DIRSIG4 Reflectance Properties

From DirsigWiki

Contents

- 1 Introduction
 - 1.1 Material Measurements
 - 1.2 DHR Integration
- 2 Reflectance Models
 - 2.1 NEF Beard-Maxwell BRDF
 - 2.2 Phong BRDF
 - 2.3 Priest-Germer BRDF
 - 2.4 Shell Background BRDF
 - 2.5 Shell Target BRDF
 - 2.6 Ward BRDF

Introduction

This chapter covers "Reflectance Properties". These characterize surface reflectance as a function of viewer location, source location, and wavelength. Each DIRSIG material can have its own reflectance property assigned.

The reflectance property is used by the "Radiometry Solver" that is assigned to the same material. This radiometry solver determines the energy incident on a surface by sampling the environment. This sampling includes the sun or moon, man-made light sources, the atmosphere, and other scene geometry. The reflectance property is then used to compute the energy reflected from each sample towards the view ray.

The following table lists the available reflectance properties. Each has been cross-verified for correctness against an external implementation. Note that some are marked as "polarized". While this indicates that the model computes polarized reflectances, these models will also work in unpolarized simulations. Likewise, unpolarized models can be used in polarized simulations, but they effect only the total radiance. They leave the degree and angle of polarization unchanged. (That is, they alter only the s_0 component of the reflected stokes vectors).
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Polarized</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEF Beard-Maxwell</td>
<td>NEFv9 version of Beard-Maxwell BRDF</td>
<td>No</td>
<td>Many available measurements</td>
<td>Many model parameters</td>
</tr>
<tr>
<td>Phong BRDF</td>
<td>Simple analytical BRDF</td>
<td>No</td>
<td>Extremely simple.</td>
<td>Little basis in physics. No spectral component</td>
</tr>
<tr>
<td>Priest-Germer</td>
<td>Target material pBRDF</td>
<td>Yes</td>
<td>Few model parameters</td>
<td></td>
</tr>
<tr>
<td>Shell Background</td>
<td>Background material pBRDF</td>
<td>Yes</td>
<td>Spatial variability</td>
<td>Few measurements. Not for target materials</td>
</tr>
<tr>
<td>Shell Target</td>
<td>Target material pBRDF</td>
<td>Yes</td>
<td></td>
<td>Few measurements. Experimental</td>
</tr>
<tr>
<td>Ward BRDF</td>
<td>Simple analytical BRDF</td>
<td>No</td>
<td>Extremely simple.</td>
<td>Little basis in physics. No spectral component</td>
</tr>
</tbody>
</table>

Materials with these reflectance properties are configured using the DIRSIG4 material database (mat) format. The following example shows an asphalt material using the NEF Beard-Maxwell reflectance property, together with the "Generic Radiometry Solver".

```
MATERIAL_ENTRY {
    NAME = asphalt
    ID = 1
    SURFACE_PROPERTIES {
        REFLECTANCE_PROP_NAME = NEFBeardMaxwell
        REFLECTANCE_PROP {
            NEF_MAT_FILE = /dbmF_05-1/Materials/Single_Materials/0693UUUASP.nmf
        }
    }
    RAD_SOLVER_NAME = Generic
    RAD_SOLVER {
        INITIAL_SAMPLE_COUNT = 25
        MAX_BOUNCES = 2
        SAMPLE_DECAY_RATE = 10
    }
}
```

Note that the reflectance property is defined in the "SURFACE_PROPERTIES" section.

Material Measurements

One of the challenges of working with BRDF models is finding adequate databases of material measurements. A few available sources are:
Nonconventional Exploitation Factors (NEF) Database
- Data fitted to the NEF Beard-Maxwell BRDF model
- See the "NEF Beard-Maxwell BRDF" section for more details.

Cornell University Program of Computer Graphics
- Provides raw measurement data in the visible region
 - http://www.graphics.cornell.edu/online/measurements/reflectance/

CUREt BRDF Measurement Database
- Provides raw measurement data in the visible region of 61 samples

DHR Integration

DIRSIG needs the surface emissivity to model self-emitted energy. This information will be derived from the Reflectance Property if the material has no Emissivity Property assigned.

From the Reflectance Property, DIRSIG computes the Directional Hemispherical Reflectance (DHR), which is defined:

\[
DHR(\mathbf{s}', \lambda) = \int_{\Omega^+} BRDF(\mathbf{s}', \mathbf{v}', \lambda)(\mathbf{v}' \cdot \mathbf{n})d\omega_{\mathbf{v}'}
\]

where:

- \(\mathbf{s}'\) is the view vector.
- \(\lambda\) is the wavelength
- \(\Omega^+\) represents the hemisphere of exitant vectors, \(\mathbf{v}'\).
- \(\mathbf{n}\) is the normal vector.
- \(d\omega_{\mathbf{v}'}\) is the solid angle in the direction of the exitant vector.

From the DHR, the Directional Hemispherical Emissivity (DHE) is derived using the relation:

\[
DHE = 1 - DHR
\]

In turn, this DHE is multiplied against the Planck Blackbody ideal exitance to determine the self-emitted energy.

If the DHR is required, DIRSIG will perform (and cache) the integration described above. There are several user-controllable parameters for this integration. These parameters are added directly to the REFLECTANCE_PROP section, and are valid for all the available reflectance property models.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHR Zenith Bin Sampling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bin 1 = 0 deg
Bin 2 = 17 deg
Bin 3 = 34 deg
Bin 4 = 51 deg
Bin 5 = 48 deg
Bin 6 = 85 deg
The diagram shows the default view vector zenith sampling for DHR calculations. The first zenith bin is always at 0 degrees. The last bin is always at DHR_MAX_ZENITH_ANGLE (85 by default). The remaining bins are spread evenly in between.

The following sample shows these DHR parameters applied to a Reflectance Property:

```plaintext
REFLECTANCE_PROP { 
  BRDF_FIT_FILE = ./GlossyBlackPaint.fit 
  EMISSIVITY_FILE = ./GlossyBlackPaint.ems 
  DHR_NUM_ZENITH_BINS = 10 
  DHR_MAX_ZENITH_ANGLE = 89.0 
  DHR_INTEGRATION_DPHI = 0.5 
  DHR_INTEGRATION_DTHETA = 0.5 
}
```

Reflectance Models

NEF Beard-Maxwell BRDF

Materials from the Nonconventional Exploitation Factors (NEF) database can be used directly in DIRSIG. The NEFDS describes materials using a modified version of the Beard-Maxwell BRDF model. Currently, only version 9 of the NEF database is supported; material files distributed with version 10 will not work.

The NEFDS is a third party product which is not part of the DIRSIG distribution. A government sponsor is needed to gain access to the NEFDS. If a suitable sponsor is available, requests for access may be made to:

Ms. Carol May
Cortana Corporation
Suite 200
520 North Washington Street
Falls Church, VA 22046-3538

Note that some NEF material files actually come with much of the information needed by THERM. This includes thermal conductivity, specific heat, and mass density. DIRSIG does not automatically parse this information in to a thermal model at this time. However, this information can still be manually added by the
user if desired. The NEF User's Guide details the file format of the materials files and explains where this information can be found.

To use the NEF Beard-Maxwell model with a NEF material file, the material database syntax is as follows:

```plaintext
REFLECTANCE_PROP_NAME = NEFBeardMaxwell
REFLECTANCE_PROP {
   NEF_MAT_FILE = /dbmF_05-1/Materials/Single_Materials/0693UUUASP.nmf
}
```

DIRSIG runs with the same permissions as the user invoking it. If the user does not normally have access to the NEFDS material files, those files will still be inaccessible when referenced via a DIRSIG material file.

For more information, consult:

Phong BRDF

The simple Phong BRDF is described entirely in the material entry:

```plaintext
REFLECTANCE_PROP_NAME = Phong
REFLECTANCE_PROP {
   AMBIENT_REFLECTION_CONSTANT = 0.000
   DIFFUSE_REFLECTION_CONSTANT = 0.015
   SPECULAR_REFLECTION_CONSTANT = 0.015
   SHININESS_CONSTANT = 22
}
```

The model is implemented:

\[
\rho = k_a + k_d (L \cdot N) + k_s (L \cdot V)^\alpha
\]

where

\(\rho \)	Reflectance
\(k_a \)	Ambient reflection constant
\(k_d \)	Diffuse reflection constant
\(k_s \)	Specular reflection constant
\(\alpha \)	Shininess constant
\(L \)	Vector to source
Surface normal vector N
Vector towards specular direction V

Note that there is no spectral variation.

Priest-Germer BRDF

The Priest-Germer BRDF is a simple model providing polarized reflectance calculations. For input, the model needs the slope variance (σ) and the complex index of refraction, as a function of wavelength. This model input is supplied in a separate Parameter File.

DIRSIG has provided several optional additions, detailed in Jason Meyers' PhD thesis. These include a Torrance-Sparrow shadowing function and a precomputed diffuse contribution table.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARAMETER_FILE</td>
<td>Filename for BRDF Model Parameters</td>
</tr>
<tr>
<td>ENABLE_POLARIZATION</td>
<td>Indicates whether to calculate polarized or unpolarized</td>
</tr>
<tr>
<td></td>
<td>reflections</td>
</tr>
<tr>
<td>ENABLE_DIFFUSE_CONTRIBUTION</td>
<td>Indicates whether to include DHR-based diffuse</td>
</tr>
<tr>
<td></td>
<td>contribution</td>
</tr>
<tr>
<td>ENABLE_SHADOWING_FUNCTION</td>
<td>Indicates whether to use Torrance-Sparrow shadowing function</td>
</tr>
</tbody>
</table>

A sample specifying the model in the material database:

```plaintext
REFLECTANCE_PROP_NAME = PriestGermer
REFLECTANCE_PROP {
    PARAMETER_FILE = ./al-crc-015.TS.brdf
    ENABLE_POLARIZATION = TRUE
    ENABLE_DIFFUSE_CONTRIBUTION = TRUE
    ENABLE_SHADOWING_FUNCTION = TRUE
}
```

As note above, the "ENABLE_DIFFUSE_CONTRIBUTION" and "ENABLE_SHADOWING_FUNCTIONS" are both additions to the original Priest-Germer model. To reproduce the exact behavior of the original Priest-Germer paper, both these options should be set to "FALSE".

The model parameter file has four columns of data:

- First column is wavelength in microns
- Second column is sigma
- Third column is complex index of refraction, real part
- Fourth column is complex index of refraction, imaginary part

A sample parameter file in its entirety:

```
0.53904 0.150 0.826 6.283
0.56354 0.150 1.018 6.846
0.61990 0.150 1.304 7.479
0.66677 0.150 1.741 8.205
0.77487 0.150 2.625 0.977
```

For more information, consult:

Shell Background BRDF

The polarized Shell Background model is designed for background materials like grass and soil. It provides spatial variability using statistical parameters.

Currently, only three material measurements are available:

- Grass
- Soil
- Asphalt

More information about the measurement process can be found in Shell's thesis.

A comparison of empirical data (top) to synthetic data generated by Background pBRDF model (bottom). Left to right are f_{00}, DOP, and χ.

The model is applied in the material database by specifying a fit file and an emissivity file:

```
REFLECTANCE_PROP_NAME = ShellBackground
REFLECTANCE_PROP {
    BRDF_FIT_FILE = ./grass.fit
    EMISSIVITY_FILE = ./grass.ems
}
```

The BRDF_FIT_FILE, described below, indicates the file containing the fit parameters for the BRDF model. The EMISSIVITY_FILE indicates a DIRSIG3 emissivity (ems) file. The first curve from this file
will be converted to reflectance and used by the model.

The fit file is composed of two section types. The variable names used in both cases are identical to those in James Shell's PhD thesis. The first section type, SHARED_FIT_PARAMS, holds the wavelength-independent parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHO_0</td>
<td>The “base” wavelength reflectance factor for DOP spectral interpolation</td>
</tr>
<tr>
<td>P1, P2, P3, P4</td>
<td>$DOP_0(\xi)$ polynomial coefficients for “base” band, or that having the highest DOP</td>
</tr>
<tr>
<td>PF1, PF2, PF3, PF4</td>
<td>Polynomial coefficients for determining the polarized reflectance fraction $\rho_{pol}(\xi)$</td>
</tr>
<tr>
<td>A, B</td>
<td>f_{00} relative (%) variability as a function of GSD</td>
</tr>
<tr>
<td>C, D</td>
<td>DOP variability as a function of GSD</td>
</tr>
<tr>
<td>E, F</td>
<td>χ variability as a function of GSD</td>
</tr>
</tbody>
</table>

The second section type, FIT_PARAMS, holds wavelength-dependent parameters. Multiple instances of this section may be present in a fit file. The model interpolates between available measurements:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAMBDA</td>
<td>Wavelength [microns] for fit data</td>
</tr>
<tr>
<td>RHO</td>
<td>Directional Hemispherical Reflectance (DHR) for this wavelength</td>
</tr>
<tr>
<td>K0, K1, K2</td>
<td>Roujean fit parameters for this wavelength</td>
</tr>
</tbody>
</table>

A complete example fit file follows:
Shell Target BRDF

The Shell Target BRDF can compute polarized reflectances for target (man-made) materials. It is described in James Shell's PhD thesis.

A parameter file holds model fit data at measured wavelengths. A DIRSIG3 style emissivity file (ems) is used to help interpolate and extrapolate for other wavelengths. The interpolation method parameter dictates how DIRSIG spectrally interpolates the ShellTarget BRDF based on the fact that the BRDF parameters are usually only specified at a handful of wavelengths (i.e. 0.325, 0.6328, 1.06 etc..) while the spectral emissivity is specified at a much higher spectral resolution. Interpolation method 0 ignores the high spectral fidelity emissivity curve, and simply utilizes the BRDF parameter fit data and linearly interpolates between the reference wavelengths. Interpolation method 1 mimics the NEF database v10 handling of BRDF spectral interpolation, utilizing the higher spectral resolution emissivity curve to adjust the diffuse portion of the BRDF such that the hemispherically integrated BRDF model matches the measured diffuse hemispherical reflectance curve.

The material database entry simply specifies the fit and emissivity files:

For more information, consult:

The BRDF fit file contains two or more "FIT_PARAMS" sections, which hold measurements at a known wavelength. The parameters are defined:

- "LAMBDA" is the wavelength in microns
- "N" is the complex index of refraction, real part
- "K" is the complex index of refraction, imaginary part
- "DHR" is the Directional Hemispherical Reflectance

The remaining sections of a "FIT_PARAM" entry define a microfacet orientation distribution, a shadowing function, and a volumetric term.

The "ORIENT_PROB" section indicates a Cauchy distribution function which is defined:

\[p_C(\theta_N) = \frac{B}{\cos(\theta_N)\left[\sigma^2 + \tan^2(\theta_N)\right]} \]

where \(B \) and \(\sigma \) are fit parameters, named "BIAS" and "SIGMA" in the fit file.

The "SHADOW_FUNCT" section indicates a Maxwell-Beard shadowing function which is defined:

\[S_{MB} = \frac{1 + \frac{\theta_N}{\Omega}e^{-1/\tau}}{1 + \frac{\theta_N}{\Omega}} \]

where \(\Omega \) and \(\tau \) are fit parameters, named "OMEGA" and "TAU" in the fit file.

The "VOLUME_TERM" section indicates a Maxwell-Beard volumetric scattering component which is defined:

\[V_{MB} = \rho_D + \frac{2\rho_V}{\cos(\theta_i) + \cos(\theta_r)} \]

where \(\rho_D \) and \(\rho_V \) are fit parameters, named "RHO_D" and "RHO_V" in the fit file.

A sample fit file follows:

```plaintext
REFLECTANCE_PROP_NAME = ShellTarget
REFLECTANCE_PROP {
  BRDF_FIT_FILE = ./blackpaint.fit
  EMISSIVITY_FILE = ./blackpaint.ems
  INTERPOLATION_METHOD = 1
}
```
For more information, consult:

Ward BRDF

The Ward BRDF model has the advantage of being extremely simple. It is described in its entirety directly in the material database:

```plaintext
SHELL_TARGET = 1.0

FIT_PARAMS {
  LAMBDA = 0.352
  N = 1.449
  K = 0.2146
  DHR = 0.0464

  ORIENT_PROB_NAME = Cauchy
  ORIENT_PROB {
    BIAS = 0.0603
    SIGMA = 0.3553
  }

  SHADOW_FUNCT_NAME = Maxwell-Beard
  SHADOW_FUNCT {
    TAU = 2.17
    OMEGA = 1.47E+02
  }

  VOLUME_TERM_NAME = Maxwell-Beard
  VOLUME_TERM {
    RHO_D = -1.06E-04
    RHO_V = 5.29E-04
  }
}

FIT_PARAMS {
  LAMBDA = 0.632
  N = 1.405
  K = 0.2289
  DHR = 0.0402

  ORIENT_PROB_NAME = Cauchy
  ORIENT_PROB {
    BIAS = 0.0556
    SIGMA = 0.3331
  }

  SHADOW_FUNCT_NAME = Maxwell-Beard
  SHADOW_FUNCT {
    TAU = 1.717
    OMEGA = 1.19E+02
  }

  VOLUME_TERM_NAME = Maxwell-Beard
  VOLUME_TERM {
    RHO_D = -1.76E-04
    RHO_V = 5.43E-04
  }
}

REFLECTANCE_PROP_NAME = WardBRDF

REFLECTANCE_PROP {
  DS_WEIGHTS = 0.00 0.37
  XY_SIGMAS = 0.13 0.13
}
```

The XY_SIGMAS parameter values "represent the standard deviation of the surface slope in each of two
perpendicular directions" (Ward 92).

The two DS_WEIGHTS values represent the diffuse and specular weightings, respectively.

For more information, consult:

- This page was last modified 14:39, 14 October 2008.