 9, but emphasize 

four in particular: complex scenes and properties, multi-bounce effects, arbitrary signal 

gating, and platform motion and scanning effects. The scenarios were all run utilizing the 

complete modeling capabilities, including such items as a realistic atmosphere and 

passive/thermal effects.  
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The first case study is the multi-bounce and “late” photon demonstration using Microscene 

area on campus. The scene has been modeled to a very high degree of fidelity such that even 

the blades of grass have facets. If one temporally oversamples and smartly range-gates over 

the “grassy” region, a small number of “lost” photons should be able to be observed and they 

were. The “lost” photons actually represent multiple bounces on a micro-scale. The details 

are left to Chapter 5. The second case study involved forest canopy penetration. Within the 

model, a broad single pulse was fired at a single deciduous tree and the time domain return 

signal was recorded. The anticipated result for the averaged return signal is illustrated in 

Figure 82. Essentially, we should get a return from the top of the tree, from the ground, and a 

small return from photons who underwent multiple bounces within the tree canopy. The third 

case study is simulation of a topographic LIDAR collect against a camouflaged target. The 

purpose is to demonstrate the high spatial and temporal oversampling capability as well as 

the arbitrary signal gating. 

 

 
Figure 82: Illustrated averaged return signal from a tree 

 

Thus far, the case studies have only involved a single pulse fired from a fixed position. Once 

the LIDAR model was modified to utilize the legacy DIRSIG platform and scanning 

modules, the next two case studies were designed to demonstrate the full capability of the 

LIDAR model to handle real-world scenarios of moving and scanning systems via an end-to-

end topographic mapping simulations. The fourth case study simulated a sinusoidal scanning 
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LIDAR as it collects during a pass over the microscene area on RIT’s campus. The simulated 

data was then processed through a research partner’s topographic processor (ITT) and 

compared to a real-world topographic data product over the same area. The fifth and final 

case study was an extended dwell demo. The simulation involved a topographic LIDAR 

collecting in spotlight mode at a particular grazing angle for a set of concealed targets on the 

edge of a tree line.  

4.6  DIAL Case Studies and Representative Datasets 

With a verified LIDAR model, we can now develop a set of simulated DIAL datasets with a 

gaseous plume or set of voxels suitable to qualitatively confirm whether common scattering 

constituents, such as water vapor or soot, can significantly degrade a DIAL sensor’s ability to 

accurately detect and measure the concentration level of a particular constituent within the 

plume. For this research effort, two types of scenes were developed. First, a simplified scene 

resembling the verification setup illustrated previously in Figure 80 with a few modifications. 

The modifications were that the Lambertian surface was replaced with a grassy surface with 

a bump and texture map and the gas box was trimmed down from semi-infinite to 200m x 

200m. DIRSIG uses a texture map derived from a real-world image to randomly select from 

a library of emissivity curves for that material type. Ideally, the approach results in emissivity 

variability across the ground that is appropriate for the material and wavelength region 

selected. The texture map used for the grass was derived from one developed by Peterson 

(2004) for the near-infrared region of the spectrum and is shown in Figure 83. The texture 

map is not necessarily accurate for the spectral region where we simulated the DIAL collects; 

however, the intent was merely to provide some emissivity variability and this texture map 

was sufficient.  

 

Methane (CH4) is a common gas measured by commercial DIAL systems that monitor 

natural gas pipelines for leaks and was chosen for that reason to be the constituent of interest 

for these DIAL scenarios. The specific gas selected is not as important as the relative strength 

of the absorption and scattering cross-sections of the plume constituents at both the “off” and 

“on” wavelengths. Water vapor was chosen as the scattering constituent because the optical 
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properties and particle size distribution functions are fairly well known and because it is very 

common in plumes. 

 

Based upon methane’s absorbance spectrum shown in Figure 85, the MWIR was selected for 

the demonstrations. Methane has a strong set of features in that region and the optical 

properties for other materials, such as the sample grass spectra shown in Figure 84 and more 

importantly water vapor, do not vary greatly. The largest group of absorption features is 

around 3.31 µm.  The wavelengths chosen for the DIAL system were 3.3058 µm and 3.3151 

µm. The latter is at the peak of a strong absorption feature and the former resides nearby with 

a very low absorption cross-section. The rest of the DIAL system parameters are listed in 

Table 12.  

 

With the methane concentration held constant, the amount of water vapor was varied in the 

gas box. The simulation results were then run through the simplistic DIAL processor and the 

output concentration path lengths were compared. The details and results are discussed 

further in Chapter 5. 

 

The second type of scene was intended to be a more realistic simulation of a DIAL collection 

against an actual plume. The scene was constructed using RIT’s Megascene Tile4 water 

treatment plant and adding a Blackadar plume with methane and water vapor. A series of 

pulses were simulated with full platform and scanning motion. In addition, the on/off pulses 

were offset by 400 nsec, which is representative of the delay for a real DIAL system. Not 

only did the pulses see different portions of the plume and ground due to the inter-pulse 

delay, but the plume model was adjusted so that the plume wandered a bit between the pulse 

pairs. A DIRSIG generated panchromatic snapshot of the scene is shown in Figure 87. As 

anticipated, the scattering induced by the water vapor did impact the DIAL system’s 

accuracy and will be discussed further in Chapter 5. 
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Figure 83: DIRSIG emissivity texture map used for MWIR grass spectrum (Peterson, 2004) 

 

 
Figure 84: Sample emissivity curves for brown field grass 

(field1_brngrass_grass_mix300.ems) 
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(a) Absorbance vs. wavelength 

 

  
Absorbance vs. wavenumber 

Figure 85: Absorbance for CH4 gas at 25oC in ppm/m 
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Figure 86: Absorbance for CH4 gas at 25oC in ppm/m in MWIR region (3.3-3.4 µm) 

Table 12: LIDAR system configuration for scattering case study  
Parameter Configuration C 

Wavelength (λOFF) 3.3058 µm 
Wavelength (λON) 3.3151 µm 
Pulse Energy (PL=NLhc/λ) 6 µJ 
Pulse Repetition Frequency (PRF) 5 KHz 
Pulse Length (τD) 1.5 ns 
Aperture Radius (r0) 100 mm 
Focal Length (f) 400 mm 
Transmit Beam Radius (w0) 5 mm 
Beam Divergence (φD) 8.0 mrad 
Detector Size  500 µm 
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Figure 87: DIRSIG panchromatic image of a CH4 gas plume inserted into the RIT’s  

Megascene 1 water treatment facility 
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Chapter 5  

Results 

Given the DIRSIG LIDAR modeling implementation introduced previously, this chapter 

details specific results from the spiral development and verification process and from 

subsequent DIAL case studies of the potential impact of scattering on DIAL measurements. 

It also presents some exemplar topographic and DIAL simulations to demonstrate the 

viability of and flexibility of the new DIRSIG modules to generate realistic LIDAR datasets. 

In general the emphasis of the discussion is on the verification, fidelity, and potential 

limitations of the new DIRSIG LIDAR module for modeling the multiple scattering and 

absorption for a DIAL collection scenario. To that end, Section 5.1 below discusses the 

analytical verification tests that were performed throughout the model’s spiral development 

cycle. Section 5.1 presents simulated results for the geometric-induced temporal pulse spread 

effects, the signal returns for a topographic LIDAR, the attenuation due to an absorbing 

layer, and the backscattered signal of a LIDAR pulse from a highly scattering medium. 

Section 5.2 follows this up with a suite of phenomenological demonstrations, including 

demonstrations for multiply bounced “lost” photons, camouflaged/concealed hard targets, 

tree canopy penetration, and end-to-end topographic system. These demonstrations not only 

showcase DIRSIG’s LIDAR modeling capabilities, but also verify that the functional 

capabilities developed or inherited from the legacy DIRSIG modules are implemented 

correctly.  

 

With the integrity and/or utility of the overall model established, Section 5.3 explores the 

impact of scattering on DIAL measurements using a simplified DIRSIG scene. The case 

study baseline also verifies the modeling accuracy of DIRSIG at least for this type of scene. 

The case study is not intended to extensively characterize the impacts of scattering on DIAL 

measurements. Instead, the results in Section 5.3 demonstrate that even a small amount of 

scattering may impact the DIAL measurement accuracies if left unaccounted for. Finally, 

Section 5.4 discusses an end-to-end DIAL demonstration using Megascene Tile 4 and the 

Blackadar plume model introduced earlier in Chapter 3. 
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5.1  Analytical Model Verification 

A wide range of functional and performance requirements were verified throughout the spiral 

development cycle. This section discusses the critical analytical verification tests and 

demonstrations that directly address the viability, accuracy, and potential limitations of the 

photon mapping theory and specifically the new LIDAR modeling approach introduced in 

Chapters 3 and 4 respectively. The analytical verification tests were purposefully simplified 

in an attempt to focus on the underlying physic-based modeling approaches and to permit 

direct analytical verification. Although the verification tests could stand on their own, each 

was designed to build upon the previous results and thus incrementally increase our 

confidence in the model. Due to the complexity associated with modeling the propagation of 

light through participating volumes, the first few verification cases are focused on 

topographic surface returns. The final two tests demonstrate the accuracy of the model for 

multiple scattering and absorption due to participating media.  

 

As introduced in Chapter 4, the general verification setup (Figure 80) remained the same for 

each of the verification tests. For the topographic cases, the gaseous layer was removed or 

assigned the properties of the atmosphere. The default DIRSIG atmosphere, which is a dry 

atmosphere with an extinction coefficient of 1x10-5 [1/m], was used in most of the cases. The 

planar surface is Lambertian with a known reflectance and is typically 1200 m downrange 

from the co-located transmitter and receiver. The LIDAR system parameters in Table 13 

were selected for most of the verification tests. The one major exception was for the multiple 

scattering analyses where a much higher powered pulse and different receiver was necessary 

to simulate the backscattered return from within a cloud layer. Also, the receiver is assumed 

to be detector limited. This assumption simplifies the geometrical form factor and thus the 

prediction calculations. For many cases, a baseline was set using the 50 mm detector solely 

because the collection area encompasses the entire beam footprint.  
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Figure 88: Simplified verification scene setup 

 

Table 13: LIDAR system configurations for DIRSIG verification runs  
Parameter Configuration A Configuration B 

Wavelength (λ) 532 nm 3400 nm 
Pulse Energy (PL=NLhc/λ) 6 µJ 6 µJ 
Pulse Repetition Frequency 
(PRF) 

5 KHz 5 KHz 

Pulse Length (τD) 1 ns 1 ns 
Aperture Radius (r0) 100 mm 100 mm 
Focal Length (f) 400 mm 400 mm 
Transmit Beam Radius (w0) 5 mm 5 mm 
Beam Divergence (φD) 8.0 mrad 8.0 mrad 
Optical Throughput 0.02 * 0.02 * 
Detector Size  50 mm ** 50 mm ** 
*   Throughput selected to ensure dynamic range of output cube was accommodated 
** 50 mm detector represents collection of entire beam 

 

5.1.1 Temporal Pulse Broadening 

As discussed in Chapter 4, the temporal pulse broadening demonstration verifies the new 

temporal photon mapping collection method, which is at the core of our model. Because the 

test case also requires temporal super-sampling, the arbitrary time-gating capabilities are also 

effectively demonstrated. The primary emphasis was on the temporal aspects of a reflected 

LIDAR pulse from a flat versus a tipped plate and not the accuracy of the detected number of 

photons, which will be discussed later in Section 5.1.2. While the test might be stressing for 

many modeling systems, the setup is fairly straightforward. DIRSIG simulated the return 

from a 1 ns Gaussian LIDAR pulse that was fired at a Lambertian reflecting plate with a 
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reflectance of 50%. The reflecting plate was set 1200 m downrange from the co-located 

transmitter and receiver. The receiver FOV encompassed the entire transmit beam footprint, 

which was about 10 m wide for the plate that was perpendicular to the optical axis of the 

LIDAR system. The return signal was highly oversampled at a rate of 10 GHz (~0.1 nsec 

sample bins) so that we have several samples over the 1 nsec transmit pulse duration. Two 

pulses were fired and then the results were compared. The first pulse was fired at a plate that 

was perpendicular to the optical axis. The second pulse was fired at a plate that was tipped 10 

degrees around the x-axis. The results shown in Figure 90 are that the “tipped” plate signal is 

temporally broadened while the flat plate return is a time delayed replica of the transmit 

pulse. The 10 degree tilt amounts to about a 1 m difference in range; therefore, the return 

from the “tipped” plate should broaden by approximately 6.666 nsec on both sides. The times 

at which the 2nd standard deviation points for the “tipped” plate are correctly located at 

approximately 7.993 µsec and 8.0067 µsec. The flat plate width was also correct at about 1 

nsec. In other words, the DIRSIG LIDAR module accurately modeled the temporal aspects 

for both pulses including the temporal pulse broadening due to the tilted plate.  

 

The results were achieved due to the new photon mapping architecture and in particular due 

to the temporal photon mapping collection scheme discussed in Chapter 4 and illustrated in 

Figure 89. For both scenarios, DIRSIG generates a series of randomly generated photon 

bundles and casts them into the scene. Those bundles intersect the surface and an event is 

recorded. The events in the photon map illustrated by the arrows at the surfaces are then 

back-propagated to the receiver and summed. The result is the impulse response of the scene.  

For the “tipped” plate, the photon events are spread over a broader set of range bins based 

upon the amount of tilt (Figure 89b). The impulse response of the scene is then convolved 

with the transmit pulse, windowed, and sampled. The actual collection algorithm performs 

these operations with each individual event and performs the summation at the end; however, 

the result is the same for the output signal due to the linearity of the operations. 
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(a) Flat plate 

 
(b) Tipped Plate 

Figure 89: Illustration of temporal pulse broadening due to tilted plate for a Gaussian pulse 
 
 

 
Figure 90: Temporal pulse broadening due to tilted plate for a 1 ns Gaussian pulse (10 deg) 
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5.1.2 Topographic Return from a Lambertian Plate 

The second verification test analyzes the integrated topographic return from a Lambertian 

plate that is 1200 m downrange from a LIDAR system with the Configuration B operational 

parameters listed in Table 13. The governing equation for the received signal captured by a 

LIDAR sensor is derived from the general LIDAR equation for elastic scattering. Based upon 

Measures (1984), the received number of photons from a range R due to elastic backscattered 

radiation can be written as: 
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where ξ(λ,R) is a system function determined by the geometric considerations of the receiver 

optics, the quantum efficiency of the detection system at each wavelength, and the overlap 

between the transmitted laser beam and the field of view of the receiver; Ar /R2 is the 

acceptance solid angle of the receiver optics with a collecting area Ar; NL(λ) is the average 

number of photons in the transmitted pulse at wavelength λ; σext(λ,r) is the extinction 

coefficient of the participating medium at the wavelength λ for the range r; ρs(λ) is the 

backscattering efficiency at of the target surface.  ξ(λ,R) is usually assumed to be separable 

into a wavelength dependent weighting; ξ(λ), and a geometrical form factor, ξ(R). ξ(λ) is 

dependent primarily upon the receiver design characteristics and for the purposes of this 

subsection shall be assumed to be unity whereas typical values range from 0.5 to 0.8. The 

geometrical form factor is used to adjust the equation to account for a variety of factors and 

is often fairly difficult to evaluate for a real LIDAR system. If one assumes that the laser 

power distribution is Gaussian in the target plane and that the limiting aperture is the detector 

size instead of the telescope objective lens (or mirror), then the LIDAR system function can 

be expressed as: 
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where f is the effective focal length of the system, r0 is the radius of the receive telescope 

aperture, R is the range, W(R) is the transmit beam waist radius at range R, AD is the area of 

the detector in the focal plane, and A(r,ψ, r0) is a circle of radius r0 that is centered at (r,ψ) in 
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the target plane. When equations 282 and 283 are combined, the topographic LIDAR 

equation can be rewritten as: 
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Using Equation 284 and the system parameters described in Table 13, one can analytically 

evaluate the number of photons detected from a surface. To minimize atmospheric effects, a 

dry atmosphere will be assumed with the extinction coefficient of 1x10-5 [1/m].  

 

Figure 91 displays both the analytical prediction dictated by equation 284 and DIRSIG’s 

integrated output for a single pixel versus the surface reflectance. As shown in Figure 91, the 

analytical and numerical results are well-correlated and exhibit appropriate behaviors. Figure 

92 displays the error associated with each curve from an absolute and relative perspective. 

The relative error was calculated with respect to the predicted integrated photon count of the 

return signal and not from the transmitted photon count. The error is bounded at about less 

than 0.07% for a 50 mm detector, 0.1 % for a 1 mm detector, and 1-2% for a 0.5 mm 

detector. In general, the error for these plots was on the order of 109
 to 1010 photons which is 

less than 0.001 % to 0.0001% of the approximately 1.02x1014 photons shot per pulse.  

 

The dominant sources of error are the approximation errors for the calculation of the 

prediction’s geometrical form factor, the errors induced by the user-defined dynamic range 

scaling operations, the errors due to numerical precision loss inherent within the model, and 

the errors due to the limited number of photon bundles shot into the scene. The first source 

affects the analytical prediction, while the others are related to the model and the utilization 

of the model. Unfortunately, the geometrical form factor approximation error may be a fairly 

dominant source of error. An error in the fourth or fifth decimal place could potentially 

generate an error on the order of what is seen in the data; however, this is not the only source 

of error. We know that the other sources probably contributed significantly.  

 

As indicated previously in Chapter 4, the DIRSIG LIDAR output cubes are output as long 

integers. To fit the results within the available dynamic range, the optical throughput was 
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adjusted to 0.00002. This scalar was then backed out in the analytical stages, but there was 

significant numerical precision loss due to this approach. For instance, if all of the photons 

were reflected back to the sensor, an error on the order of 105 would be exhibited due to 

rounding caused just by the optical throughput scaling operations. This is less of a concern 

when the anticipated simulation returns fit within the dynamic range of a long integer. 

Another alternative method is to over sample the return signal and then integrate the output 

LIDAR cubes directly. This bypasses the output dynamic range issue somewhat, but 

complicates the backend processing. The bottom-line is that the user must carefully consider 

the potential precision losses if scalar inputs, such as the optical throughput, are adjusted 

merely to ensure that the dynamic range of the output can be represented by a long integer. In 

the future, the DIRSIG LIDAR capture method could be modified to support doubles for the 

output data cube as a user-defined option.  

 

 
Figure 91: DIRSIG integrated number of photons detected for a single pulse reflected  

from a Lambertian surface at 1200 m downrange for various detector sizes 
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(a) Absolute error 

 
(b) Relative error 

Figure 92: Error for DIRSIG integrated number of photons detected for a single pulse reflected  
from a Lambertian surface at 1200 m downrange for various detector sizes 
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The remaining error sources are somewhat coupled within the model. The number of photon 

bundles affects both the numerical precision of the internal calculations and also the 

inaccuracies associated with the random sampling of the surface photon distribution which  is 

driven by the importance sampling of the source function. Despite this fact, some 

observations can be gleaned by examining the relative and absolute errors for the 50 mm, 1 

mm, and 0.5 mm detectors given various numbers of photon bundles shot during the 

simulation. The results of those simulations are plotted in Figure 93 through Figure 95.  

 

The 50 mm detector cases effectively are not affected by the importance sampling of the 

surface photon distribution because the detector collects and integrates over the full beam. 

The location of the photon events on the surface are not as relevant since the surface is 

Lambertian and all of the events are well within the receiver FOV. The dominant error 

contributors are the dynamic range compression errors discussed earlier and the inherent 

computational loss in numerical precision within the model. These errors decrease as the 

number of photon bundles shot is increased, but unfortunately, the computational burden also 

increases from 20-30 sec per pulse for 50K to 2-3 minutes per pulse for 500K. This trend is 

consistent with photon mapping theory introduced in Chapter 3. The loss in numerical 

precision is directly correlated to the number of photon bundles cast into the scene. For 

instance, increasing the number of photon bundles cast into the scene reduces the number of 

photons that each bundle represents. Table 14 lists the number of photons represented by 

each bundle depending upon the number of photon bundles shot into these scenes. While the 

number of significant digits is maintained, the importance of the digits that are lost lessens as 

the number of photon bundles cast increases. 

 

The 1 mm and 0.5 mm results (shown in Figure 94 and Figure 95 respectively) are impacted 

by the importance sampling of the photon distribution at the surface and the computational 

error evident in the 50 mm results. Thus, the errors are greater for both of these cases than for 

the 50 mm case. The variability in the error is related to the random nature of the importance-

based sampling of the source function. The detector has a limited FOV that is less than the 



239 

full transmit beam. As described in Chapter 4, the ray tracing engine randomly casts photon 

bundles into the scene based upon a Gaussian laser source function. Those bundles 

stochastically build up the photon distribution at the surface. For the cases under 

consideration, we are effectively undersampling that distribution.  

 

Casting more photon bundles into the scene has two primary effects shown in the normalized 

photon map histograms in Figure 96. First, we increase the number of samples throughout the 

beam and inside the detector FOV. Secondly, the photon bundles represent a smaller number 

of photons as the number cast increases. Thus, if a few bundles randomly land outside 

instead of inside the detector FOV when we are undersampled, the impact is lessened. In 

other words, a “misplaced” photon bundle results in a 108 instead of 1010 error in the number 

of detected photons. Figure 96b and in Figure 96d are image visualizations of the surface 

photon distribution and somewhat represent what the intensity of the transmit beam is at the 

surface. The difference between the two images is that one was generated with 50,000 

samples and the other was generated with 1,000,000.  The 3D representations are also shown 

in Figure 96a and in Figure 96c respectively. The 1 mm detector collects about 66% of the 

surface signal power due to the system’s transmit and receive FOV overlap. The 0.5 mm 

detector only collects about 2% of the surface signal power because of its much smaller 

FOV. The location of the photon distribution samples is much more critical for the smaller 

detector. This is amplified for the relative error because the signal power is also much 

smaller. The result for these cases is that the error is increased from less than 0.1% for the 1 

mm detector to something on the order of a 2% to 6% for the 0.5 mm detector. Although the 

trends indicate that the error is significantly reduced as more photon bundles are cast into the 

scene, the very small detector collection area to transmit beam footprint ratio would probably 

require millions of photon bundles to reduce the error down to less than 0.1%. 
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Table 14: Photons represented by each bundle given the number of bundles shot in DIRSIG 

Bundles Shot Photons/Bundle 
(6 µj at 3.4 µm) 

500K 2.0539179012E+08 
75K 1.3692786008E+09 
50K 2.0539179012E+09 
5K 2.0539179012E+10 

 
 

 
(a) Absolute error 

 
(b) Relative error 

Figure 93: Error for DIRSIG integrated number of photons detected for a single pulse reflected  
from a Lambertian surface at 1200 m downrange for a 50 mm detector 
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(a) Absolute error 

 
(b) Relative error 

Figure 94: Error for DIRSIG integrated number of photons detected for a single pulse reflected  
from a Lambertian surface at 1200 m downrange for a 1 mm detector 
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(a) Absolute error 

 
(b) Relative error 

Figure 95: Error for DIRSIG integrated number of photons detected for a single pulse reflected  
from a Lambertian surface at 1200 m downrange for a 0.5 mm detector 
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 (a) 3D histogram for 50K bundles (b) Histogram image for 50K bundles 
 

       
 
 (c) 3D histogram for 1 million bundles (d) Histogram image for 1 million bundles 

 
Figure 96: Normalized histogram of photon events recorded for a single LIDAR pulse 

intersecting a flat Lambertian plate 1200 m downrange 

 

Based upon the results achieved for the topographic signal returns, the DIRSIG LIDAR 

model is accurately simulating the integrated power of the return signal for a topographic 

LIDAR pulse. Additionally, some practical implementation recommendations and limitations 

can be identified. First, casting more photon bundles into the scenes improves the accuracy of 

the results at the expense of computation time. This was expected for a photon mapping 

based LIDAR modeling approach. Second, casting approximately 50,000 bundles results in a 

reasonable accuracy (less than 0.1%) if the detector FOV and the beam footprint are fairly 

well matched. In other cases, the user should carefully consider increasing the number of 
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photon bundles cast. Thirdly, the model does have some inherent loss in precision during the 

calculations, which can be minimized to some degree by increasing the number of photon 

bundles shot into the scene. Fourthly, users must use caution if they elect to use the scalar 

inputs to ensure that the results fit within the dynamic range of a long integer. Lastly, the 

stochastic ray tracing approach has some limitations for scenes with very small geometrical 

form factors. This could be alleviated by adopting alternative shooting approaches such as 

“guided” photon mapping. “Guided” photon mapping attempts to cast photon bundles into 

the scene where they are most needed (where they will be eventually seen). The challenge is 

that the sampling process is no longer truly random and avoiding biases can be problematic. 

“Guided” photons also require additional computational overhead and were not deemed 

necessary at this point in the model development. 

 

Another aspect investigated and plotted in Figure 97 was the impact of the detector size on 

the number of photons detected from the Lambertian surface. For these simulations, the 

wavelength was set to 532 nm. The upper boundary designated by the dashed line is the 

number of source photons and the maximum achievable integrated signal power. Once the 

detectors are collecting the majority of the transmit beam (detector pitch > 3 mm), then the 

number of photons detected varies linearly with the surface reflectance. However, when the 

detector sizes are such that the receiver FOVs are small compared to the transmit beam 

footprint, the geometrical form factor has a greater impact on overall number of detect 

photons and an incremental increase in detector size results in a dramatic improvement. This 

trend is consistent with theory and demonstrates that the model is appropriately handling the 

detector FOV effects for a detector limited system. 
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Figure 97: Detector size impact on the integrated number of photons detected from a  
Lambertian surface of varying reflectances at 1200 m downrange for a single pulse 

 

5.1.3 Absorption by a Gaseous Layer 

As discussed in Chapter 4, the verification of the attenuation by an absorbing layer was a 

direct extension of the topographic surface return analysis and was the first verification step 

for the new volume propagation components of the DIRSIG LIDAR model. The verification 

was broken into two distinct stages: verification of the internal ray tracing/propagation 

implementation and the integrated signal return. The first stage was added to demonstrate 

that the Monte-Carlo statistics are accurate for the tracing function, while the second 

confirms that the end-to-end modeling performance is accurate when an absorbing layer is 

present via analytical calculations using equation 284. Both scenes were setup based upon the 

baseline verification setup shown previously in Figure 80. To simplify the analysis, only the 

active LIDAR component was utilized, the number of photon bundles cast into the scene was 

fixed at approximately 50,000, and the detector FOV was setup to be much larger than the 

full transmit beam. The latter was done to decouple the detector size effects that were 

discussed in the previous section.  The specific scene and test setup differences will be 

discussed below in the respective subsections. 
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5.1.3.1 Statistical Analysis 

For the statistical analysis, 50,000 photon bundles or so were cast into a scene comprised of a 

1 km thick absorption layer and a 100% absorbing ground plate. The latter mitigated any 

artifacts that might be induced by photon bundles that actually penetrated the layer and could 

then be reflected. The absorption coefficient for the homogenous layer was varied for each 

run over the range 0.005 to 0.1. The vertical distribution and associated statistics of the 

absorption events within the layer embedded in the photon maps was evaluated. In the 

absence of scattering and reflections, the histograms should be an exponential distribution 

with a mean and variance equal to the inverse of the absorption coefficient. The mean and 

variance results and absolute errors for the different absorption coefficients are plotted in 

Figure 98 and Figure 99 respectively. Despite only shooting 50,000 photon bundles, the 

statistics matched very well with the exception of the fairly small absorption coefficients. 

This is consistent with the photon mapping theory presented in Chapter 3 and the 

atmospheric implementation discussion in Chapter 4. Less likely events require that a more 

statistically significant number of photon bundles be cast into the scene. 

 

Since the mean and variance do not necessarily guarantee that the vertical distribution is 

accurate, we shall now examine the actual distributions for four of those coefficients (0.005, 

0.01, 0.05, and 0.1), which are plotted in Figure 100. The corresponding absolute error plots 

are shown in Figure 101. All of them agree fairly well with the predictions and the events are 

exponentially distributed in accordance with the absorption coefficient. As noted above, the 

less absorbing layers do exhibit an increase in error and could likely be improved by casting 

more photons into the scene. These results strongly indicate that the ray tracing propagation 

through absorbing media was implemented correctly. 
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Figure 98: Analytical and modeled vertical distribution statistics of  

photons fired into different absorbing layers 

 

    
Figure 99: Absolute error for modeled vertical distribution statistics of  

photons fired into different absorbing layers 
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Figure 100: Analytical and LIDAR model vertical distribution of photons 

for different absorbing layers (penetration depth distribution) 

 

 
Figure 101: Modeling error for vertical distribution of photons 
for different absorbing layers (penetration depth distribution) 
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5.1.3.2 Integrated Return Signal 

The analytical predictions for the integrated return signal through an absorbing layer were 

calculated based upon equation 284 and the LIDAR system parameters for Configuration A 

in Table 13. For this analysis, the surface reflectance and the optical depth of the absorbing 

layer were varied. As with the topographic return verification cases, the integrated return 

signal power was compared to the analytical predictions. Figure 102 and Figure 103 are plots 

of the DIRSIG results and the associated errors. The returns were plotted for plates with a 

reflectance of 0.18, 0.5, and 1.0. Consistent with radiative transfer theory, the integrated 

number of photons exhibits an exponential decay as the optical depth increases.  The absolute 

error is on the order of 109 photons (~1.61x1013 photons were transmitted). The absolute 

error is not a significant increase over the error we observed with just surfaces and casting 

only 50,000 photon bundles.  The relative errors are worse than the surface-only errors 

because of the attenuation of the overall signal, particularly for the thicker optical depths. 

The absolute error is more significant when compared to the overall received signal power. 

For this simplistic scene, 50,000 photon bundles were sufficient; however, increasing the 

number of photon bundles cast will probably be necessary to accommodate a DIAL 

simulation. 
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Figure 102: DIRSIG integrated number of photons detected for a single pulse reflected from a 

Lambertian surface at 1200 m downrange and attenuated by an absorbing gaseous layer of 
varying optical depths 
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(a) Absolute error 

 
(b) Relative error 

Figure 103: DIRSIG error for integrated number of photons detected for a single pulse 
reflected from a Lambertian surface at 1200 m downrange and attenuated by an absorbing 

gaseous layer of varying optical depths 

 

 

 



252 

5.1.4 Scattering by a Gaseous Layer 

One of the most challenging requirements for the DIRSIG LIDAR module development was 

to accurately model the effects of multiple scattering for the LIDAR pulses as they interact 

with a complex scene and in particular scattering media. The previous verification process 

established that the volume support functionality within DIRSIG was operational and 

producing accurate results for the simplified case of attenuation due to absorption. This 

subsection builds upon those results and explores the validity of the photon mapping 

approach to model multiple scattering for nonstationary directional sources. Similar to the 

absorption verification process, the scattering verification is broken into two stages: 

verification of the internal ray tracing/propagation implementation and the comparison of the 

simulated temporal signature with the BSN approximation and multiply scattered LIDAR 

equation derived in Chapter 3. The verification of the interal ray tracing/propagation 

implementation focuses on the core photon mapping architecture that was added to DIRSIG 

and the results could be extrapolated for other simulation efforts. The evaluation of the 

simulated temporal signature from a high powered, short duration pulse fired into an 

optically thick layer directly provides a measure of the applicability of this modeling 

approach for LIDAR systems and particularly for DIAL sensors.  

 

For all of the results presented in this subsection, the standard verification scene shown 

previously in Figure 80 was used. In general, photons were cast into an optically thick water 

cloud over a 100% absorbing surface. The optical parameters of the scattering layer were 

generally established using Mie codes for most of the results or published literature 

parameters for direct comparisons to relevant published results. In some instances for the 

statistical analysis, the asymmetry parameter was intentionally varied over unrealistic values 

for water clouds because we wanted to characterize the performance and behavior of the 

model. This performance and behavior could then be qualitatively compared with the 

foundational principles of light scattering. Consistent with the spiral development 

philosophy, the passive and thermal radiance contributions were not included for these 

verification tests and will be discussed independently of these results.  
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5.1.4.1 Statistical Analysis 

The statistical analysis phase of the multiple scattering verification process is based upon 

published results in the literature for photon scattering statistics in plane-parallel atmospheres 

and more specifically cloud layers. The initial concepts behind how we would verify the 

Monte Carlo scattering statistics associated with a DIRSIG LIDAR simulation were 

specifically based upon the work published by Platnick (2001a, 2001b). Platnick developed 

an analytical technique using superposition priniciples to calculate the veritical and 

horizontal distribution of photons within a cloud layer. The technique was specifically 

designed for atmospheric cloud layers; however, it is applicable to the general parallel-plane 

layer radiative transfer problems. Although the detailed derivation and discussion of the 

superposition formulae and validation will be not be covered in this dissertation, comparison 

of DIRSIG’s results with some of Platnick’s will be discussed towards the end of this 

subsection. The scattering statistics can be directly correlated to the resulting radiative 

transfer of photons within a multiple scattering medium. While Platnick was focused on 

photon transport in clouds, the techniques and results can be applied to any multiple 

scattering plane-parallel radiative transfer problem, including scattering of LIDAR pulses. 

For instance, the number of scattering events is closely linked to the mean photon path length 

and other moments of the photon path distribution. As discussed in Chapter 3, if the 

distribution of photons in the scattering layer is known, then the backscattered signal return 

can be directly determined. Thus, if the Monte Carlo statistics of the photon distribution 

calculated by DIRSIG is consistent with underlying photon transport theory and associated 

statistics, then we can have a greater degree of confidence in the new modeling approach. 

Additionally, the changes in the mean photon path length due to scattering may be a key 

contributor to potential measurement errors for a DIAL system in the presence of scattering. 

Therefore, evaluation of these statistics may also provide us insight into how scattering might 

affect DIAL collection scenarios. 

 

As stated above, the standard simplified verification scene was used. The surface was 100% 

absorbing and the participating medium is an optically thick, highly scattering, weakly 

absorbing, homogeneous plane-parallel layer. A specialized mono-directional pulsed laser 

source was incorporated into the DIRSIG sensor architecture to be used in this analysis. The 
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mono-directional pulsed laser source randomly casts bundles into the scene parallel to the 

user-defined optical axis of the system from a user-defined aperture area. Additionally, a 

detailed events data file was recorded during the propagation of those photon bundles within 

the scene. The events data file, which includes every decision by DIRSIG during the photon 

bundle tracing phase, was then processed to generate the statistical results shown in this 

subsection. The statistics were then subdivided into two groups, reflected photons and 

transmitted photons. Reflected photons are defined as any photon that entered and 

subsequentially exited the layer via the top boundary. Transmitted photons are defined as any 

photon entering the top boundary of the layer and then exiting through the bottom layer of 

the boundary. The participating layer is semi-infinite in the horizontal direction; therefore, all 

of the photon bundles cast into the scene are declared reflected, transmitted, or absorbed 

photons for the purposes of this analysis. The distribution of photons indicated by the events 

file was evaluated based upon the vertical distribution of scattering events and the horizontal 

displacement of the reflected and transmitted photons. 

 

For the first set of statistical analyses, calculations are for a homogenous layer with an optical 

thickness of 10. The scattering albedo was 0.9928 and the asymmetry parameter was varied.  

The scattering layer has to be sufficiently thick enough to ensure that the photon scatterings 

are uncorrelated in each dimension (vertical and horizontal) and to ensure that the horizontal 

transport is driven by the scattering in the layer and not just the geometry of the scenario. In 

essence, a large number of scatterings for an anisotropic layer are necessary to ensure 

sufficient directional randomness. Approximately 50,000 photon bundles were cast into the 

scene at a grazing angle of 45 degrees (µ=0.707). 

 

Figure 104 is a plot of the number of reflected photons and transmitted photons as the 

asymmetry parameter is varied. For an isotropic scattering phase function, the majority of the 

photons are reflected. As the scattering becomes more forward, the number of reflected 

photons decreases and the transmitted photons increase. They are approximately equal when 

the asymmetry parameter is approximately 0.875. The transition between reflected and 

transmitted photons is more rapid once the layer is essentially forward scattering (> 0.6) and 
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is particularly sensitive to any changes in the scattering phase function at around the 0.8 to 

1.0 region. 

 

 
Figure 104: Fraction of photon bundles cast into a thick scattering layer that are reflected or 

transmitted as the asymmetry parameter is varied (τ = 10.0; ω0 = 0.9928; µ=0.707) 

 

The average number of scatterings encountered by reflected and transmitted photons within 

any arbitrary layer of the plane-parallel homogenous medium was also calculated and a 

subset of the results is shown in Figure 105. The vertical distributions for the reflected 

photons peaks just below the layer’s top and then decrease towards the layer’s base. The 

maximal contribution to the return signal comes from the portion of the layer indicated by the 

position of the peak in the reflected photon vertical distribution. In contrast, the transmittance 

distributions are symmetric to some degree and exhibit a broad maximum throughout the 

middle layers of the cloud. The contributions from the different levels in the layer for 

transmitted photons are approximately equal. As the asymmetry parameter increases and the 

scattering phase function scatters more in the forward direction, the reflected photon 

distribution shifts indicating that the photons spent more time in the middle portion of the 

layer and the average number of scatterings for a photon increased, which is shown in Figure 

106. Thus, the reflected photons experienced a longer mean optical path length. This effect is 
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combined with the reduction of the overall number of reflected photons and the backscattered 

signal discussed earlier.  

 

The average number of scattering events for the transmitted photons in Figure 106 decreases 

more linearly as the layer scatters more in the forward direction. The photons are essentially 

spending less time “meandering” in the layer and the mean optical path length is decreasing 

as the asymmetry parameter increases. It is worth mentioning that other factors, such as the 

scattering albedo and optical depth, are key factors in determining the average number of 

scattering events within the layer and additional cases could be pursued in future research 

efforts to develop a deeper understanding of the underlying physics. At this point, the results 

indicated that the model’s vertical photon distribution statistics were behaving reasonably. 

The direct comparison of DIRSIG’s results to Platnick’s published research for the vertical 

distribution of the reflected and transmitted photons will be discussed later in this subsection. 

 

We now consider the horizontal photon distribution of the reflected and transmitted photons. 

In particular, we generated the statistical distributions for the horizontal displacement of the 

photons from their entry point to their departure point at the boundaries of the layer. The 

results for four different asymmetry parameters (0.0, 0.5, 0.85, and 0.95) are plotted in Figure 

107. In general, the horizontal displacement of photons due to a high scattering layer is non-

trivial. Based upon both the horizontal and vertical data, as the scattering becomes more 

forward, the additional reflected photons occur in the shallow region of the layer and the exit 

point is near the entry point. Therefore, the mean optical path length traveled by the reflected 

photons decreases as the layer scatters more isotropically. As the asymmetry parameter 

increases, the transmittance function scales and narrows. The beam is becoming more 

focused and is diffused less as is shown in the histogram images of the absorption events for 

the surface which was 2 m below the layer Figure 108. Additionally, the elliptical spread of 

the beam is primarily due to geometrical projection effects.  
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(a) Reflected photons 

 
(b) Transmitted photons 

Figure 105: Average number of scattering events within a cloud layer with an optical thickness 
of 10.0 and a scattering albedo of 0.9928 for all (a) reflected and (b) transmitted photons for 

various asymmetry parameters 
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Figure 106: Average number of scattering events in a scattering layer for reflected and 

transmitted photons as the asymmetry parameter is varied  (τ = 10.0; ω0 = 0.9928;  µ=0.707) 
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 (a) Reflected photons 

 
(b) Transmitted photons 

Figure 107: Horizontal displacement distribution for photon bundles cast into a scattering layer 
(τ = 10.0; ω0 = 0.9928; ; µ=0.707; gsca = {0.0, 0.5, 0.85, 0.95}) 
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 (a) gsca = 0.00 (b) gsca = 0.95 

Figure 108: Histogram image of absorption events at the surface 2 m beneath the layer 
occurring within ±35 m of the scene center for horizontal displacement calculation  

(τ = 10.0; ω0 = 0.9928; µ=0.707) 

We now shift and compare the results for the vertical distribution of the average number of 

scatterings per differential layer for reflected and transmitted photons calculated from 

DIRSIG’s events file with the results obtained using Platnick’s superposition technique 

(2001). The scene is comprised of a liquid water cloud layer with an optical depth of 8. The 

cloud droplet particle size distribution is a gamma distribution with a 10mm effective radius 

and an effective variance of 0.1. The cosine of the incidence angle was 0.65. The optical 

properties used by Platnick are listed in Table 15 and were generated using a Mie code and 

were averaged over two of the typical atmospheric remote sensing instrument spectral 

response functions (Platnick, 2001). These same parameters were used for the DIRSIG 

simulations and new parameters were not re-generated. DIRSIG’s and Platnick’s results for 

the two spectral bands (2.2 and 3.7 µm) are shown in Figure 109. The predictions using 

Platnick’s superposition formulae and DIRSIG’s Monte Carlo approach are quite different, 

but produce very similar results. The integration of theses curves provide us with the average 

number of scattering events for a reflected and/or transmitted photon and are listed in Table 

16. Once again, the DIRSIG results are fairly comparable to Platnick’s. Some of the small 

discrepancies are likely due to differences of the layer’s scattering phase function. In 

particular, the use of the Henyey-Greenstein approximation instead of a Mie code generated 

scattering phase function probably introduced some error into these calculations.  
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Table 15: Scattering parameters averaged over typical remote sensing instrument spectral 
response functions for a cloud droplet size spectra (Platnick, 2001) 

Spectral Band 
(µm) 

Scattering Albedo 
(ω0) 

Assymetry Parameter 
(gsca) 

2.2 0.979 0.834 
3.7 0.900 0.794 

 

 
(a) Reflected photons 

 

 
(b) Transmitted photons 

Figure 109: Theoretical and DIRSIG average number of scattering events within a cloud layer 
with an optical thickness of 8.0 for all (a) reflected and (b) transmitted photons for two 

common remote sensing spectral bands (Platnick, 2001) 
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Table 16: Average number of scattering events for reflected and transmitted photons cast into 
cloud layer with an optical thickness of 8.0 and optical parameters in Table 15 

Platnick (2001) DIRSIG Wavelength 
(µm) Reflected 

(Nr) 
Transmitted 

(Nt) 
Total 
(Ntotal) 

Reflected 
(Nr) 

Transmitted 
(Nt) 

Total 
(Ntotal) 

2.2 14.6 16.5 31.1 12.48 17.4 29.9 
3.7 7.2 12.2 19.4 7.9 12.2 20.1 

 
 
 
5.1.4.2 Temporal Signature of Backscattered Power 

In Chapter 3, the multiply scattered LIDAR equation and the non-stationary diffusion 

approximation were developed as a reasonable benchmark for the verification of the model to 

accurately simulate backscattered returns, particularly deep from within a scattering layer. 

Each approximation has its strengths and weaknesses. In particular, the diffusion 

approximation significantly underestimates the received power from ranges near the 

boundary edge. The singly and multiply scattering equations provide a much better estimate 

for the top of the layer. In contrast, the multiply scattering LIDAR equation underestimates 

the backscattered return from deep within the layers.  Additionally, Chapter 3 compared the 

predictions of these approximations for backscattered return from a high-powered mono-

directional pulse fired into a semi-infinite scattering layer. In this subsection, the DIRSIG 

results for that same scenario are presented.  

 

The scene is comprised of a semi-infinite scattering layer and a 100% absorbing planar 

surface. The scattering layer is optically thick enough so that the pulse never reaches the 

absorbing plate. The participating layer was modeled after a C1 cloud and had an extinction 

coefficient of 0.1 m-1 and a scattering albedo of 0.9. The asymmetry parameter was 0.863. 

The incident beam was collimated, and the co-located receiver and transmitter were located 

at the boundary for the top of the layer. DIRSIG’s LIDAR module then simulated the 

backscattered return from the high-powered pulse. The time-domain signal return was highly 

oversampled and then normalized to eliminate the detector effects and to enable direct 

comparison to the non-stationary diffusion approximation. To ensure adequate statistics for 

the photon distribution deep within the scattering layer, approximately 3 million photon 
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bundles were shot into the scene. DIRSIG’s backscattered return along with the singly 

scattered LIDAR equation, multiply scattered LIDAR equation, and the non-stationary 

diffusion approximation (evaluated using the BSN approximation) are shown in Figure 

110(a). For Figure 110(b), the scattering phase function for the layer was isotropic.    

 

As anticipated, DIRSIG’s results track Eloranta’s multiply scattered LIDAR equation for 

returns from the top portion of the layer and eventually transition to the non-stationary 

diffusion approximation at an optical depth of 10, which is somewhere around 600 ns. The 

simulated returns from areas in close proximity to the receiver  at the top of the layer do not 

appear to be as accurate. This is likely due to the receiver FOV convention used by DIRSIG. 

DIRSIG assumes that the FOV is a pyramid and does not fully account for the receive 

aperture collection area very close to the receiver. In essence, DIRSIG doesn’t collect all of 

the photons really close to the aperture.  

 

For the isotropic scattering case, the multiply scattered LIDAR approximation under-predict 

the return because it is based upon a forward scattering assumption. As demonstrated with 

the statistical analysis of the scattering events within a participating layer, the number of 

reflected photons near the top of the boundary are greater for an isotropic scattering phase 

function than for a forward scattering phase function. For the backscattered return from deep 

within the layer, the non-stationary diffusion approximation should still represent an 

asymptotic boundary and the DIRSIG results appear to be converging as expected.  To 

accumulate sufficient statistics for the photon distribution deeper in the layer than what is 

shown or to reduce the variability (the “wiggle”) in the simulated backscattered return would 

require increasing the number of photon bundles cast into the scene.  
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(a) Forward scattering layer (gsca=0.863) 

 
(b) Isotropic scattering layer (gsca=0.0) 

 
Figure 110: Normalized backscattered power from a semi-infinite scattering layer 
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5.1.5 Passive/Thermal Contributions 

One of the advantages of the new DIRSIG LIDAR module is that the LIDAR radiance solver 

has direct access to both of the legacy passive and thermal radiance solvers. These radiance 

solvers offer a great deal of flexibility and fidelity to the model. The purpose of the passive 

and thermal contributions demonstration is to verify that the passive and thermal radiance 

solvers were incorporated into the model correctly. To accomplish this objective, the 

integrated topographic signal return from a Lambertian planar surface was simulated at noon 

and midnight. MODTRAN was used to build the DIRSIG atmospheric input files for a mid-

lattitude summer atmosphere in Rochester, NY. The key LIDAR system and the scenario’s 

atmospheric parameters are listed in Table 17. The direct solar, downwelled, and upwelled 

radiance listed are averaged values from the MODTRAN output files. A single pulse was 

simulated and the output LIDAR cube was generated for a short 0.2 µsec listening window. 

 

The equation used to calculate the predicted total radiance at the detector including the 

passive and emissive contributors was: 

! 
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where Es is the irradiance from the sun, ρsurf is the reflectance of the surface, τ1 is the 

downward optical transmission for the sun to the target, τ2 is the upward path transmission 

from the target to the sensor, Lup is the upwelled radiance from the atmosphere, Ldown is the 

downwelled radiance from the atmosphere, LLIDAR is the radiance of the LIDAR pulse, Le is 

the thermally radiance emitted towards the receiver, and t!  is the length of the listening 

window. Based upon this equation and the MODTRAN generated atmospheric parameters, 

the breakdown of the contributions to the integrated signal return are listed in Table 18. The 

values listed are the contributions at the detector due to the respective sources. Note that the 

thermal model was disabled to simplify the analysis. Thus, the emissive term was zero. 

 

The comparison between DIRSIG and the analytical predictions is shown in Figure 111 and 

the corresponding error plots are included in Figure 112. Based upon the predictions, the 
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noon and midnight curve are accurately offset on a log-plot by about 2.11x1013 photons. The 

averaging of the downwelled radiance for the prediction calculations contributed to the final 

error and is probably the driver behind the surface reflectance dependence of the error. 

However, the overall accuracy of the model is very good and the errors are generally 

consistent with the results shown previously. 

Table 17: LIDAR system parameters and MODTRAN output data for solar verification 
scenes 

Parameters Noon Midnight 

Pulse Power 6.0 µJ 6.0 µJ 

Wavelength (λ) 532 nm 532 nm 

Integration time (t) 2 µsec 2 µsec 

Detector Pitch (xa) 50 mm 50 mm 

Solar Path Attenuation (τ1) 0.8648 0.7005 

Sensor Path Attenuation (τ2) 0.9847 0.9853 

Direct Solar Irradiance (Es) 0.183 W/cm2 2.34E-07 W/cm2 

Upwelled Irradiance (Eup) 2.59E-04 W/cm2 1.67E-10 W/cm2 

Downwelled Irradiance (Edown) 1.90E-03 W/cm2 1.32E-09 W/cm2 

 

Table 18: Breakdown of key contributors for solar verification scenes 

Contributor Noon 
(photons) 

Midnight 
(photons) 

LIDAR 4.97E+12 4.97E+12 

Solar 2.09E+13 2.16E+07 

Upwelled 3.47E+10 2.20E+04 

Downwelled 2.50E+11 1.74E+05 

Total Passive 2.11E+13 2.18E+07 

Total Detected 2.61E+13 4.97E+12 
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Figure 111: Passive solar contribution for a pulse fired a Lambertian plate with different 

reflectances (mid-latitude summer atmosphere; Rochester, NY) 
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(a) Absolute error 

 
(b) Relative error 

Figure 112: Error for passive solar contribution for a pulse fired a Lambertian plate with 
different reflectances (mid-latitude summer atmosphere; Rochester, NY) 

 
As a demonstration of the inclusion of the thermal model and emissive radiance solver  into 

the DIRSIG LIDAR module, simulated data sets were generated while varying the absorption 

coefficient for a gaseous layer at various temperatures positioned 100 m above a 18% 

Lambertian planar surface. The LIDAR system used the standard Configuration A described 
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previously in Table 13. Similar to the passive simulations run earlier, MODTRAN was used 

to build the atmospheric table for a mid-lattitude summer night in Rochester, NY. The signal 

was integrated over a short listening window of 0.2 µsec. The simulated photons collected at 

midnight for different temperatures and absorption coefficients are shown in Figure 113. The 

increase in temperature effectively bends the curve upward and the emissive term eventually 

dominates for layers with higher absorption coefficients and temperatures.  This is one reason 

why DIAL measurements are often performed downwind and not at the release point for hot 

factory stacks. 

 
 

 
Figure 113: Photons collected at midnight from a pulse fired at a Lambertian plate with a 1m 

gaseous layer for different absorption coefficients including the thermal contributions  
(mid-latitude summer atmosphere; Rochester, NY) 

5.2  Phenomenological Demonstrations 

Up until this point, the DIRSIG simulations have been greatly simplified to facilitate 

verification efforts. The next few subsections present a series of phenomenological 

demonstrations that involve more complex scenes and eventually multiple pulses and 

platform and scanning motion. Although most of these demonstrations focus on topographic 

LIDAR applications, the underlying capabilities and techniques are directly applicable to 
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modeling a realistic DIAL sensor and data collection.  In addition, these demonstrations 

identified some potential areas for future upgrades to the DIRSIG LIDAR module. 

5.2.1 Multi-Bounce and “Late” Photons 

During the early development stages for the topographic LIDAR demonstrations, we 

conducted preliminary testing of the model on existing scenes from the DIRSIG scene 

database. One of the premiere scenes is known as Microscene and was used for an end-to-end 

topographic LIDAR demonstration discussed later in this Chapter. Microscene was built to 

be utilized for high resolution imagery simulations and is based upon a particular area of 

RIT’s campus. The CAD models for all of the objects within the scene have a very high 

degree of spatial detail. For instance, the grass added to the terrain model of the burm was 

“grown” by Barcomb as part of his master’s defense. Each blade of grass is modeled with 

facets in the CAD model (shown in Figure 114) and then attributed with appropriate optical 

properties. This is important for a phenomenon that we observed in the topographic LIDAR 

time intensity slices.  

 

A single pulse was fired into the scene and the return signal was highly oversampled. Figure 

115 shows a sample of the time intensity slices for the returns. Each intensity slice is scaled 

independently to enhance the contrast and does not necessarily indicate relative strength of 

the returns between slices. As expected, we saw the returns for the objects within the scene at 

the appropriate ranges; however, a very small number photons were returning from beneath 

the surface of the burm. When traced within the code, the photons who appeared to be “lost” 

were actually delayed due to multiple bounces within the grass blades. The number of 

photons who were bouncing around in the grass was very small, but this was an early 

indicator of the potential capabilities of the DIRSIG LIDAR modeling approach. 
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Figure 114: CAD model of “grown” grass blades for Microscene burm (Barcomb, 2004) 

 

 
Figure 115: Microscene topographic LIDAR time-gated returns with “late” photons 
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5.2.2 Forest Canopy Penetration 

The next phenomenology demonstration will address laser radar returns from a tree crown.  

For this example, a single tree is modeled and the temporal structure of the reflected photon 

counts will be explored.  The geometry of the tree was created using a software package 

called OnyxTREE (http://www.onyxtree.com) and the surfaces were attributed with leaf 

spectral reflectance and transmission measurements made at RIT. The OnyxTREE software 

is capable of producing physically realistic tree geometries using detailed descriptions of tree 

growth patterns. 

 

Figure 116 illustrates the general scene simulation setup. Figure 117 includes a 3D photon 

map density plot resulting from a single pulse modeled with 1,000,000 photon bundles. In the 

plot of the photon map, the shape and detail of the tree crown can be seen as well as the 

resulting shadow on the ground. Within the tree shadow there are some areas with increased 

photon counts that are evidence of direct illumination via foliage “poke through” and indirect 

illumination due to multiple reflections.  The plot of the photon counts as a function of 

time/distance in Figure 118 results from spatially integrating a region encompassing most of 

the tree (refer to the highlighted box in the photon count frames). This magnitude vs. time 

plot shows a steady decay within the tree crown due to absorption and reflection, the late 

arrival of photons from ranges between the crown and the ground due to multiple bounces 

within the crown and the ground return itself. The magnitude of the ground return indicates a 

non-trivial probability of photons reflecting off the ground beneath the tree itself. The 

magnitude of this return would be a function of the tree’s optical properties and leaf density 

(leaf area index). The images in the lower portion of Figure 118 are temporal slices of the 

photons counts arriving at the sensor. These spatial count density maps reveal horizontal and 

vertical structure of the tree that can be utilized to reconstruct the tree height and shape. The 

modeling of a tree canopy (instead of a single tree) is included in the end-to-end topographic 

scene simulation later in this chapter. 
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Figure 116: Canopy penetration/multi-bounce demonstration setup 

 
 

 
Figure 117: DIRSIG photon map for canopy penetration/multi-bounce demonstration 

 



274 

 
Figure 118: Canopy penetration and multi-bounce demonstration for a single, deciduous tree 

5.2.3 Camouflage/Concealed Hard Targets 

Another common application area for topographic laser radar systems is for camouflage 

penetration problems. To demonstrate the use of the DIRSIG model for this task, a small 

scene was constructed that contains a HMMWV (“hum-vee”) under a camouflage net held in 

place by supports on a terrain. The camouflage net is modeled as a continuous surface that 

has holes cut into it using a high spatial resolution “hole mask” that introduces geometric 

transmission due to spatial variations in fill factor. The solid areas of the net are attributed 

with a set of three fabric materials that have different reflectance and transmission factors. 

The vehicle and surrounding terrain is also fully attributed with appropriate surface optical 

properties. A rendering of the high-fidelity CAD models including the camouflage net and 

spreaders used for the DIRSIG simulation are shown in Figure 119. Figure 120 displays the 

results from DIRSIG overhead passive simulations of a HMVVV out in the open and the 

camouflaged HMVVV scene for this demonstration. 
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The DIRSIG model produced a highly oversampled, time-gated, photon count cube for this 

scene. For visual reference, the DIRSIG model also produced the height “truth map” shown 

in the Figure 121 that illustrates the amount of camouflage “poke through” that can be 

expected and the visibility of net supports and vehicle underneath. The series of images in 

Figure 122 show the spatial photon densities as a function of time. At this high temporal 

sampling rate, small differences in vertical structures can be easily resolved including 

variations in the net surface, the net support, the roof and hood of the vehicle and the terrain 

beneath. The ability to model scenes with these complex interactions and surface properties 

accentuates the benefit of physics based approach over what analytical or statistical models 

can provide. 

 

 
(a) HMVVV and spreaders 

 

 
(b) Camouflage netting 

Figure 119: HMVVV, spreaders, and camouflage netting CAD models for DIRSIG simulation 
(Barcomb, 2004) 
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 (a) HMVVV (λ=732 nm) (b) Camouflaged HMVVV (λ=732 nm) 

 
Figure 120: DIRSIG overhead passive simulation of HMVVV and camouflaged HMVVV  

 

 
Figure 121: DIRSIG scene distance truth map for camouflaged HMVVV 
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Figure 122: DIRSIG time-gated LIDAR returns for camouflaged HMVVV 

5.2.4 End-to-End Topographic Mapping Demonstrations 

5.2.4.1 Microscene 

As described in Chapter 4, the end-to-end modeling of operational systems entails using the 

DIRSIG model to create time-gated photon counts that can be processed by an external 

sensor model to produce simulated raw instrument data. These simulated instrument data sets 

can then be used with conventional data processing tools to create topographic data products.  

For this demonstration, a data collection of the ALIRT system developed at MIT Lincoln 

Laboratories was simulated over a small scene located on the RIT campus. The DIRSIG 

scene database used in this end-to-end simulation was originally developed for passive, 

tower-based collections for the purpose of camouflage and landmine algorithm testing. The 

entire scene is approximately 300 x 300 meters and contains terrain, trees, and man-made 
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elements. The operational ALIRT system was flown during the winter of 2004 over the 

corresponding portion of the RIT campus to capture reference data sets for future validation 

efforts. The original scene database was modified to reflect the scene as it appeared during 

the data collection by the actual ALIRT sensor with the exception of a few feet of snow. 

 

The ALIRT instrument uses a spatial array that is scanned in the across-track direction from 

an airborne platform. The across-track scan speed is slower than the laser pulse repetition 

rate so that the collected area overlaps significantly from pulse to pulse. The ALIRT 

instrument and collection characteristics were modeled using laser and instrument properties 

supplied by MIT Lincoln Laboratories. The simulated data cubes produced by the DIRSIG 

model utilized the flight data from the actual ALIRT over-flight of the scene. The resulting 

time-gated, photon count cubes were then processed using a detailed sensor model developed 

by ITT Industries, Space Systems Division, that features a rigorous treatment of the ALIRT 

focal plane and instrument. The resulting simulated raw instrument data streams were then 

post-processed using QT Viewer (developed at Johns Hopkins Applied Physics Laboratory) 

to view the resulting topographic products (see Figure 123 and Figure 124). The scan sweeps 

of the system are clearly visible in the overhead and slant topographic projections. The data 

appears synthetic because of the even-spaced grid nature of the points. These artifacts arise 

due to the noise-free knowledge of the platform location and platform relative pointing of the 

instrument during scanning.  Future simulations may include a noise and/or jitter term for 

these quantities to introduce the inherent uncertainty in these values.  
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(a) Passive simulation 

 
(b) Topographic LIDAR product 

Figure 123: Microscene topographic LIDAR product and passive simulation (overhead) 
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(a) Passive simulation (Barcomb, 2004) 

 

 
(b) Topographic LIDAR product 

Figure 124: Microscene topographic LIDAR product and passive simulation (slant view) 
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5.2.4.2 Spotlight-mode, Extended Dwell and Canopy Penetration 

The final phenomenological demonstration is the simulation of a topographic LIDAR 

collection in spotlight-mode for an extended dwell against a series of targets under a tree 

canopy. The scene is comprised of a T-72 tank, a HMVVV, and a concealed target in a tent 

on the edge of a deciduous tree line. The LIDAR configuration for this demonstration was 

based upon the ALIRT sensor described in the previous end-to-end topographic simulation of 

the Microscene area. The primary difference was that a customized sensor pointing and 

platform motion description file was created instead of relying upon one of the standard 

DIRSIG scanning platform descriptions. This was possible because of the inherent flexibility 

of the DIRSIG platform and sensor motion modules. The LIDAR system was flown over the 

scene in spotlight-mode at a grazing angle of 30 degrees with an extended dwell of 45 

degrees. A simplistic Geiger counter detector model and topographic processor then 

processed the DIRSIG LIDAR data cubes. The final topographic product is shown in Figure 

125. Figure 126 shows some close-ups for the T-72 tank and the HMVVV. The scan pattern 

and broadening of that pattern in the direction away from the sensor is evident in the 

processed data and accurately reflects what would be observed in a real data collect. The 

topographic product also contains a significant number of noisy or erroneous data points due 

to the multiple bounce effects. Most of these points would probably be removed if co-

coincidence processing was used and are generally not simulated by many of the common 

LIDAR models. DIRSIG’s LIDAR module would permit a researcher to verify the 

performance of the various co-coincidence processing algorithms using a more stressing data 

set. 
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Figure 125: Topographic product for extended dwell (45 deg) collect  

of concealed targets at 30 deg grazing angle 

 
 

 
Figure 126: Vehicle close-ups for extended dwell (45 deg) topographic product 
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5.3  Impact of Scattering Constituents on DIAL Measurements 

While the majority of this research effort was focused on developing and verifying a LIDAR 

model within DIRSIG that can accurately model multiple scattering and absorption for a 

DIAL system, a critical objective was to qualitatively demonstrate the impact of scattering 

constituents on DIAL measurements. Injection of common scattering media, such as water 

vapor or soot, into a gaseous plume can significantly degrade the ability of a DIAL sensor to 

detect and measure the concentration of individual constituents within the plume. Based upon 

the scattering verification analysis, the impacts of scattering on the photon distribution within 

a scene and the related return signal from a LIDAR pulse can be fairly significant and depend 

greatly upon a variety of factors. An increase in the scattering cross-section can drive the 

number of reflected and transmitted photons and their associated distributions within the 

scene. The increase in optical depth due to the additional scatterers also plays a factor since 

the mean optical path lengths generally increase. Additionally, the scattering phase function 

can impact the way in which the backscattered signal from the scattering constituents 

manifests itself.  

 

This section presents the results from two different DIAL case studies that explore the impact 

scattering can have on DIAL concentration path length measurements for a wide range of 

parameters. As described in Chapter 4, the first scene is modeled after the simplified 

verification scene used throughout the verification process. A series of enhancements were 

made to the scene and collection scenario to increase the realism of the simulations while 

maintaining a fairly well-controled, well known environment. The second scene, which was 

introduced previously in Chapter 4, is much more complex and utilizes the new Blackadar 

plume model. Unfortunately, applicable truth data from the Blackadar plume model was not 

yet available. Therefore, while the data set confirms the importance of multiple scattering, 

additional investigation is warranted in the future when appropriate truth data can be 

generated and provided to the user.  

 

The constituent of interest for both scenes is methane, and the scattering agent was water 

vapor droplets modeled after the C1 cloud properties. As described in Chapter 4, the sensors 

for both scenes use the same wavelengths, but the general setup was modified to 
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accommodate the requirements for each of the demonstrations. To enhance the “realism” for 

the DIAL sensor concept of operations, a 400 nsec delay was inserted between the firing of 

the “ON/OFF” pulses. In other words, the system fired an “ON” pulse, waited 400 nsec, and 

then fired an “OFF” pulse. The full LIDAR module was used during these demonstrations 

including a mid-lattitude summer atmosphere in Rochester, NY at midnight. The passive and 

thermal radiance solvers were activated and the results include those contributors. 

 

5.3.1 Controlled Scattering Case Study 

The controlled scattering case study was designed to confirm that scattering has a perceivable 

impact on DIAL concentration measurements. The DIAL sensor was modeled using the 

configuration parameters listed in Table 19, which were discussed briefly in Chapter 4. The 

scene was comprised of a homogenous box of mixed methane and water vapor at 100 m 

above a flat grass plate. The grass plate used a texture map to spatially vary the emissivity 

across the plate to simulate the texture of grass in the MWIR. Although the texture was not 

entirely accurate for the MWIR, the texture map did induce more realistic variability in the 

topographic target background as the platform moved between ON/OFF pulses than a 

constant emissivity across the plate would have.  

 

Table 20 and Table 21 list the vertical optical depths of the homogeneous gas box for each 

test case. In addition to varying the methane concentration, various concentrations of water 

vapor were added to the gas box. The water vapor concentrations fell into four general 

categories: baseline, thin, medium, and thick. The naming convention was selected based 

upon the rough order of the optical depth contribution by the water vapor. An additional case 

was added to investigate the impact of the scattering phase function on the DIAL 

measurements. A medium case was run with an isotropic scattering phase function 

substituted for the actual forward scattering phase function calculated by MIEDU.  

 

Enough photon bundles were cast into the scene to generate approximately 500,000 events in 

the gas box. Based upon the verification results, the accuracy loss should be minimal except 

for the strong scattering cases. The 500,000 events requirement was primarily set based upon 

computational time. For the strong scattering cases, generating and evaluating 500,000 events 
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takes about 20+ minutes per pulse. A 50,000 events requirement results in about 5 minutes 

per pulse. Although somewhat desirable for accuracy considerations, a 1 million events 

requirement took about 45 minutes per pulse in a preliminary run.  

 

A single pulse was simulated for both the OFF and ON wavelengths and the resulting data 

cubes were processed using a simplified DIAL processor described in Chapter 4. Figure 127 

compares the concentration path length error of the processed data for each of the test cases 

and different methane concentrations. Figure 127(b) is a rescaled version of Figure 127(a) 

that can be used to examine the less dramatic scattering cases. The baseline case’s CPL error 

is very consistent regardless of the methane concentration. The 6 ppm error is likely due too 

differences in the atmospheric attenuation for the two wavelengths, spectral and spatial 

variability in the topographic target background between the pulses due to platform motion, 

and the modeling errors discussed previously in the verification section. The CPL errors for 

the forward scattering medium and thick cases demonstrate the potential devastating effect 

that scattering can have on DIAL measurements. Although in general the CPL is over-

estimated, two of the cases do not exhibit the same behavior. In particular, a small amount of 

scattering in the thin cases eventually results in an under-estimation of the CPL for larger 

methane concentrations. For the baseline cases, the OFF and ON receive signal is dominated 

by the transmitted photons that reflect off of the surface and then return back through the gas 

box. When a small amount of scattering is introduced, the transmit beams are effectively 

broadened and the OFF wavelength detected signal is reduced. For the ON wavelength, the 

small increase in backscatter from the top of the gas box layer is significant and may counter-

balance the losses due to beam broadening. The result is that the effective relative difference 

between those signals decreases and the CPL also decreases.  

 

Another interesting observation is that isotropic scattering appears to cause less measurement 

accuracy degradation than forward scattering in the medium cases. The inclusion of isotropic 

scattering into the gas box appears to have little effect on the DIAL measurements for this 

data set. Consistent with the scattering verification analysis, an isotropic scattering layer 

tends to balance the longer mean path lengths of the transmitted photons with the reflected 

photons that leave the medium more quickly due to the scattering phase function. This 
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counter-balancing effect is the underlying explanation for the minimal impact of scattering 

on the measured CPL if the gas mixture scatters isotropically.  

 

Table 19: LIDAR system configuration for scattering case study  
Parameter Configuration C 

Wavelength (λOFF) 3.3058 µm 
Wavelength (λON) 3.3151 µm 
Pulse Energy (PL=NLhc/λ) 6 µJ 
Pulse Repetition Frequency (PRF) 5 KHz 
Pulse Length (τD) 1.5 ns 
Aperture Radius (r0) 100 mm 
Focal Length (f) 400 mm 
Transmit Beam Radius (w0) 5 mm 
Beam Divergence (φD) 8.0 mrad 
Detector Size  500 µm 
 

 
 

Table 20: Optical depth of gas box for DIAL and scattering case study at the OFF 
wavelength  

Baseline Thin Medium Medium (Isotropic) Thick

0 1.00E+09 5.00E+09 5.00E+09 1.00E+10

50 1.16E-04 2.39E-01 1.19E+00 1.19E+00 2.39E+00

75 1.74E-04 2.39E-01 1.19E+00 1.19E+00 2.39E+00

100 2.33E-04 2.39E-01 1.19E+00 1.19E+00 2.39E+00

125 2.91E-04 2.39E-01 1.19E+00 1.19E+00 2.39E+00

150 3.49E-04 2.39E-01 1.19E+00 1.19E+00 2.39E+00

175 4.07E-04 2.39E-01 1.19E+00 1.19E+00 2.39E+00

200 4.65E-04 2.39E-01 1.19E+00 1.19E+00 2.39E+00

250 5.82E-04 2.39E-01 1.19E+00 1.19E+00 2.39E+00

500 1.16E-03 2.40E-01 1.19E+00 1.19E+00 2.39E+00

1000 2.33E-03 2.41E-01 1.19E+00 1.19E+00 2.39E+00

2000 4.65E-03 2.43E-01 1.20E+00 1.20E+00 2.39E+00

DIAL Scattering Test Cases
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Table 21: Optical depth of gas box for DIAL and scattering case study at the ON wavelength  

Baseline Thin Medium Medium (Isotropic) Thick

0 1.00E+09 5.00E+09 5.00E+09 1.00E+10

50 8.31E-02 3.22E-01 1.28E+00 1.28E+00 2.47E+00

75 1.25E-01 3.63E-01 1.32E+00 1.32E+00 2.51E+00

100 1.66E-01 4.05E-01 1.36E+00 1.36E+00 2.55E+00

125 2.08E-01 4.46E-01 1.40E+00 1.40E+00 2.59E+00

150 2.49E-01 4.88E-01 1.44E+00 1.44E+00 2.63E+00

175 2.91E-01 5.30E-01 1.48E+00 1.48E+00 2.68E+00

200 3.33E-01 5.71E-01 1.53E+00 1.53E+00 2.72E+00

250 4.16E-01 6.54E-01 1.61E+00 1.61E+00 2.80E+00

500 8.31E-01 1.07E+00 2.02E+00 2.02E+00 3.22E+00

1000 1.66E+00 1.90E+00 2.86E+00 2.86E+00 4.05E+00

2000 3.33E+00 3.56E+00 4.52E+00 4.52E+00 5.71E+00

DIAL Scattering Test Cases
(!ON)

Water Vapor Nc (1/m
3
)
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(a) Concentration path length error 

 
(b) Concentration path length error (zoomed in plot) 

Figure 127: DIAL concentration path length error due to scattering  
for a gaseous layer 100 above a grassy surface 
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5.4  End-to-end DIAL Demonstration 

5.4.1 Megascene Tile 4 Water Treatment Plant with a CH4 Plume 

The second demonstration is an end-to-end DIAL demonstration that displays the current 

modeling capabilities for a complex scene within DIRSIG including scanning and platform 

motion, a realistic atmosphere, the passive and emissive radiance solvers, the Blackadar 

plume model, and a simplistic DIAL processor. In addition, the importance of modeling the 

effects of multiple scattering for DIAL collections for plumes with water vapor is reinforced. 

The Megascene Tile 4 water treatment plant in the DIRSIG scene database was built upon a 

water plant in Rochester, NY and has been used frequently by researchers in the past for 

passive plume algorithm development and generating algorithm training data sets. A 

Blackaddar plume with methane was added to the scene with a release concentration of 

10,000 ppm-m stepped every 0.5 secs. The release temperature was nominally 450K at the 

stack. The scanning DIAL system parameters used are listed in Table 22. Passive MWIR 

simulated images of the Megascene Tile 4 water plant with the Blackadar plume for the 

ON/OFF wavelengths are shown Figure 128. In addition to the emissive and absorption 

phenomena, a neutral transition region is appropriately evident for the Blackadar plume.  

 

Because concentration truth data for the scene was not available, two DIAL data sets were 

generated: one without any water vapor and one with water vapor. The processed results are 

shown in Figure 129 and Figure 130 respectively. The gray-scale images indicate the relative 

CPL based upon the processed synthetic data. The darker dots are actually negative CPLs 

and indicate strong thermal emission from the background. We are also getting some 

potential poke-through in the plume where it is a bit thinner, but this is not as apparent 

because the data is undersampled spatially. The baseline CPL was measured to be about 250 

to 275 ppm of methane in the non-scattering plume. The measured CPL was reduced to 10 to 

30 ppm for the scattering plume. The reduction in apparent CPL due to the scattering is 

consistent with the results from the previous scattering case studies. Based upon the effective 
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down-wind dilution of the methane concentrations, the amount of water vapor is fairly small, 

but sufficient to impact the DIAL measurements.  

 
 

Table 22: LIDAR system configuration for Megascene-Tile4 simulation 
Parameter Configuration D 

Wavelength (λOFF) 3.3058 µm 
Wavelength (λON) 3.3151 µm 
Pulse Energy (PL=NLhc/λ) 6 µJ 
Pulse Repetition Frequency (PRF) 400 Hz 
Pulse Length (τD) 1.5 ns 
Aperture Radius (r0) 100 mm 
Focal Length (f) 400 mm 
Transmit Beam Radius (w0) 5 mm 
Beam Divergence (φD) 8.0 mrad 
Detector Size  100 µm 
Array Size  32 x 32 
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(a) λ=3.3060 µm 

 

 
(b) λ=3.3160 µm 

Figure 128: DIRSIG MWIR image of Megascene-Tile4 waterplant with a Blackadar plume 
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Figure 129: Processed CPL maps from DIRSIG LIDAR cubes for  

Megascene-Tile4 waterplant with a CH4 Blackadar plume 
(λoff=3.3060 µm; λon=3.3151 µm) 

 

 
Figure 130: Processed CPL maps from DIRSIG LIDAR cubes for  

Megascene-Tile4 waterplant with a CH4 and water vapor Blackadar plume 
(λoff=3.3060 µm; λon=3.3151 µm) 
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Chapter 6  

Conclusions 

Previous research has indicated that multiple scattering effects could impact a DIAL sensor’s 

ability to detect and quantify effluents of interest within participating medium. The non-

stationary nature and complex temporal structure of factory stack plumes complicates the 

analysis of potential multiple scattering effects or the development of advanced algorithms to 

counter the effects. Synthetic data sets would be beneficial for investigation of the underlying 

physic-based root causes, quantification of the effects and general trends, and DIAL 

processing algorithm development. Unfortunately, extending traditional modeling techniques 

to model multiple scattering and absorption of an arbitrary time-gated LIDAR pulse 

accurately and efficiently within a non-homogenous, finite volume, such as a plume, is non-

trivial and problematic. Another modeling approach was needed. 

 

Leveraging the photon mapping techniques used by the computer graphics community, this 

dissertation effort adds to the existing body of knowledge by extending the traditional photon 

mapping techniques to support a new physics-based modeling approach capable of accurately 

handling multiple scattering and absorption of LIDAR pulses within a complex, extended 

scene including a realistic plume.  Additionally, the available tools to simulate LIDAR 

scenes do not support rigorous atmospheric interactions, participating media, multiple 

bounce/scattering, thermal and reflective region passive returns, complex scene geometries, 

moving platform and scanning effects, detailed optical descriptions of materials (e.g., BRDF 

and scattering models), and time-gated returns. Such requirements were deemed crucial to 

fully address future research problems and accurately model the observable signatures of 

gaseous plumes under a variety of complex scene conditions, including multiple scattering. 

By incorporating the new photon mapping variant into the existing passive DIRSIG 

framework, the new DIRSIG LIDAR module is meets these challenging requirements as was 

demonstrated in Chapter 5. 

 

Based upon the underlying theoretical basis for the new LIDAR modeling approach 

presented in this thesis, the DIRSIG LIDAR module was verified against a suite of analytical 
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and statistical benchmarks. As discussed in Chapter 5, the results confirm that the DIRSIG 

LIDAR module can accurately predict sensor-reaching photon counts for a LIDAR system, 

including the effects of multiple scattering and absorption within a realistic plume. In 

addition, the phenomenological case studies demonstrated its capabilities to model a wide 

array of topographic LIDAR and DIAL systems, including an exemplar dataset for a complex 

plume scene that exhibits the effects of multiple scattering on DIAL concentration 

measurements. Because the new core LIDAR components model the low-level physics-based 

interactions and utilize the surrounding modular infrastructure that has been built up over 

decades of research at RIT, the DIRSIG LIDAR module now enables researchers to explore 

not only the root causes of the effects of multiple scattering on DIAL system performance, 

but also to generate accurate synthetic datasets of very complex scenes and collection 

scenarios for direct passive vs. active comparisons and DIAL algorithm development. 

Specific research findings and recommendations for future work appear in the sections that 

follow.  

6.1  Findings 

Upon review of the primary objectives in Chapter 2, the research effort conducted for this 

dissertation exceeded the stated requirements and in addition accomplished several of the 

research goals. The theory presented in Chapter 3 in conjunction with the modeling approach 

in Chapter 4 and the results in Chapter 5 fulfilled the requirement to develop a firm 

understanding of the mathematical and theoretical basis, viability, and practical limitations of 

photon mapping to numerically model multiple scattering and absorption in a dispersive, 

gaseous participating medium. The foundational theory for the new photon mapping 

approach was presented in Chapter 3 and shown to be consistent with the underlying physics 

and radiative transfer theory for gaseous media. The accuracy of photon mapping for 

simulating a LIDAR pulse in a participating medium was verified in Chapter 5 using 

analytical means (where tractable) augmented by statistical analysis commonly used in the 

literature for multiple scattering. In addition, the phenomenological case studies substantiated 

the photon mapping approach for more complex scenes. The exemplar scenes included full 

complex backgrounds and targets and demonstrated the interactions between the participating 

medium and a more realistic surrounding environment. To support the simulation of more 
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complex scenes, a practical methodology for generating the critical optical properties of 

mixed gases required for the propagation of photons through the scene and estimating the 

observed radiance was presented in Chapter 4 and utilized for the scene development in 

Chapter 5. The approach was based upon the Mie scattering theory and MIEDU code 

discussed in Chapter 3 and Appendix A.  

 

Three of the requirements revolve around developing a set of representative DIAL 

simulations that utilize the DIRSIG LIDAR sensor module, contain gaseous plumes or 

voxels, and are then processed by a DIAL processor. The simulations and associated datasets 

were presented in the latter portion of Chapter 5 and demonstrate how to generate end-to-end 

DIAL simulations using the DIRSIG LIDAR module. In addition, the results in Chapter 5 

qualitatively confirm that common scattering constituents, such as water vapor or soot, can 

significantly degrade a DIAL sensor’s ability to accurately detect and measure the 

concentration level of a particular constituent within a plume. Although the DIAL processor 

was based upon a simple band ratio algorithm, it was used to augment the qualitative 

assessments of the impact of plume scattering on the quantification of plume effluents and 

demonstrated a sufficient level of accuracy for the investigations undertaken in this research 

effort. 

 

With regards to the research goals listed Chapter 2, emphasis was placed on extending 

DIRSIG’s LIDAR module capability to model topographic scenarios. While the focus of the 

research was on DIAL systems, the underlying physics inherently drives a level of fidelity in 

the modeling that incorporates sufficient capability to mode topographic LIDAR sensors. In 

the process, a topographic processor was developed and test that displayed sufficient 

flexibility to incorporate various detector modes. The results of the phenomenological case 

studies in Chapter 5 included standard terrain topography, forest canopy penetration, and 

camouflaged hard targets. In addition, an initial library of scattering phase functions for 

standard gases and aerosols of interest were developed and a representative set were 

presented in Chapter 4. 
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6.2  Recommendations for Future Research 

The recommendations for future research fall into three primary categories: model validation, 

model enhancements, and model applications. The model validation addresses the 

continuation of the verification efforts in this proposal to demonstrate the accuracy of the 

DIRSIG LIDAR modeling approach and the applicability for specific research application 

areas. The model enhancements build upon the current DIRSIG model and continue the 

spiral development of the model to either improve performance or provide new capabilities. 

The modeling applications area recommends research areas for which the model has been 

demonstrated in this dissertation and could be directly used to generate synthetic datasets for 

analysis. 

6.2.1 Model Validation 

The first recommendation is to perform an extensive model validation. As a first step, a 

commercially available topographic LIDAR system could be used to collect over a scene 

already constructed in the DIRSIG scene database, such as Megascene 1 or Microscene. The 

datasets could be statistically compared at the end product and at the raw data level. In 

addition, the multiple bounce phenomenology demonstrated in this dissertation could be 

compared with observable tree canopy signatures. Although this would directly address most 

of the LIDAR module’s performance, the accuracy of the multiple scattering and absorption 

components would probably require a controlled environment such as a lab for validation 

efforts to be successful. This ensures that the gas concentrations are known or well 

characterized and are adequately mixed. If available, another potential source of validation 

data would be the water vapor DIAL measurements for various clouds. In either case, the 

multiple scattering or absorption could be directly compared and statistically evaluated. 

Alternatively, further confidence could be gained by employing cloud droplet size 

measurement algorithms to the synthetic datasets and compare the results with the known 

inputs. In conjunction with validation of the current DIRSIG LIDAR module, the multiply 

scattered LIDAR equation could be evaluated as an alternative for improved computational 

performance under certain circumstances where the accuracy was deemed. 
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6.2.2 Model Enhancements 

With regards to recommended future model enhancements, they can be grouped into two 

primary categories, performance improvements and expanded capabilities. All of these 

enhancements are naturally extensions of the core LIDAR modeling approach and associated 

software code. In many instances, the underlying architecture was specifically designed with 

the intent of enabling pursuit of these enhancements in future research efforts. Others were 

discovered during the spiral development process as various technical challenges were 

overcome. 

 

The focus of the performance improvements is to reduce in computational run-time and 

efficiencies as well as decrease the inherent precision loss noted in Chapter 5. The current 

LIDAR model represents a vast improvement in computational efficiency and speed over the 

previous prototype model. A single pulse simulation for a simplified target at a very coarse 

range resolution using the prototype model used to take between 24-48 hours to generate. 

The new DIRSIG LIDAR module generates a much higher fidelity data cube for a single 

pulse from a more complex topographic scene in approximately 2-4 minutes per pulse. 

Simulation of a single pulse involving multiple scattering nominally completes in 

approximately 10-20 minutes per pulse due to an increase in the required number of photon 

bundles cast into the scene. This improvement is considerable considering that the fidelity 

and complexity of the new LIDAR module. In large part, the improvement is due to the new 

photon mapping approach developed for this model. However, some potential opportunities 

for improvement were identified. First, the volumetric radiance solvers could be augmented 

with a user-activated option to use the multiply scattered LIDAR equation instead of the 

photon mapping radiance solver for the effects of the participating medium. If a reduced 

level of accuracy for the participating medium was acceptable, a user could select this option 

and fire just an adequate number of photon bundles for a topographic scene. Secondly, the 

concept of “guided” photons could be incorporated into the source model. Essentially, an 

additional pass is added before the current two-pass photon mapping approach to determine 

which elements within the scene need a higher photon density. During the tracing stage, the 

photon bundles are statistically “guided” into those areas of the scene. Although the speed 

improvements are dramatic, the complications and overhead to keep the statistics accurate for 
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the entire scene are non-trivial and are potentially compounded by the temporal nature of the 

scene and source. 

 

To decrease the precision loss in the system demonstrated in Chapter 5, the LIDAR data cube 

output could be permitted to be double precision if specified by the user. This would 

effectively decrease the precision loss in the system due to dynamic range constraints on the 

output. The downside is that the size of the cubes and the read/write time for the output will 

dramatically increase. Additionally, there may be ways to decrease the inherent precision loss 

in the calculations within the model. For instance, instead of photons, the photon bundles 

could be represented in terms of watts per bundle until the very end and then converted by 

the user.  The actual benefit may be fairly small, but should be considered.  

 

The performance enhancements build upon the baseline DIRSIG module developed and 

verified in this dissertation to either provide new capabilities or improve the fidelity of the 

current model. Some new capabilities that could be added are a polarmetric LIDAR module, 

Raman scattering and florescence phenomenology, and a coherent LIDAR module. Although 

the addition of these new capabilities is not necessarily simple, the current DIRSIG LIDAR 

module was built with the hooks embedded in the code to facilitate the improvements. To 

improve the existing fidelity of the model, one should consider a series of options. First, the 

current model simulates a monochromatic source. The detector module can already be 

defined spectrally because it is based upon the legacy passive modules. The spectral width of 

the laser source and photon bundles could be added into the architecture. This would 

probably have to be done parametrically to avoid an unacceptable increase in computational 

time. Secondly, some user-defined, pulse-to-pulse variability could be added to the source. 

For instance, the pulse power, duration, and departure time actually vary from pulse-to-pulse 

for a real LIDAR system. These three components could be randomly modified based upon 

some established statistics such as a Gaussian random variable within the code and the truth 

data could be stored in the LIDAR data cube header file.  Thirdly, other beam shapes and/or 

modes could be added to the Gaussian and top-hat source functions. Fourthly, the sensor 

jitter could be added to the sensor motion module. The jitter can currently be generated 

outside of DIRSIG via a detailed sensor pointing input file; however, this is not in general an 
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easy task for most users. A default user-controlled random jitter could be added directly to 

the platform and sensor motion modules within DIRSIG. Lastly, the available options for 

inputting the scattering phase functions should be expanded to include direct importance-

based sampling of a user-supplied scattering phase function and higher-order Henyey-

Greenstein approximations. These options will likely be necessary for successfully validating 

the model when multiple scattering is present. 

6.2.3 Model Applications 

From an applications perspective, a wide range of possible research applications of the model 

was demonstrated in this research effort. For instance, the effects of multiple scattering on 

DIAL concentration measurements could now be pursued more thoroughly using this model 

as a tool to generate a host of synthetic datasets for analysis. The key would be to generate 

appropriate truth data for the current DIRSIG compatible voxelized plume models. In a 

similar fashion, the camouflage/concealed target and tree canopy penetration demonstrations 

showcased the module’s capabilities with regards to topographic LIDAR applications and 

could be expanded to examine particular tasking strategies against concealed hard targets. 

Lastly, the model could be used to generate datasets for a direct comparison between passive 

and active methods of identifying and quantify the constituents within a gaseous plume. 

Eventually, synergy between passive and active collection and processing techniques could 

be explored using the DIRSIG LIDAR module. 
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Appendix A  -  Mie Code Performance 

A.1  Accuracy and Precision 
The accuracy of a Mie code is dependent upon a lot of key factors, but is a part of the design 

process. In other words, the desired accuracy and precision over a target range of input 

parameters drives the algorithm design and number of iterations for each loop. MIEV0’s 

published accuracy for any calculated optical parameter is to 5-6 significant digits or better 

for particle size parameters from 0.1 ≤ x ≤ 20,000 and indices of refraction 1 ≤  Real{m} ≤ 9, 

0 ≤ Imag{m} ≤ 10. According to Wiscombe (1996), the MIEV0 code accuracy reduces to 3-4 

significant digits for very small particle size parameters (0.01 ≤ x ≤ 0.2). The Fortran or IDL 

version of the BHMIE code has a similar 5-6 significant digit accuracy or better for particle 

size parameters from 1 ≤ x ≤ 1,000 and indices of refraction 1 ≤  Real{m} ≤ 2.5, 0 ≤ 

Imag{m} ≤ 2. The accuracies of both of these codes are more than sufficient for most 

applications and this is why they are used so frequently in atmospheric optics. Note that all of 

the codes under consideration were designed to handle wavelengths from the UV to the 

visible to the microwave and longwave regions of the spectrum. In fact, the development of 

Mie codes in the late 1970s was driven by investigations into propagation of longwave and 

solar radiation in clouds and the upper atmosphere. Du claims in his paper (2004) that his 

algorithm provides accuracy of greater than 6 significant digits for particle size parameters 

from 0.001 ≤ x ≤ 20,000 and indices of refraction 1 ≤  Real{m} ≤ 10, 0 ≤ Imag{m} ≤ 10. 

Because of the dial-able accuracy/precision, he also provides examples where the accuracy 

was 10 orders greater than MIEV0; however, the computational cost was extreme. 

Additionally, Du demonstrates that his code may be able to handle particle sizes up to 

1,000,000. The difficulty with the latter claim is that it is not easily verified, but the result 

presented in 2004 is reasonable. One should note that these accuracies were quoted for code 

written in C++ on very high precision computer systems. The subsequent discussion shall be 

of the accuracy of Du’s algorithm as implemented on an ordinary PC laptop in IDL (denoted 

MIEDU).  As will be shown shortly, MIEDU’s maintains the consistency with at least the 5-

6 significant digit accuracy claim. A summary of the overall operational restrictions and 

accuracies for the various Mie codes presented (MIEV0, BHMIE, and MIEDU) are shown in 
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Table 23 below. One should use this table as a reference for the following discussion of the 

specific accuracy test results. 

Table 23: Operational restrictions for MIEV0, BHMIE, and MIEDU 
Size Parameter (um) Accuracy

MIEV0 0.02 < x < 20,000 1 < Re{m} < 9 0 < Imag{m} < 10 >6

IDL BHMIE 1 < x < 1,000 1 < Re{m} < 2.5 0 < Imag{m} < 2 5 to 6

IDL MIEDU 0.02 < x < 20,000 1 < Re{m} < 9 0 < Imag{m} < 10 dialable up to 14

Indices of Refraction

 
 

Before we go and discuss some comparisons of these codes, let’s establish the underlying 

source of inaccuracies and operational restrictions for Mie codes and then the design of these 

codes specifically.  

 

As introduced in Section 3.6.1, the core Mie mathematical relationships are: 

(1) Scattering Amplitudes 
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where an and bn are known as the Mie coefficients and πn and τn are Legrendre associated 

polynomials.   

(2) Extinction Efficiency Factor 
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where x is the particle size parameter. 

(3) Scattering Efficiency Factor 
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(4) Scattering Phase Function 
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(5) Asymmetry Factor 

! 

gsca =
4

x
2
Qsca

n n + 2( )
n +1

Re anan+1
* + bnbn+1

*{ } +
2n +1

n n +1( )
Re anbn

*{ }
" 

# 
$ 

% 

& 
' 

n=1

(

)  (291) 

 

The primary challenge of Mie codes is to structure the computation such that the desired 

accuracy is maintained, numerical instability and ill-conditioned calculations are avoided, 

and maximum efficiency is achieved.  The accuracy is primarily determined by how the 

codes handle four potential pitfalls. First, the upward calculation for An is very unstable if the 

imaginary component of the indices of refraction is large enough. Fortunately, the downward 

recurrence is always stable, but is fairly computationally intense. Most Mie codes, such as 

MIEV0 and BHMIE, utilize a criterion established a priori based upon the value of x and m 

to determine when to use the downward recurrence relationship for An. Others, such as 

MIEDU, rely on a ratio (rn in Du’s case) that has a stable upward recurrence formula. The 

criterion-based approach is typically based upon the desired accuracy for the overall 

algorithm. For instance, MIEV0’s criteria was set such that the relative error for the Mie 

quantities did not exceed 10-6. According to Wiscombe, this was done by a thorough study 

for values of x ranging from 1 to 10,000. For the downward recurrence calculation, one needs 

to decide where to start the iterations. MIEV0 uses a convergence criteria of 10-8 to 

determine the starting point.  

 

The second potential pitfall can be in the calculation of the spherical Bessel functions. These 

functions are also numerically unstable for the upward recurrence; however, the downward 

recurrence is very stable. Generally, Mie codes restrict the errors for the spherical Bessel 

functions to be no larger than 0.002% of the actual value.  

 

The third potential pitfall is the determination of the cutoff for the infinite series calculations 

required. Older Mie codes stopped the summations for the Mie series at the first value of n 

for which: 
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This criterion corresponds to 6 significant digits for the output results. To speed things up, 

MIEV0 and BHMIE utilize an a priori estimate of the required number of terms in the Mie 

series. This empirical estimate is based upon runs that were made in the early 1980s for a 

wide range of parameters (0.1 ≤ x ≤ 20,000 and indices of refraction 1.05 ≤  Real{m} ≤ 2.5, 0 

≤ Imag{m} ≤ 1). The older criterion was used after replacing the 10-14 with 5x10-14. Based 

upon these runs, a new criterion was established. MIEV0 sets the number of terms as: 
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BHMIE sets the number of terms as: 
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regardless of the x parameter. As stated in Section 3.6.2, Du’s algorithm uses the estimate of 

the number of significant digits lost based upon Kapteyn’s inequality to decide how many 

terms to use in the series (and also when to use the upward or downward recurrences of the 

spherical Bessel functions). 

 

The fourth potential pitfall is how one handles very small particles ( 0!x ). The issue is that 

the calculation for An is numerically ill-conditioned as the particle size parameter gets very 

small. Secondly, the subtraction in the numerator for bn becomes ill-conditioned and thirdly, 

the subtraction for the upward recurrence of the spherical Bessel functions loses significant 

digits at every step. MIEV0 incorporates a different set of relationships for calculating very 

small particles (x < 0.2) and has been shown to retain 3-5 significant digits for very small 

particle size parameters. Bohren and Huffman have not made any such claim about the 

BHMIE code and test data for these small sizes was not available. Du claims the same 

accuracy as the MIEV0 code. Note that due to the introduction of the ratio, rn, the issues 

associated with An are not present for the MIEDU code; however, the other constraints are 

still present. 
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Although no published data exists over most of the ranges for which the codes claim to be 

accurate, some general principles can be applied: 

(1) Qext should go to 2 and Qsca and gsca should asymptote as !"x  

(2) The asymptotic approaches should be more rapid as Imag{m} gets larger 

(3) Increasing Imag{m} should damp out the ripple structure 

When examined, the trends for all three codes (MIEV0, BHMIE, and MIEDU) behave in 

accordance to these guidelines. Leveraging published test data for MIEV0, BHMIE and 

MIEDU can be compared for a set of stressing cases. The baseline test data for MIEV0 is 

supported by an extensive evaluation of its accuracy by Wiscombe (NCAR report, 1979). 

The results are shown in Table 24, Table 5, Table 6, and Table 27. Note that differences in 

results for the codes are highlighted in red for comparison sake. MIEDU is very consistent 

with MIEV0 and produces very accurate results in every test case. Table 5 and Table 6 show 

that MIEDU is very consistent with the BHMIE code for a wide range of situations with the 

exception of when the imaginary component of the index of refraction is very small (but not 

zero). The same results can be seen in the comparison between the MIEV0 and BHMIE 

calculations. This would appear to contradict the performance claims for the IDL 

implementation of BHMIE. In general, we retain about 5 or 6 significant digits of accuracy 

for MIEDU or MIEV0. 

Table 24: Comparison of MIEDU and MIEV0 results 

Re{m} Imag{m} x Qext Qsca Qabs gsca Qext Qsca Qabs gsca

0.75 0.099 7.41786E-06 7.41786E-06 0.00000E+00 0.001448 7.41786E-06 7.41786E-06 0.00000E+00 0.001448

0.75 0.101 8.03354E-06 8.03354E-06 0.00000E+00 0.001507 8.03354E-06 8.03354E-06 0.00000E+00 0.001507

0.75 10 2.23226E+00 2.23226E+00 0.00000E+00 0.896473 2.23227E+00 2.23227E+00 0.00000E+00 0.896473

0.75 1000 1.99791E+00 1.99791E+00 0.00000E+00 0.845093 1.99791E+00 1.99791E+00 0.00000E+00 0.844944

1.33 -1.0E-05 1 9.39520E-02 9.39233E-02 2.86810E-05 0.184517 9.39520E-02 9.39230E-02 2.90000E-05 0.184517

1.33 -1.0E-05 100 2.10132E+00 2.09659E+00 4.72690E-03 0.868961 2.10132E+00 2.09659E+00 4.72700E-03 0.868959

1.33 -1.0E-05 10000 2.00409E+00 1.72386E+00 2.80232E-01 0.907784 2.00409E+00 1.72386E+00 2.80232E-01 0.907840

1.50 -1.0E+00 0.055 1.01491E-01 1.13169E-05 1.01480E-01 0.000491 1.01491E-01 1.10000E-05 1.01480E-01 0.000491

1.50 -1.0E+00 0.056 1.03347E-01 1.21631E-05 1.03335E-01 0.000509 1.03347E-01 1.20000E-05 1.03335E-01 0.000509

1.50 -1.0E+00 1 2.33632E+00 6.63454E-01 1.67287E+00 0.192136 2.33632E+00 6.63454E-01 1.67287E+00 0.192136

1.50 -1.0E+00 100 2.09750E+00 1.28370E+00 8.13805E-01 0.850252 2.09750E+00 1.28370E+00 8.13805E-01 0.850252

1.50 -1.0E+00 10000 2.00437E+00 1.23657E+00 7.67793E-01 0.846272 2.00437E+00 1.23657E+00 7.67793E-01 0.846310

10.00 -1.0E+01 1 2.53299E+00 2.04941E+00 4.83588E-01 -0.110664 2.53299E+00 2.04941E+00 4.83588E-01 -0.110664

10.00 -1.0E+01 100 2.07112E+00 1.83679E+00 2.34339E-01 0.556215 2.07112E+00 1.83679E+00 2.34339E-01 0.556215

10.00 -1.0E+01 10000 2.00591E+00 1.79539E+00 2.10521E-01 0.548191 2.00591E+00 1.79539E+00 2.10521E-01 0.548194

IDL version of Du's Algorithm Wiscombe's MIEV0 (FORTRAN)
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Table 25: Comparison of MIEDU and BHMIE results 

Re{m} Imag{m} x Qext Qsca Qabs gsca Qext Qsca Qabs gsca

0.75 0.099 7.41786E-06 7.41786E-06 0.00000E+00 0.001448 7.41786E-06 7.41786E-06 0.00000E+00 0.001448

0.75 0.101 8.03354E-06 8.03354E-06 0.00000E+00 0.001507 8.03354E-06 8.03354E-06 0.00000E+00 0.001507

0.75 10 2.23227E+00 2.23227E+00 0.00000E+00 0.896473 2.23226E+00 2.23226E+00 0.00000E+00 0.896473

0.75 1000 1.99791E+00 1.99791E+00 0.00000E+00 0.844944 1.99791E+00 1.99791E+00 0.00000E+00 0.844944

1.33 -1.0E-05 1 9.39520E-02 9.39230E-02 2.90000E-05 0.184517 2.02490E+00 2.02490E+00 0.00000E+00 0.184517

1.33 -1.0E-05 100 2.10132E+00 2.09659E+00 4.72700E-03 0.868959 2.15784E+00 2.15335E+00 4.49140E-03 0.859799

1.33 -1.0E-05 10000 2.00409E+00 1.72386E+00 2.80232E-01 0.907840 2.00436E+00 1.93166E+00 7.26961E-02 0.887362

1.50 -1.0E+00 0.055 1.01491E-01 1.10000E-05 1.01480E-01 0.000491 1.01491E-01 1.13169E-05 1.01480E-01 0.000491

1.50 -1.0E+00 0.056 1.03347E-01 1.20000E-05 1.03335E-01 0.000509 1.03347E-01 1.21631E-05 1.03335E-01 0.000509

1.50 -1.0E+00 1 2.33632E+00 6.63454E-01 1.67287E+00 0.192136 2.33632E+00 6.63454E-01 1.67287E+00 0.192136

1.50 -1.0E+00 100 2.09750E+00 1.28370E+00 8.13805E-01 0.850252 2.09750E+00 1.28370E+00 8.13805E-01 0.850252

1.50 -1.0E+00 10000 2.00437E+00 1.23657E+00 7.67793E-01 0.846310 2.00437E+00 1.23657E+00 7.67793E-01 0.846310

10.00 -1.0E+01 1 2.53299E+00 2.04941E+00 4.83588E-01 -0.110664 2.53299E+00 2.04941E+00 4.83588E-01 -0.110664

10.00 -1.0E+01 100 2.07112E+00 1.83679E+00 2.34339E-01 0.556215 2.07116E+00 1.83683E+00 2.34327E-01 0.556209

10.00 -1.0E+01 10000 2.00591E+00 1.79539E+00 2.10521E-01 0.548194 2.00591E+00 1.79539E+00 2.10521E-01 0.548194

IDL version of Bohren/Huffman AlgorithmWiscombe's MIEV0 (FORTRAN)

 
 

Table 26: Comparison of MIEV0 and BHMIE results 

Re{m} Imag{m} x Qext Qsca Qabs gsca Qext Qsca Qabs gsca

0.75 0.099 7.41786E-06 7.41786E-06 0.00000E+00 0.001448 7.41786E-06 7.41786E-06 0.00000E+00 0.001448

0.75 0.101 8.03354E-06 8.03354E-06 0.00000E+00 0.001507 8.03354E-06 8.03354E-06 0.00000E+00 0.001507

0.75 10 2.23226E+00 2.23226E+00 0.00000E+00 0.896473 2.23226E+00 2.23226E+00 0.00000E+00 0.896473

0.75 1000 1.99791E+00 1.99791E+00 0.00000E+00 0.845093 1.99791E+00 1.99791E+00 0.00000E+00 0.844944

1.33 -1.0E-05 1 9.39520E-02 9.39233E-02 2.86810E-05 0.184517 2.02490E+00 2.02490E+00 0.00000E+00 0.184517

1.33 -1.0E-05 100 2.10132E+00 2.09659E+00 4.72690E-03 0.868961 2.15784E+00 2.15335E+00 4.49140E-03 0.859799

1.33 -1.0E-05 10000 2.00409E+00 1.72386E+00 2.80232E-01 0.907784 2.02447E+00 2.01513E+00 9.33560E-03 0.883624

1.50 -1.0E+00 0.055 1.01491E-01 1.13169E-05 1.01480E-01 0.000491 1.01491E-01 1.13169E-05 1.01480E-01 0.000491

1.50 -1.0E+00 0.056 1.03347E-01 1.21631E-05 1.03335E-01 0.000509 1.03347E-01 1.21631E-05 1.03335E-01 0.000509

1.50 -1.0E+00 1 2.33632E+00 6.63454E-01 1.67287E+00 0.192136 2.33632E+00 6.63454E-01 1.67287E+00 0.192136

1.50 -1.0E+00 100 2.09750E+00 1.28370E+00 8.13805E-01 0.850252 2.09750E+00 1.28370E+00 8.13805E-01 0.850252

1.50 -1.0E+00 10000 2.00437E+00 1.23657E+00 7.67793E-01 0.846272 2.00437E+00 1.23657E+00 7.67793E-01 0.846310

10.00 -1.0E+01 1 2.53299E+00 2.04941E+00 4.83588E-01 -0.110664 2.53299E+00 2.04941E+00 4.83588E-01 -0.110664

10.00 -1.0E+01 100 2.07112E+00 1.83679E+00 2.34339E-01 0.556215 2.07116E+00 1.83683E+00 2.34327E-01 0.556209

10.00 -1.0E+01 10000 2.00591E+00 1.79539E+00 2.10521E-01 0.548191 2.00591E+00 1.79539E+00 2.10521E-01 0.548194

IDL version of Du's Algorithm IDL version of Bohren/Huffman Algorithm

 
 

 
As mentioned previously in this subsection, small particles present special challenges for Mie 

codes. Figure 131 is a polar plot of the normalized amplitude functions for a very small 

particle with an index of refraction of 1.77 and a particle size parameter of ~0.05. This 

example is well within the region where the Rayleigh approximation is valid. As one might 

expect, the behavior for the unpolarized, perpendicular, and parallel amplitude functions as 

predicted by MIEDU are consistent with scattering behavior in the Rayleigh scattering 

regime.   

 

While Figure 131 represents a qualitative assessment, Table 27 is a very special set of 

stressing cases designed to test the calculations for very small particles. Wiscombe conducted 

a detailed study (NCAR report, 1979) of the actual results in the process of developing his 

own algorithm. The results for all three codes is in the table. Notice that all of them work 

very well, even for very small x. Any lost digits result in minor errors. The strong correlation 

between the two IDL implementations may be due to some shared IDL computational artifact 

or process. For instance, the tan( ) function and the exp( ) in IDL do have some limitations 
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when evaluating very small or very large inputs. This could potentially be a source of the 

errors. Note that the errors are very minor.   

 

Overall, all of the Mie codes evaluated have demonstrated a very high degree of accuracy for 

the calculating the scattering and absorption properties of a spherical particle over a very 

wide range of input parameters. The advantages of Du’s algorithm are that it is simple, 

accurate, and robust for a wide range of operational inputs. The precision and accuracy is 

also truly deterministic and could be increased if necessary or reduced for improved 

computational efficiency.  

 

 
 

Figure 131: Normalized Rayleigh scattering amplitude functions 
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Table 27: Comparison of values of Qext in the small particle limit 
 

x Re{m}  Imag{m}  abs(m)*x  Exact  MIEV0  IDL MIE  BHMIE  

1.50  -1.E -06 0.030  7.67805E -08 7.67805E -08 7.6780 4E-08 7.6780 4E-08 

1.95  -1.E -06 0.039  1.27355E -07 1.27355E -07 1.27355E -07 1.27355E -07 

0.02  

1.95  -1.E -05 0.039  3.77355E -07 3.77355E -07 3.77 659 E-07 3.77659 E-07 

1.05  -1.E -06 0.042  1.12179E -07 1.12179E -07 1.12179E -07 1.12179E -07 

1.50  -1.E -06 0.060  6.70403E -07 6.70403E -07 6.70403E -07 6.70403E -07 

1.50  -1.E -04 0.060  8.57008E -06 8.57008E -06 8.5700 7E-06 8.5700 7E-06 

0.04  

1.90  -1.E -04 0.076  7.16259E -06 7.16259E -06 7.16259E -06 7.16259E -06 

1.05  -1.E -06 0.084  3.28478E -07 3.28478E -07 3.28478E -07 3.28478E -07 

1.50  -1.E -06 0.120  9.61292E -06 9.6129 1E-06 9.61292E -06 9.61292E -06 

1.50  -1.E -04 0.120  2.54547E -05 2.54547E -05 2.54547E -05 2.54547E -05 

0.08  

1.95  -1.E -04 0.156  3.67336E -05 3.6733 5E-05 3.67336E -05 3.67336E -05 

1.05  -1.E -02 0.210  5.25263E -05 5.252 56 E-05 5.25263E -03 5.25263E -03 

1.05  -1.E+00  0.290  5.78539E -01 5.785 32 E-01 5.78539E -01 5.78539E -01 

1.95  -1.E -02 0.390  3.90548E -03 3.905 26 E-03 3.90548E -03 3.90548E -03 

0.2  

1.95  -1.E+00  0.438  2.58637E -01 2.586 26 E-01 2.58637E -01 2.58637E -01 
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x Re{m}  Imag{m}  abs(m)*x  Exact  MIEV0  IDL MIE  BHMIE  

1.50  -1.E -06 0.030  7.67805E -08 7.67805E -08 7.6780 4E-08 7.6780 4E-08 

1.95  -1.E -06 0.039  1.27355E -07 1.27355E -07 1.27355E -07 1.27355E -07 

0.02  

1.95  -1.E -05 0.039  3.77355E -07 3.77355E -07 3.77 659 E-07 3.77659 E-07 

1.05  -1.E -06 0.042  1.12179E -07 1.12179E -07 1.12179E -07 1.12179E -07 

1.50  -1.E -06 0.060  6.70403E -07 6.70403E -07 6.70403E -07 6.70403E -07 

1.50  -1.E -04 0.060  8.57008E -06 8.57008E -06 8.5700 7E-06 8.5700 7E-06 

0.04  

1.90  -1.E -04 0.076  7.16259E -06 7.16259E -06 7.16259E -06 7.16259E -06 

1.05  -1.E -06 0.084  3.28478E -07 3.28478E -07 3.28478E -07 3.28478E -07 

1.50  -1.E -06 0.120  9.61292E -06 9.6129 1E-06 9.61292E -06 9.61292E -06 

1.50  -1.E -04 0.120  2.54547E -05 2.54547E -05 2.54547E -05 2.54547E -05 

0.08  

1.95  -1.E -04 0.156  3.67336E -05 3.6733 5E-05 3.67336E -05 3.67336E -05 

1.05  -1.E -02 0.210  5.25263E -05 5.252 56 E-05 5.25263E -03 5.25263E -03 

1.05  -1.E+00  0.290  5.78539E -01 5.785 32 E-01 5.78539E -01 5.78539E -01 

1.95  -1.E -02 0.390  3.90548E -03 3.905 26 E-03 3.90548E -03 3.90548E -03 

0.2  

1.95  -1.E+00  0.438  2.58637E -01 2.586 26 E-01 2.58637E -01 2.58637E -01 

 

MIEDU

 
A.2  Computational Performance 
One of the common concerns with Mie Codes is computational run-time. Mie codes have a 

reputation for being very time consuming, particularly when one is calculating over 100s of 

wavelengths for 100s of different particle sizes. Due to the improvements in processor speed, 

memory, and vectorized coding possibilities, computational time is not as significant factor 

as previously. Table 28 is a sample timing comparison of the IDL implementations of Du’s 

algorithm and the BHMIE code. The driving factor for the run-time of Mie codes is the 

particle size parameter. Note that the nominal run-time for plume and atmospheric 

constituents is about 0.1-0.2 sec for each radius using Du’s algorithm. In general, the BHMIE 

code takes about twice as long as Du’s. For a run for a nominal gamma particle size 

distribution containing 1200 different radii, my implementation of Du’s algorithm took about 

2.1 sec. Du notes in his paper that the MIEV0 code is a little bit faster due to its vector 

optimization. The BHMIE code could definitely be optimized better for the IDL operating 

environment and one could further optimize the IDL implementation of Du’s algorithm. 

Currently, the code is optimized for calculation of numerous angles. In hindsight, the code 

could have been optimized for calculating over a large number of particle sizes and/or 

wavelengths. However, the times listed are very acceptable for most research efforts. 

Generating the optical properties of the plume constituents is intended to be on off-line 

activity that feeds the DIRSIG configuration file. Additionally, if a database of optical 
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parameters for standard gases were built, then the Mie codes would not need to be run 

directly. 

Table 28: Timing comparison for IDL Mie and IDL BHMIE implementations  
(m = 10-10i, 65 angles) 

x IDL Mie (sec) IDL BHMIE (sec)

0.1 0.016 0.026

1 0.018 0.028

10 0.023 0.037

100 0.049 0.106

1000 0.296 0.559

10000 2.018 4.177  
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