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Abstract

Traditionally, synthetic imagery has been constructed to simulate images captured with

low resolution, nadir-viewing sensors. Advances in sensor design have driven a need

to simulate scenes not only at higher resolutions but also from oblique view angles.

The primary efforts of this research include: real image capture, scene construction

and modeling, and validation of the synthetic imagery in the reflective portion of the

spectrum. High resolution imagery was collected of an area named MicroScene at the

Rochester Institute of Technology using the Chester F. Carlson Center for Imaging

Science’s MISI and WASP sensors using an oblique view angle. Three Humvees, the

primary targets, were placed in the scene under three different levels of concealment.

Following the collection, a synthetic replica of the scene was constructed and then

rendered with the Digital Imaging and Remote Sensing Image Generation (DIRSIG)

model configured to recreate the scene both spatially and spectrally based on actual

sensor characteristics. Finally, a validation of the synthetic imagery against the real

images of MicroScene was accomplished using a combination of qualitative analysis,

Gaussian maximum likelihood classification, grey-level co-occurrence matrix derived
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texture metrics, and the RX algorithm. The model was updated following each valida-

tion using a cyclical development approach. The purpose of this research is to provide

a level of confidence in the synthetic imagery produced by DIRSIG so that it can be

used to train and develop algorithms for real world concealed target detection.
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Chapter 1

Introduction

The purpose of the research is to perform verification and validation (V&V) of synthetic

images of concealed vehicles created using the Digital Imaging and Remote Sensing

(DIRS) Lab’s Digital Imaging and Remote Sensing Image Generation (DIRSIG) model.

This work includes ground truth and truth image collection of the MicroScene area at

the Rochester Institute of Technology (RIT), synthetic scene development based on

that area, and the verification and validation of the synthetic scene as compared to the

truth imagery. The funding for the Multi-University Research Initiative (MURI) comes

from the Army Research Organization (ARO). This research is a portion of the overall

objective of the MURI. Figure 1.1 shows the interaction and responsibilities of the

various schools that are participating in the research. The ultimate goal of the MURI

project is to provide training sets and development environments based on synthetic

imagery for automatic target recognition (ATR) algorithms. This thesis will explain

why synthetic imagery is important, compare various approaches to synthetic scene

generation, give an overview of the methods and algorithms to be used to validate the

results, and explain how the research was conducted.
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Organization Chart for Army MURI

Many challenges were faced over the course of this work. One challenge was using

DIRSIG to model scenes at very high spatial resolution. As mentioned, the ultimate

goal of the Army’s project is to produce physically accurate training sets for ATR al-

gorithms through synthetic images. Historically, the majority of the use of synthetic

image generation (SIG) tools was to model the spectral phenomenology of target sig-

natures because the sensor platforms were located either in space, as in the case with

satellite based sensors, or at very high altitudes, in the case of aircraft based sensors.

These high altitude platforms generally worked with ground sample distances (GSD) on

the order of meters, or even kilometers, and produced images where manmade targets

of interest were usually entirely contained within a single pixel. Therefore, no detailed

spatial information about the target could be gathered in real world data collections

and modeling fine spatial characteristics of those targets was not a priority. Now, with

the advent of new technology, such as very high resolution airborne and space-based

sensors, unmanned aerial vehicles (UAV) and forward looking optics mounted on low

flying aircraft and helicopters, there is the capability to gather high spatial resolution

target information. These new platforms are driving SIG tools to produce oblique,
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high resolution images as opposed to the conventional nadir, low-resolution images.

The requirement for high spatial resolution dictates that the scenes needed to be both

spectrally and spatially correct.

A challenge with respect to ATR algorithms was dealing with the problem of appro-

priate background clutter. Detection algorithms generally look for small targets, but

the modeler cannot focus solely on the accuracy of those few pixels that encompass the

target; the entire synthetic image must be accurate. It is very important that a diverse

background surrounds that target so that the algorithm will have sufficient variability

in the synthetic image it is operating on to perform as it would on real data.

Size and positioning of targets with respect to the sensor and the scene were also

important. Some target detection algorithms are both spectrally and spatially sensitive.

This requires that not only the material properties of the target be accurate, but also

it’s orientation in the scene. Ensuring similar detection results between the truth and

synthetic imagery requires that these key details be addressed.

The real world scene that the simulation is based on is located in a wooded area

at RIT that the Center for Imaging Science has dubbed “MicroScene” (see Figure

1.2). This area has been extensively ground truthed. Detailed spectral and spatial

measurements of the the area were taken to create the necessary database of information

that was used in the synthetic image generation process.

Verification and validation are crucial parts of any modeling software package. The

process ensures that the underlying assumptions about nature are correct and it gives

the user of the synthetic imagery a measure of its quality. Confidence in the radiometric

accuracy of the synthetic scene is especially important when the image will be used to

train ATR algorithms. Obviously, poor training data will lead to incorrect classification

and target recognition (garbage in equals garbage out).
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Figure 1.2: WASP image of MicroScene area at Rochester Institute of Technology taken
in the fall.

Various methods were used to ensure the statistical and spatial integrity of the

scenes that were generated in this project. As with any image comparison, the first

step is to simply visually inspect the imagery for general similarities. This qualitative

comparison method is used for both the image and spectral comparisons for achieving

a baseline measure of the accuracy of the synthetic image. Informal comparisons like

this are vital for making priority determinations about necessary improvements to the

model from one development cycle to the next.

Once the initial comparisons display an acceptable level of accuracy then more nu-

merical comparisons can be made to assist in the model’s fine tuning. Since specific

phenomenology for doing the concealed target detection had not been decided upon

by the other universities associated with the Army MURI, four numerical metrics were

chosen that the author felt best encompassed all of the areas that detection algorithms

generally rely on to accomplish their objective. First, rank-order correlation (ROC)



CHAPTER 1. INTRODUCTION 5

is used to measure the contrast of significant targets of interest in the scene. Then,

general image classification is accomplished with the Gaussian maximum likelihood

(GML) classifier. Also, the spatial texture of the scene is measured using grey-level

co-occurrence matrices (GLCM). Finally, the spatially and spectrally sensitive RX al-

gorithm, is run on the data to address the goal of target detection. The data from the

measurements is used to compare the results of running those same processes on the

truth imagery of the scene. The differences and similarities provide an understanding

of the success of the simulation effort.

The rest of this document will present an overview of some of the SIG tools that are

available for this type of simulation. It will also describe the mathematical theory be-

hind ROC, GML classification, the RX algorithm, and gray level co-occurrence matrix

derived texture metrics. Then, an outline will be given of the setup for the MicroScene

truth imagery collection and also the methods used to construct the synthetic model

of that scene. The last portion describes the results of the analysis.

This work has been organized in various ways to assist readers who are both looking

to accomplish a similar task and those who are looking to expand the use of the model.

When the development of the MicroScene model is described, it is a “How-To” manual

of sorts. This will hopefully assist any reader who is embarking on a similar line of

research. Future users of the model who are looking to expand its utility should read this

work with the understanding that the phenomenology that is validated is intentionally

generic in an attempt to determine the model’s ability to operate under the scrutiny

of standard image classification and target detection algorithms. As algorithms are

developed to exploit specific phenomenology, then that phenomenology may need to be

included in the model before it will perform appropriately.

The results of the validation given the previous assumption are largely successful.
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They are an encouraging first step forward in the ability of the DIRSIG simulation tool

to supplant the need for actual image acquisition for training and developing detection

and classification algorithms.



Chapter 2

Background

2.1 Synthetic Image Generation

Synthetic imagery is a critical component of Imaging Science for many reasons. It allows

sensor designers the opportunity to create virtual versions of a sensor without many

of the problems associated with creating costly physical versions. SIG tools also allow

system users to determine the best way to utilize a particular sensor design. Those

users can model prospective scenes and determine the combination of parameters, such

as acquisition time, view angle, and weather conditions that maximizes the benefit of

acquiring a real image. Another major benefit to computer modeling is the ability to

do detailed error analysis. SIG tools allow a user total control over the process, so

that physically impossible experiments, like completely removing the atmosphere or

removing noise from the system, are possible. This allows designers to study exactly

where the problems are in the system and determine how much each piece contributes

to the overall system error (Schott, 1997, p. 363-364).

The major focus of this research will be for studying how beneficial current SIG tools

7
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are in the development of hyperspectral ATR algorithms. The parameters that effect

the capabilities of the algorithm, such as resolution, view angle, and spectral region, can

be changed much more readily in a computer than having to create physical versions

of the same scene. The algorithms can then be tested against a much more rigorous

data set. In addition to ATR validation, SIG tools can be used to help train ATR

algorithms. Most common ATR algorithms use statistical or neural net classifiers and

therefore require a great deal of training data. Multiple scenes must be imaged for use

as training data for ATR algorithms in order to increase the algorithm’s understanding

of the different conditions in which a target may be found. This is especially true when

training hyperspectral algorithms. Duda et al. (2001, p. 84) explains how most ATR

algorithms suffer from a lack of training data and that the problem is compounded when

the dimensionality (e.g. number of spectral bands) of the problem is large. SIG can

be a very useful tool for populating the training data when real data is not available.

Although, according to Schott et al. (1998), it is generally not a good idea to use SIG

exclusively for this purpose. They conclude that some real data should always be used

to ensure that the SIG models do not introduce biases or artifacts that distort algorithm

performance trends. The sensor designs, atmospheric conditions, resolutions, spectral

regions, and targets can all be modified with a fraction of the cost that would be required

when acquiring the information from real-world scenes. Schott et al. (1998) and Schott

et al. (1999) give examples of the use of DIRSIG in ATR algorithm development.

Finally, the development of statistical and first-principles based computer simula-

tions validates our understanding of the world around us. There is a certain amount of

satisfaction that comes with the knowledge that the time spent researching and devel-

oping an understanding of nature has not been spent in vain. Doing this verification

and validation of the DIRSIG model will hopefully accomplish that objective.
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All of this requires that the SIG model be physically accurate at all levels of the

scene that are of importance to the sensor being modeled or the algorithm being trained.

The creation of a SIG scene is a very time consuming process because of all of the real-

world information that must be acquired and cataloged before the simulation can be

run. Also, all of the significant underlying phenomenology of the physical world must

be understood in order to model it correctly.

There are many SIG tools currently available that are potential platforms for con-

ducting this research. Most of these tools originated as a means to evaluate specific

aspects of physical phenomena, such as thermal characteristics of objects or the effects

of the human visual system. The ones that will be examined here are those that have

evolved into major platforms that attempt to model a broad range of those phenomena.

They are physical models, Irma, CAMEO-SIM, VISEO, and DIRSIG. Each of them has

their strengths and weaknesses, but they have all increased the scientific communities

understanding of how to capture the complex interactions between photons and their

environment.

2.1.1 Physical Miniature Models

Before a complete study of SIG tools can be accomplished it is important to understand

that SIG tools are not limited to computer simulation. Sometimes it is prudent to use

miniature models of scenes to create synthetic imagery. Therefore prior to creating

a synthetic image one must understand the tradeoffs between computer and minia-

ture modeling so that the appropriate simulation method can be chosen. In the past,

computer processing power limited synthetic image generation strictly to this type of

modeling. When using physical miniatures, viewing angles are controlled by placing

the scene on a rotatable and tiltable table. Illumination conditions are modeled with an
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array of lights located at nearly every angle around the scene to simulate downwelled

skylight. Sunlight is modeled by a high intensity light aimed directly at the scene from

the appropriate angle. The sensors used are typically the actual sensors that will be

used in the final design. The models are custom built by modelmakers and are only

spatially limited by the modelmaker’s abilities.

Miniature models are excellent for use in gathering reflective data in the 0.4 to 2.5

µm spectral region. Also, by their very nature they incorporate all of the complex

interactions of the targets and their backgrounds instantly. The process is limited by a

few factors, though. First, this is not generally a good technique for developing sensor

designs since the sensor must be physically present. Another limitation is in the self-

emissive regions of the spectrum. Thermal Infrared (IR) collections are enormously

complex. It is practically impossible for miniature models to have similar emissivi-

ties, heat capacities, and active heating and cooling sources to real scenes. On top

of that, the laboratory produces radiance that contributes to erroneous IR measure-

ments. Francis et al. (1993) gives a detailed comparison of miniature modeling versus

computer-generated models. The rest of this section will be devoted to computer-based

solutions to synthetic image generation beginning with Irma.

2.1.2 Infrared Modeling and Analysis (Irma)

The Infrared Modeling and Analysis (Irma) tool was developed in 1980 by the Muni-

tions Directorate of the Air Force Research Laboratory (AFRL/MNG). Its focus was to

provide high-resolution infrared target and background simulations for smart weapons

research and development. Originally, Irma was solely an IR tool, but has since gone

through a series of upgrades to include both added phenomenology and increased user

friendliness. The current version, Irma 5.0, includes modeling capabilities for three
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primary signature channels. The first is passive sensor model for IR, Millimeter Wave-

length (MMW), near IR (NIR), ultraviolet (UV) wavelengths. The last two channels

are for modeling active Laser Radar (LADAR) and radar sensors. A common scene

description file for each of the channels provides automatically registered images. Irma

5.0 includes utilities for editing scene facets and their properties, image viewers, target

placement tools, and a Motif graphical user interface (GUI). A complete overview of

this latest version was conducted in Wellfare et al. (2000).

Irma incorporates 3-D scenes developed in AutoCAD. The scenes are based on tri-

angular facets with attached thermal, reflectance, scattering, and texturing properties.

Separate thermal files can be input by the user to override the material properties

for controlling difficult to model thermal conditions, such as engine operation or heat

flow through pipes. Additionally, temporal files can be included into the simulation to

control the frame-to-frame motion of targets, objects and the sensor in the scene.

Since the focus of this research does not include LADAR or radar studies, only the

passive channels of Irma will be discussed here. Detailed descriptions of the capability to

model LADAR and radar in Irma can also be found in Wellfare et al. (2000). The passive

channels are modeled using three separate programs: ENVIRO, PASSIVE/PPASSIVE,

and SSW. ENVIRO is the portion of Irma responsible for calculating the temperatures

of the facets in the scene. It is based on thermodynamic first principles and is capable

of computing one-dimensional heat transfer between objects as well as internal and

external energy transfer within materials. PASSIVE and PPASSIVE use a z-buffer to

render images based on Equation 2.1.

N = τN s
sun + τN s

bkg + τN t + NA (2.1)
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In that equation, N1 represents the sensor reaching radiance, N s
sun accounts for reflected

solar photons, N s
bkg accounts for reflected skylight and background illumination, NA

represents the upwelled radiance, and τ is the path transmission. The reflective prop-

erties of each facet are user-specified as a function of wavelength and are manifested as

a combination of diffuse and specular reflectivity.

Equation 2.1 provides a lot of incite into the fidelity of the model. Irma does not

provide a mechanism to explore the effects of reflections between objects in the scene.

Also, the shape factor assumptions about the scene are generic and are applied unifor-

mally throughout the scene. Lastly, the SSW package provides Irma with the capability

to model complex sensor effects. Though polarimetric effects are not important to this

research, the passive channels in Irma are coded so that modeling of both the polarized

and unpolarized signatures of objects is possible.

Irma will probably not be effective for this research for a few reasons. The first is

that there is no radiance contribution due to the surrounding background of targets

because of Irma’s z-buffer engine. Also, the current setup for modelling images allows

for spectral images, but each one needs to be completed separately, creating a great deal

of additional work to recreate the spectral data obtained from the sensors in this study.

The next section will continue the overview of different SIG tools with a description of

CAMEO-SIM.

2.1.3 Camouflage Electro-Optic Simulation System (CAMEO-SIM)

As opposed to Irma’s z-buffering technique for creating 2-D radiance maps from 3-D

scenes, CAMEO-SIM uses ray-tracing algorithms to provide true 3-D object interac-

tions. CAMEO-SIM was developed in the United Kingdom as a physics-based, broad-
1L is often used as the variable that represents radiance. The author chose to use N here to maintain

a similarity with the Irma references used for this section.
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band (0.4 to 14µm) simulation tool with a main focus on studying camouflage, con-

cealment, and deception. It provides scalable image resolutions which are defined by

the user, thus allowing flexible trade-offs between the level of object detail, radiometric

accuracy, and run-time. Also, the model contains a complete record of the material

properties used by the renderer and the final image for detailed error analysis. A com-

plete overview of CAMEO-SIM is given in Moorhead et al. (2001) and detailed results

of validation experiments are described in Moorhead et al. (1999), and Mitchell et al.

(2000); Mitcell et al. (2000, 2002).

CAMEO-SIM simulations begin with the construction of a 3-D scene in a CAD soft-

ware package. Each object in the scene is modeled using textured facets. The texture

values in the facets are linked to associated bi-directional reflectance, solar absorptivity,

conductivity and density. Due to its true 3-D rendering capabilities, complex object

interactions, such as shadows and background shape factor calculations can be done.

Spatial resolution is only limited by the scene polygon count. Temporal properties of

both objects and the sensor can also be added to the simulation as of CAMEO-SIM

Version 2. Interestingly, the movement of the sensor through the scene does not have

to be fixed ahead of time (although it can be). CAMEO-SIM provides an option for

scene determined sensor paths based on interactive feedback from each generated frame

of imagery.

The radiometry equations (2.2 and 2.3) utilized by CAMEO-SIM contain terms

for wavelength and angular dependant thermal self-emission, atmospheric effects, and

global illumination. Equation 2.2 solves for the radiance, at wavelength λ, leaving a

point x, y in the scene in a direction (θ0, φ0). Equation 2.3 describes the sensor reaching
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radiance for a sensor placed at coordinates x′, y′.

N0 (λ, x, y, θ0, φ0) = ε (λ, x, y, θ0, φ0) Nbb [λ, T (x, y)]

+
∫
∩

ρbd (λ, x, y, θ0, φ0, θi, φi)

×Ni (λ, x, y, θi, φi) sin (θi) dωi (2.2)

Ns

(
λ, x′, y′, x, y

)
= τ

(
λ, x′, y′, x, y

)
N0 (λ, x, y, θ0, φ0, )

+Npath

(
λ, x′, y′, x, y

)
(2.3)

The terms in these equations that solve for the self-emitted terms are characterized by ε,

the emissivity, and Nbb, the blackbody radiance at temperature T (as described by the

familiar Plank equation). Atmospheric effects are described by τ , the target to sensor

transmission, and Npath, the upwelled path radiance. Finally, the global illumination, is

shown as the integration of the incident radiance, Ni, around the hemisphere above the

target multiplied by its bi-directional reflectance, ρbd, and angle of the incident radiance

from the target normal, cos (θi). Originally, the atmospheric and thermal terms were

computed using MOSART and TERTEM. This limited the users to a selection of only

19 different atmospheres. A recent upgrade to CAMEO-SIM includes an interface to

LOWTRAN and MODTRAN4 to provide atmospheric databases of spectral data for

the required scenario (Filbee et al., 2002).

Prior to generating synthetic imagery using CAMEO-SIM, the user must determine

the level of fidelity necessary to accomplish their goal. Output imagery can range from

low fidelity imagery collected in real-time to processing time intensive, high fidelity im-

agery where all of the complex spectral and spatial qualities of the real world are recre-

ated as closely as possible. Low fidelity modes decrease processing time by making a
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series of simplifying assumptions including, simplified BDRF, no background-to-object

or object-to-object interaction, and also restricting the number of facets in the scene.

Use of these simplifying assumption can be very detrimental to the realism of a scene.

Scenes useful for ATR algorithm training would have to be built using high fidelity mod-

eling which includes BRDF effects, geometric occlusion of point and extended sources,

and spectral integration of radiance to include the effects of the atmosphere.

Moorhead et al. (2001) provides example images of scenes created at low and high

fidelity for comparison. From these examples it is clear that when attempting to model

realistic camouflaged targets higher fidelity modeling is required and the low fidelity

mode should only be used as a preview generator. One example shows the importance

of both the Earth’s thermal reflectance as well as albedo terms when modeling aircraft-

to-sky contrast in the mid-wave IR (3 - 5µm). Another example demonstrates the

unique ability of CAMEO-SIM to model active countermeasures. In that example, an

aircraft releases active countermeasures in the form of chafe (used to confuse heat-

seeking ordinance). The chafe provides an additional light source in the scene and its

illumination can be clearly seen reflecting off of the underside of the aircraft. Before

RIT’s SIG tool is discussed, there is one more popular piece of modeling software to go

over. It is Georgia Tech’s VISEO.

2.1.4 Visual and Electro-Optical (VISEO) Detection Analysis System

The Georgia Tech Research Institute (GTRI) has developed an integrated suite of soft-

ware for Visual and Electro-Optical (VISEO) detection analysis. The VISEO system

is a comprehensive workstation-based tool for multi-spectral signature analysis, low

observable (LO) design, and visualization of targets moving through real measured

backgrounds. The program is designed to model the detectability of objects rendered
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over real backgrounds while also simulating sensor and human visual system effects.

VISEO is built upon a variety of smaller modules that perform the necessary radiance

calculations, sensor effects and control view angles and object locations (Doll et al.,

1997).

Essentially, scene generation is accomplished in two parts. The first is the devel-

opment of the background terrain which can either be derived from measured data

(Digital Feature Analysis Data (DFAD) and Digital Terrain Elevation Data (DTED)

from the National Geospatial-Intelligence Agency) and satellite imagery or completely

synthesized. The background is represented in grid format so that individual facets

in the grid can be assigned appropriate material properties. While the majority of

materials are assigned properties based on empirical data, several important ones, such

as six varieties of soil, foliage, asphalt, concrete, water and snow are all based on first

principles (Doll, 1997; Sheffer et al., 1996). The second part of the scene generation

process is the incorporation of objects and targets on top of the background. These

objects must also be created in a facetized format through the use of CAD software

or the GTRI developed code MAX (Sheffer et al., 1996). Various levels of modeling

fidelity can be used to create these objects, but in order to take advantage of all that the

thermal model (described shortly) has to offer, then the modeler must also incorporate

an internal nodal network of the object. These objects are placed in the scene using

TARGLOC which provides the user with a friendly interface for pinpointing object

locations and orientations as well as that of the sensor platform.

Various levels of detail can be used to assign radiance values to objects in the scene

in VISEO. They range from simple blackbody calculations using the Planck equation,

to the semi-empirical Irma model discussed earlier, to a first-principles approach in

the form of the target signature model, GTSIG. GTSIG predicts hardbody emissive
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temperature and blackbody radiance signatures and incorporates the primary thermal

phenomenological effects such as thermal exchange between facets and the sky, aero-

dynamic heating, solar irradiation, convection and mass transfer (evaporation, conden-

sation, icing, etc.) (Cathcart and Sheffer, 1991; Doll, 1997). Recently, GTSIG was

pushed to produce high-resolution spectral image cubes into the reflective and mid-

wave regions of the spectrum rather than merely broadband radiance images in the

8-12µm band. It was also expanded to include non-uniform sky radiance, such as a 3-D

cloud model (Cathcart and Sheffer, 1991), and a flexible BRDF model.

The rendering process is accomplished under the GTVISIT submodel. GTVISIT

begins by reading the input files to acquire the viewing geometry and then calculating

the viewing transformation matrices needed for 3-D perspective projections onto the

2-D view screen. A z-buffer algorithm uses the range values of each element in the scene

to determine which objects are hidden from the sensor’s view and which will be used for

determining the sensor reaching radiance at that particular pixel. After the z-buffering

is finished the radiance values are attenuated according to the atmospheric parameters

of the scene. The radiance map produced by this process is unaffected by senor MTF

affects or noise. These things are incorporated through the GTSENSE submodel.

At this point, the top level VISEO software takes over. VISEO’s camouflage editor

routine allows the user to specify three-dimensional patterns of paints on the surface

of the target vehicle. The patterns are described by a mathematical function so that

an infinite number of possible patterns can be created. The number of different paints

or coatings in the pattern is unlimited as well. Each of the paints is tied to material

properties in the same way that was described above. Another submodel, GTV, is

available that is designed to predict eye movements and detect targets in a manner

that mimics as closely as possible the way the human visual system works. The GTV
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submodel can be used to analyze the effectiveness of the camouflage created with the

VISEO tool (Doll, 1997).

VISEO is also compatible with the Georgia Tech Synthetic Imaging Missile Simula-

tion (GTSIMS) tool. The focus of this tool is not to provide greater capability to model

camouflage, but to support applications, including analysis of aircraft susceptibility to

IR missile threats, analysis of IR counter measures (IRCM) system effectiveness, and

overall test and evaluation programs (Sheffer et al., 1996).

All of the SIG tools discussed to this point have unique capabilities that make each

of them ideal for certain projects. Both CAMEO-SIM and VISEO could possibly be

excellent options for this research if they were more readily available for use at RIT.

Also, access to much of the documentation needed to fully understand the principles

used to create finished products with these pieces of software is limited. Therefore, the

final and most extensive overview of a SIG tool will be devoted to RIT’s own DIRSIG

software.

2.1.5 Digital Imaging and Remote Sensing Image Generation (DIRSIG)

The DIRSIG model is an integrated collection of independent first principles based

submodels which work in conjunction to produce radiance field images with high ra-

diometric fidelity. This modular design creates a high degree of flexibility and inter-

changeability within the model, as well as the capability to diagnose and improve the

model by isolating and analyzing each submodel. DIRSIG has evolved over nearly two

decades, from a Long-Wave Infrared (LWIR) SIG modeling tool originally developed for

ATR algorithm development and sensor trade studies, to a high fidelity model aimed

at producing hyperspectral images over the visible through long-wave infrared spectral

range (Schott et al., 1998). There are five primary submodels of DIRSIG. They are
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the Scene Geometry Submodel, Ray Tracer Submodel, Thermal Submodel, Radiometry

Submodel, and Sensor Submodel.

As usual, image generation in DIRSIG begins by creating the geometric information

of the scene. 3-D wireframe models are built in a CAD environment or can be purchased

from commercial drawing providers. At RIT, object models are generally built using

the Rhinoceros CAD software. Then, objects are gathered into scenes using a locally

developed piece of software called, Bulldozer. The scenes created using those packages

are then facetized. Facets are the most basic building block in the scene and, in

their most basic form, each one representing a unique material type (See Figure 2.1).

Each facet contains information about its location in the scene to include its vertices,

surface normal, slope angle, and azimuthal angle. The material properties include

temperature, self-generated power, specific heat, thermal conductivity, mass density,

specularity, lobe width, visible emissivity, thermal emissivity, exposed area, thickness,

optical description, emissivity, texture, and extinction coefficient (if transparent).

Figure 2.1: A wire-frame representation of a single DIRSIG object used to construct
scenes (Brown, 2003a).

The Ray Tracing Submodel converts the three dimensional scene data into a two-

dimensional image that conforms to the specifications of the sensor (linescanning, push-

broom, framing, etc.) as well as the platform’s motion through the scene. First, the
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location, orientation, and characteristics (i.e. focal length, aperture diameter, etc.) of

the sensor in the scene is established. Then, rays are cast from the sensor, through a

pixel in the image plane, onto the scene as depicted in Figure 2.2.

Figure 2.2: A ray tracer is utilized to determine which objects contribute to the radiance
for a given pixel (Brown, 2003a).

The number of rays cast through a pixel can be increased to allow for a natural mix-

ing of materials in the field-of-view of the pixel. In DIRSIG, the pixel is simply divided

up into an NxN window of user-defined size. The divisions are treated as new pixels

and the radiance values obtained by them are combined through weighted averaging

to obtain a radiance value for the original pixel. This process is called oversampling.

Without oversampling the entire radiance value for the pixel will be determined by

the single material type encountered by the ray. To illustrate the importance of over-

sampling, consider the following example. First, assume that a virtual sensor platform

has a one-meter resolution and that no oversampling is used. If a ray is cast through

the center of one of that sensor’s pixels and happens to intersect a lug nut on the tire
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of an aircraft, then the entire pixel would contain the signature of the lug nut. The

spectral characteristics of a one inch lug nut would obviously not account for the entire

spectral makeup of the one meter pixel. When oversampling is used, the rubber tire,

the wheel rim, the support frame, and maybe even the asphalt will all be included by

being combined in a linear fashion to create a more accurate representation of what

the sensor reaching radiance should actually be. Figure 2.3 shows a virtual conifer tree

rendered both without oversampling and with 3x3 oversampling. There are obviously

softer edges and more realistic detail in the image on the right. Unfortunately, the use

of oversampling requires more rendering time.

Figure 2.3: Example rendering of the effects of oversampling

Once the number of rays to be cast are determined, each one of them is processed

in the same way. If the ray intersects a facet along its journey then the facet is checked

to see if it is opaque or transparent. If it is transparent then the ray is attenuate by

the transmissivity of the facet and the ray continues on until it strikes another facet.

If the facet was opaque, then its emissivity is looked up in the database of the facet’s
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material properties. Reflectivity is calculated from the emissivity file. The specular

and diffuse components of the material’s reflectivity are in the DIRSIG material file.

The specular contribution is determined by casting two more rays, one to the sun

and one in the specular direction to determine the radiance hitting the facet from

the sun or from another background object. The radiance from these two sources is

attenuated by the reflectivity of the facet and the angular dependent specular falloff

values. When the BRDF model is used, the diffuse contribution is similarly calculated

by casting multiple rays into the surrounding hemisphere of the facet to determine the

downwelled radiance that it is receiving and the background shape factor. Once all this

has been accomplished, the emissive, specular, and diffuse components are summed,

multiplied by the atmospheric transmission, and added to the upwelled radiance. The

result is the radiance reaching the sensor associated with that particular pixel.

The Thermal Submodel assigns temperatures to facets within a scene based on their

material properties (i.e. heat capacity, thickness, density, solar absorption coefficient,

etc.) and meteorlogical histories (i.e. wind speed, air temperature, dew point, temper-

ature, solar insolation, etc.). These temperatures are predicted by a forward chaining

differential model called THERM, which was written by DCS Corporation as part of

the Air Force Infrared Simulated Image Model (AIRSIM) (DCS Corporation, 1991). If

the thermal model is being used, then when a ray intersects a facet the sun/shadow

history of that facet is computed in addition to its reflectance and transmission. The

sun/shadow history is computed by casting a ray from the facet to the location of the

sun at set time intervals in the facets history. If the facet is in direct sunlight, or illu-

minated through a transmissive object, then that information will be used to calculate

the time dependent temperature of the facet based on its material properties.

One drawback of THERM is its inability to model lateral conduction between ad-
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jacent facets. To alleviate this, DIRSIG allows the user to override THERM and input

data from some other thermal modeling software package, such as MuSES. MuSES is

currently being upgraded to enhance its ability to include environmental and back-

ground radiation effects from extensive scenes and may become a potential substitute

for THERM in DIRSIG (Schott et al., 2001).

The Radiometry Submodel is the mathematical engine behind the Ray Tracing

Submodel. This module contains the underlying mathematics that model the physi-

cal processes as well as the Air Force’s MODTRAN atmospheric propagation model.

MODTRAN is used to determine exoatmospheric irradiance, emitted and scattered ra-

diances (upwelled and downwelled) and path transmission predictions. The calculations

are computed spectrally at a maximum spectral resolution of 2 wavenumbers. The re-

sults are based on a standard or user-supplied atmospheric profile, latitude, longitude,

elevation, time-of-day, and day-of-year (Berk et al., 1999). This submodel utilizes bidi-

rectional reflectance data, accounts for specular and diffuse background contributions,

and features path length dependent extinction and emission for transmissive bodies

(plumes, clouds, etc.) which may be present in any target, background or solar path.

The radiometry model simply processes the rays generated by the ray tracer to compute

a spectral radiance reaching the sensor for a given pixel (Brown, 2003a).

It is important to understand the different types of photons that may be gathered

by a sensor before tackling the underlying mathematics. Figure 2.4 shows the paths

that a photon may take to reach the sensor. These paths can be collected into two

main groups: solar and self-emitted. This grouping is useful when considering which

wavelengths will be modeled in the scene. Solar photons have more impact in the 0.3

to 2.5 µm region and self-emitted photons are dominant in the 8 to 14 µm region.

The mathematical physical model at the heart of the Radiometry Submodel is called
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Figure 2.4: Solar and Self-Emitted Photon Paths (Schott, 1997, p. 114)

The Big Equation by Schott (1997, p. 113). It is presented here in Equation 2.4. Table

2.1 gives a definition of the variables in the big equation. It also sheds some light on

the photon paths that the variables correspond to.

Lλ =
{

E′
sλ cos σ′τ1λ

r(λ)
π + ε(λ)LTλ + F [Edsλ + Edελ] rd(λ)

π

+(1− F ) [Lbsλ + Lbελ] rd (λ)
}

τ2 (λ) + Lusλ + Luελ (2.4)

Even though facets are assigned individual material identities, the variability within

that material may still need to be accounted for. For example, a grassy field will have

different spectral characteristics depending on which spatial location of the field one is

looking at. The differences are due to mixtures of materials (dirt, moisture, underlying
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Variable Meaning
Lλ Wavelength dependent total sensor reaching radiance
E′

sλ Exoatmospheric irradiance - A photons (after being reflected)
σ′ Angle from target to sun

LTλ Self-emitted radiance - D photons
τ1 Transmission from sun to target
τ2 Transmission from target to sensor
F Shape factor of the background
r Reflectance
ε Emissivity

Ldsλ Downwelled solar radiance - B photons
Ldελ Downwelled atmospheric self-emitted radiance - E photons
Lbsλ Background solar reflected radiance - G photons
Lbελ Background self-emitted radiance - H photons
Lusλ Upwelled solar reflected radiance - C photons
Luελ Upwelled self-emitted radiance - F photons

Table 2.1: Summary of variable meanings and corresponding photon paths

rocks, etc.) and the health of the grass. Therefore, DIRSIG is capable of using a

large database of reflectance curves for any given material. Each material class can

be assigned a texture image that represents that spatial variation of reflectance in

one specific spectral region. When a ray is cast onto a facet, a mapping mechanism

identifies the location on the facet that corresponds to the same pixel location in the

texture image. The value of that pixel is used to select a reflectance curve from the

material database. That is accomplished by calculating the z-score, of that pixel within

the texture map. Then, a reflectance curve is selected from the material database that

has the same z-score (Scanlan, 2003).

Scanlan (2003) worked to evaluate the single-bandpass (SBP) z-score approach to

reflectance curve selection against a variety of methods. The problem with the SBP

approach is exactly like it sounds. It only uses a single band of data to determine

the reflective curve to use across all bands of a material. In his thesis, a multiple-
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bandpass (MBP) z-score technique was implemented into DIRSIG and a validation

was accomplished which showed that the MBP technique proved to be much more

robust than the SBP. In another model implemented in DIRSIG by Scanlan, texture is

created by using spatial and spectral statistics determined from endmember fractional

abundance maps using an automated endmember selection algorithm. The process

behind this approach begins by obtaining a hyperspectral image of the scene being

modeled and extracting the principal endmembers from it. Next, fractional abundance

maps of each of the endmembers are constructed. These fraction maps are then assigned

to the background plane of the synthetic scene. When a ray in DIRSIG encounters the

background it will compute a linear combination of the endmember’s spectra weighted

by the values in the fraction maps and assign the result as the spectrum of that target.

Unfortunately, the current DIRSIG model only allows texture mapping onto the

background of the synthetic scene. This is because all maps default to a vertical

projection onto the mapped facets (Brown and Schott, 2000). Attempting to assign

maps to facets who’s normals are not vertical will result in a deformation of the map

and an incorrect result. Currently, work is being done that will alleviate this problem

and is projected to be available as of DIRSIG release 4.0. The goal is to modify DIRSIG

so that textures are applied at the object level. To begin, each object is “unfolded”

similar to that shown in Figure 2.5. Textures of the object are applied facet-by-facet

and then those textures are “folded” around the object.

The proper orientation and scaling of the texture image is accomplished through

interpolation. Essentially, the desired 3-D object texture is applied through a 2-D image

with horizontal and vertical coordinates, u and v, as shown in Figure 2.6. This 2-D

coordinate system is related to the 3-D coordinates of the object through u = fu(x, y, z)

and v = fv(x, y, z). The function f represents a linear transformation that simply scales
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Figure 2.5: Simple example of object texture projection

Figure 2.6: Projecting 2-D texture onto 3-D coordinates

the texture image across the facet. When the ray tracer casts a ray that hits the object

facet, instead of looking for a material spectrum, it first computes the relative location

of impact on the facet and then uses that information to select a pixel at the same

relative location in the texture map. The pixel selected from the texture map will

dictate the material spectrum selected for that ray.

The use of the object textures was expected to be available for use in this research,

but unfortunately was not. Many of the virtual objects used in the creation of the

MicroScene model were developed with texture images and embedded u, v coordinates.

They will be ideal for testing the object texturing capability when it becomes available

in DIRSIG 4. Figure 2.7 shows an example of the texturing methods used in a beta

version of DIRSIG 4. The best example of the new texturing method can be seen in
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the resolution chart model. Projecting the resolution bars onto this object in DIRSIG

3 would have produced inaccurate results because DIRSIG 3 uses a vertical projection

method for doing object texturing. This method was originally created with terrain

mapping in mind, since terrain plates are generally horizontal surfaces. The method is

inadequate for nearly vertical objects such as the resolution chart. Also of interest in

Figure 2.7 are the shingles of the shed and the wood ramp. These two areas have also

have been modeled with the new texture wrapping technique.

Figure 2.7: An example of texturing in a beta version of DIRSIG 4.

Another problem with facet-based simulation models is abrupt material transitions.

If a scene contains a road with a gravel shoulder, a generic facet-based simulation would

produce a very high contrast edge between the two materials. Of course, in the real
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world, some gravel would fall on the road and create a transition region which would

blur the contrast between the two regions. Material maps in DIRSIG allow the user to

“paint” regions on top of a facet to spatially assign it more than one material property.

Then, the transitional region in between two materials can be controlled to take care

of the unrealistically high frequency transitions inherent in facetized environments.

Brown and Schott (2000) present a more specific account of the various maps available

in DIRSIG. An added benefit of material maps is that fewer facets are required so long

as elevation changes are not a critical component of the material transition.

Variability within a material can also be enhanced through the use of bump map-

ping. Bump mapping uses gray-scale images that control the amount of deflection that

should be added to a surface normal. The magnitude of the deflection is calculated

from the gradient from one pixel to the next in the bump map image. Bump maps add

to the realism of the scene through the appearance of surface roughness.

Finally, the Sensor Submodel converts the entrance aperture radiance to system

output radiance through the system responsivity, which is modeled with Equation 2.5

(Schott et al., 1998). The Sensor Submodel does not have the capability to include

noise or modulation transfer function (MTF) effects, but those should also be available

in DIRSIG 4.0. They can be included in the final synthetic imagery, but they must be

added in post-processing.

Li =
∫

LλRi(λ)dλ (2.5)

Since its inception, DIRSIG’s development has been focused on creating precise

radiometrically accurate images through the use of first principles equations in con-

junction with empirically measured, material specific emissivity databases. A great

deal of research has been conducted on its accuracy and the software tools, documenta-
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tion, developers, and users are all located at RIT. All of this makes DIRSIG the logical

choice for modeling the MicroScene area. Also at RIT are the actual sensors that were

used in the collection of the truth imagery. These sensor packages will be discussed in

the next section.

2.2 Sensors

Truth imagery of MicroScene was obtained with two imaging instruments, the Mul-

tispectral Imaging Spectrometer Instrument (MISI) and the Wildfire Airborne Sensor

Program (WASP). These two platforms were the logical choice for collecting the im-

agery because they are both designed, owned and operated at RIT. These sensors were

hoisted into an elevated, oblique-viewing position via a scissor cart in order to mimic

the view angle representative of forward-looking optical instruments.

2.2.1 Multispectral Imaging Spectrometer Instrument (MISI)

MISI is an airborne, line-scanning instrument with a 6” rotating mirror coupled with

a f/3.3 Cassegrainian telescope. The instrument contains many sensors for broadband

and multispectral imaging. MISI’s broadband capability measures the visible, SWIR,

MWIR, and LWIR regions of the spectrum. Two separate 36-channel spectrometers

cover the electromagnetic spectrum from 0.44µm to 1.02µm at .01µm increments. The

ground instantaneous field-of-view (GIFOV) for the broadband visible is roughly 0.3

m and 1.0 m for the spectrometers, at an altitude of .3 km. The system has been

used at RIT for high-altitude aircraft and satellite sensor performance evaluation, data

collection for algorithm development, and as a survey instrument for demonstrating

proof-of-concept studies in areas ranging from, water quality assessment to energy

conservation (CIS, 2003).
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2.2.1.1 MISI Noise Characteristics

Analysis has been done at RIT to determine the operating characteristics of the MISI

sensor. The gain, bias and full-width half-max (FWHM) factors of each of the bands

of the visible spectrometers has been described in previous laboratory experiments.

The gains are found by pointing MISI’s field-of-view (FOV) into an integrating sphere

and then using a monochrometer to illuminate the sphere. Since the wavelength and

intensity of the light from the monochrometer is known, the gain factor of each spectral

band can be backed out of the digital counts obtained during the measurement. The

bias factor is derived from the actual MISI imagery obtained during a collection. When

obtaining images, the instrument is configured to gather 40-50 lines of data while the

shutter is closed so that a dark region shows up at the beginning and end of the imagery.

Because no outside signal reaches the detector in this area, the resulting digital count

(DC) values are only representative of the bias level of the system and noise. If the

noise is assumed to be additive and have a zero-mean value, then a simple averaging

of all of the values in this area will reduce to the value of the bias. The gain and bias

factors can be applied to the images generated by MISI to make them radiometrically

calibrated by subtracting the average bias of the dark region and multiplying by the

gain on a band-by-band basis.

The dark region of the image also can be used to describe how the noise associated

with MISI is correlated from band-to-band. The correlation matrix of the dark region

of one of a MISI image is shown in Figure 2.8, where the first band correlation starts

in the upper-left hand corner of the figure. This image is also instructive about how

the detector boards on MISI are arranged. For instance, boards 1 and 2 each contain a

16 channel spectrometer covering from about 400 to 700 nm at 20 nm intervals. One

board is offset from the other by 10 nm so that 36 bands of data are obtained at 10 nm
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Figure 2.8: MISI Noise Correlation Matrix

spectral resolution. This interleaving is evident in the figure as the checkerboard-like

pattern seen in the first 30 bands. The data will be utilized in Section 3.2.7 to build

synthetic correlated noise cubes for inclusion into the DIRSIG rendered imagery.

2.2.1.2 MISI Point Spread Function

The optics and detector of the MISI instrument both create distortions in its image

products. This distortion manifests itself as a ”spreading”, or blurring, of light from

one pixel into adjacent pixels. If it is assumed that this light came from a single point

source, then the distortion is referred to as the Point Spread Function (PSF). If it is

also assumed that the PSF acts the same over all spatial locations in the scene (i.e. that

it is linear, shift-invariant) then the PSF acts on the image as represented in Equation

2.6. In that equation, ∗ represents the convolution operation.

Imageout = Imagein ∗ PSF (2.6)

PSFs are difficult to measure experimentally. For this reason it is convenient to

think in terms of a Line Spread Function (LSF). Assuming the PSF is rotationally
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symmetric, the LSF is a 1-D slice through the 2-D PSF. This is easier to measure

because one merely needs a knife edge to form a step function exposure. To further

explain, assume that a scene is constructed such that one half of the scene is some

uniform radiance and the other half is completely dark. Ideally, in a digital system,

only the pixels on the radiant half would record any photons and the other pixels would

remain at a zero DC level. Unfortunately, a real imaging system blurs the contrast at

the boundary. Pixels just on the dark side of the edge, that should be completely dark,

obtain some amount of light from the radiant half. Pixels just along the edge, but

located on the radiant side, will not retain all of the photons that would have been

imaged in the ideal case. The photons are spread between the pixels all along the edge.

This phenomenon can be described as an Edge Spread Function (ESF). Mathematically,

the LSF, shown in Equation 2.7 in the x direction, is simply the PSF integrated with

respect to y.

LSF (x) =
∫ ∞

−∞
PSF (x, y)dy (2.7)

Furthermore, the ESF is given by Equation 2.8.

ESF (x) =
∫ x

−∞
LSF (x)dx (2.8)

After differentiating both sides of Equation 2.8 and rearranging, the result is Equa-

tion 2.9.

LSF (x) =
d

dx
ESF (x)dx (2.9)

This means that the slope of the plot of irradiance vs. distance in Figure 2.9 is

equal to the line spread function at that point (Schott, 1997, p. 320).
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Figure 2.9: Illustration of ESF and LSF

Practically, the PSF can be approximated in real imagery by locating a region in

the image where a bright, constant region transitions to a dark, constant region at

an edge, such as the boundary between a building and the sky. In the case of a line

scanner, such as MISI, the best approximation is to generate one LSF in the vertical

direction and another in the horizontal. Then, interpolate a 2-D gaussian from those

two LSFs.

2.2.2 Wildfire Airborne Sensor Program (WASP)

The other instrument being used in this study is the WASP system. WASP is really a

compilation of four off-the-shelf framing array camera systems that provide a broadband

imaging capability in the VNIR (0.4 − 0.9µm), SWIR (0.9 − 1.7µm), MWIR (3.0 −

5.0µm), and LWIR (8.0−9.2µm) regions of the spectrum. The VNIR 55mm focal length

digital camera provides a 16 megapixel image at 12-bit color quantization. This camera

is generally used for mapping purposes while the SWIR, MWIR and LWIR cameras

take in information desired for the system’s primary purpose of detecting wildfires

(McKeown, 2003). Of the four cameras mentioned, the high-resolution mapping camera

was used to collect the data necessary for this validation effort.
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2.3 Verification and Validation

This research project is an effort to understand how well DIRSIG phenomenologically

simulates the real world at high spatial resolutions, oblique view angles and different

times of day. One’s first inclination to conducting such an experiment would be to

image a scene and then build an exact virtual replica of that scene for comparison on

a pixel-by-pixel basis. If the focus of this research was a design effort where exact

spatial dimensions were of the utmost importance, then that would probably be a

correct assumption. Unfortunately, that type of comparison is extremely sensitive to

geometric changes and alignment of the two images. It is a very difficult task to exactly

match a synthetic image to the real world not only geometrically, but also for the same

meteorological conditions (Mitcell et al., 2002). Imagine modeling the exact location

and size of every leaf on a tree or blade of grass on the ground. As mentioned earlier,

the goal of this research is to provide ATR algorithms with the data necessary to train

them to detect concealed targets. Obviously, if the geometric layout of the target and

its surroundings were known exactly, then there wouldn’t be much need for the target

recognition algorithm to begin with. Therefore, another method of determining the

accuracy of the synthetic model is required so that exact spatial registration is not

necessary.

One way to do this is to select various control points from both the simulated

imagery and the corresponding truth imagery and then compare the relative brightness

of those points. This process is known as rank-order correlation (ROC). Another way

is to run classification and target detection algorithms on both types of images and

compare the results for similarities. There are many different types of algorithms to

choose from in the literature. The standard classification algorithm is the Gaussian

Maximum Likelihood algorithm (Richards, 1999), which makes its determination based
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solely on the spectral signatures of each pixel. This algorithm is already included as an

ENVI tool which facilitates its implementation. Gray-Level Co-Occurrence Matrices

are also a means of classifying an images except that they work based on the spatial

qualities of the imagery. Manolakis (2002), includes an overview of the basics of target

detection. Also in that paper, various geometric and statistical algorithms are compared

as well as their usage with regard to full and sub-pixel targets of interest. The most

interesting algorithm with respect to this research in that paper is the RX algorithm.

It is a statistics-based algorithm that uses both spatial and spectral information about

the target in the detection process.

These analysis tools provide a measure of the generic accuracy of the model. The

goal of this research is not to determine which features will best discriminate targets

from their backgrounds. That job is left for one of the other universities participating in

the Army MURI (see Figure 1.1). The goal is to create synthetic imagery that performs

similarly to the truth imagery when these algorithms are applied to them. Success is

not dependent on accurate classification or detection, but rather similar classification

and detection between the data sets. The next few sections will provide a more in

depth overview of ROC, GML, GLCM and the RX algorithm.

2.3.1 Rank-Order Correlation (ROC)

ROC is a statistical measure of similarity between data sets. In a validation study,

such as those that have been done on DIRSIG images in the past, Kraska (1996);

White (1996), and Joseph (1998), the data points that populate the sets are carefully

selected places of interest in the scene. The goal of applying ROC to the points from the

two images is to obtain a measure of the relative contrast of the data points. Each data

point in a particular image is assigned a rank-order according to its relative brightness,
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or digital count. This is done independently in both the real and synthetic images.

Then the two data sets are compared using Equation 2.10 (Mason et al., 1994) , which

produces what is called the Spearman Rank-Order Correlation Coefficient, ρ.

ρ = 1− 6Σ(Ri −R
′
i)

2

n3 − n
(2.10)

In that equation, Ri is the rank of the ith data point in the truth image, R
′
i is the

rank of the ith data point in the synthetic image, and n is the total number of samples.

If every point in both scenes is ranked in exactly the same way, then the coefficient will

result in a value of one. Values less than one show that there is an inconsistency in the

data points. This is also indicative of a problem within the model and that is the basis

for the use of ROC in validation efforts.

The key to extracting the most information from ROC relies on an understanding of

the process and a careful selection of data points. Remember, ROC is solely a measure

of ranked contrast similarity between selected points from the two scenes. For this

reason it does not require that the data points be registered. One thing that ROC

does not do is provide any indication of gain or bias differences because variations in

these parameters will not change the ranking of the data points 2. The data points

that are selected to be rank-ordered should be easily distinguishable in both the real

and synthetic imagery and be chosen so that no mixing, or at least the same level of

mixing, of materials occurs at the location.
2Root Mean Squared (RMS) error is generally used as a complementary measure of similarity

alongside ROC because it is inherently sensitive to gain and bias changes between the images. Also, its
results are indicative of overall accuracy as opposed to the accuracy of individual objects. RMS error
requires that the two images be exactly spatially registered and is therefore unviable for this research.
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2.3.2 Gaussian Maximum Likelihood Classification

Detection algorithms generally look for small targets, but the modeler cannot focus

solely on the accuracy of those few pixels that encompass the target; the entire synthetic

image must be accurate. It is very important that a diverse background surrounds that

target so that the algorithm will have sufficient variability to perform as it would on

real data. Gaussian maximum likelihood (GML) classification is a leading method in

the remote sensing community for accomplishing this task because of its robustness

and simplicity.

It works by examining the spectra of every pixel in an image and estimating the

probability of that pixel belonging to one of i classes. The covariance, Si, and the

mean, Mi, of each class are provided to the algorithm as a priori knowledge. Then,

the spectral column vector, which has l bands, of each image pixel, X, is assigned a

probability, p(X|i) of belonging to each class. The probability of X given i is shown

in Equation 2.11 on the assumption that the ground truth data of class i will form a

Gaussian distribution.

p(X|i) =
1

(2π)
l
2 |Si|

1
2

e−
1
2
(X−Mi)

T S−1
i (X−Mi) (2.11)

The final likelihood value used to assign the pixel to a given class is shown in

Equation 2.12. This equation weights the result of Equation 2.11 by p(i), which is the

probability of class i occurring in the image, and p(X), which is the probability of X

occurring in the image. The pixel is assigned to the class that generates the largest

value of p(i|X).

p(i|X) =
p(i)p(X|i)

p(X)
) (2.12)
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ENVI has a built-in version of the GML classifier based on Richards (1999). This

version includes the capability to leave pixels whose probability of belonging to any

class is low as unclassified. A user-defined threshold value determines level of con-

fidence necessary to classify each pixel in the image. GML focuses on the spectral

properties of the image, but completely disregards its spatial information. The next

section will explore the idea of extracting spatial information through GLCM derived

texture metrics.

2.3.3 Gray-Level Co-Occurrence Matrices (GLCM)

The focus of this research is to produce high-resolution synthetic imagery that mim-

ics truth imagery, not only spectrally, but also spatially. How does one evaluate that

success in a mathematically provable manner? The answer to this question, for the pur-

pose of this research, is a combination of a qualitative review by human observation as

well as the quantitative gray-level co-occurrence matrix (GLCM) derived texture met-

rics. GLCM can be used to extract several statistical spatial and angular relationships

between neighboring gray-level values in an image. It was originally described in Har-

alick et al. (1973) for extracting textural information for image classification purposes.

The driving factor behind Haralick’s research was the ambiguous descriptions of image

textures that had plagued analysts. He set about to categorize and segment various

image texture types. The reason being, that the information contained in the textural

properties of images were being overlooked and could be included in the classification

process as additional features for enhancing data separability.

The GLCM is a second-order statistical texture measure. Walker and McManamey

(1993), Baraldi and Parmiggiani (1995), and Doll and Home (2001) describe the im-

portance of this when using statistical metrics to differentiate targets from background.
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First-order statistics are only those statistics that can be calculated by considering the

value of a single pixel at a time or by means of the image histogram. Values such as

standard deviation and mean are considered first-order statistics. The first-order statis-

tics of a particular target may not distinguish it mathematically from the clutter around

it even though the shape and contours of that object make it easily distinguishable to

the human observer. In fact, it is impossible for first-order statistics alone to differen-

tiate between non-uniform, spatially distributed targets and non-uniform backgrounds

(Walker and McManamey, 1993). Second-order statistics are those that simultaneously

consider the values of two or more pixels which are spatially related to each other in

some particular way. Second-order statistics can take greater advantage of these kinds

of distinguishing features when mean and standard deviation do not provide the data

separability required. Herein lies the importance of the GLCM metric for this research.

The GLCM technique finds the relationship of co-occurrence between two gray

levels i and j at a given orientation α and distance d, for all possible occurring pairs

in an image window of user defined size. To further explain, let m denote the number

of gray levels in the window. The GLCM Pd,α(i, j) is an (m x m) matrix, where

the entry indexed by i and j denotes the number of pairs of pixels separated by a

distance d at and angle α which have gray levels i and j. pd,α(i, j) is the normalized

version of Pd,α(i, j) and is equivalent to pd,α(i, j) = Pd,α(i,j)
m . Due to the constraints of

discrete pixel windows, the orientations are usually 0◦, for horizontal, 45◦, for positive

diagonal, 90◦, for vertical, and 135◦, for negative diagonal gray level relationships.

When directional information is not required, or an additional feature vector is desired,

isotropic versions of the directional GLCMs can be created through the use of Equation

2.13 (Walker et al., 1997).



CHAPTER 2. BACKGROUND 41

0 0 1 1
0 0 1 1
0 2 2 2
2 2 3 3

Figure 2.10: 4 x 4 image window with four gray tones

0 1 2 3
0 (0,0) (0,1) (0,2) (0,3)
1 (1,0) (1,1) (1,2) (1,3)
2 (2,0) (2,1) (2,2) (2,3)
3 (3,0) (3,1) (3,2) (3,3)

Figure 2.11: General form of a GLCM for gray levels 0 - 3

pd(i, j) =
1
2π

∫ 2π

0
pd,α(i, j)dθ (2.13)

Consider an example shown in Figure 2.10 through Figure 2.15. Imagine that Figure

2.10 represents the gray-level values of a subregion in some image. Figure 2.11 shows

the GLCM layout where (i, j) stands for the number of times gray tones i and j have

been neighbors as defined by the d and α. The integer number in each cell is determined

by counting the number of pairs of pixels in Figure 2.10 such that the first pixel has

gray level i and the second has gray level j. Two interesting properties occur as a result

of this process. First, notice that the diagonal always contains even values because two

adjacent pixels with the same gray-level value will increment the count both forwards

and backwards. Second, and more important from a mathematical point-of-view, the

GLCM matrices are always symmetrical. Figures 2.12 through 2.15 show four resulting

co-occurrence matrices at the four orientations and d = 1.

The assumption being made in all of this is that texture of the area in the image

under the window can be adequately described by the gray level relationships of the

pixels in that window. By themselves, these matrices do not provide the desired tex-
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P1,0◦ =


4 2 1 0
2 4 0 0
1 0 6 1
0 0 1 2


Figure 2.12: Horizontal GLCM

P1,90◦ =


6 0 2 0
0 4 2 0
2 2 2 2
0 0 2 0


Figure 2.13: Vertical GLCM

P1,135◦ =


2 1 3 0
1 2 1 0
3 1 0 2
0 0 2 0


Figure 2.14: Negative Diagonal GLCM

P1,45◦ =


4 1 0 0
1 2 2 0
0 2 4 1
0 0 1 2


Figure 2.15: Positive Diagonal GLCM
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tural information. They can be considered a means to an end, so-to-speak. Haralick

et al. (1973) described 14 measures of textural features that can be extracted from the

GLCMs through various equations. The values solved for in these equations relate to

specific textural characteristics of the image such as homogeneity, contrast, the pres-

ence of organized structure, complexity, and the nature of gray level transitions in the

image. Unfortunately, it can be difficult to identify how each of the feature equations

relates to a specific form of texture. Generally, it is not necessary to do so, as each

of the features can be directly used as an additional spatial discriminating metric for

image classification algorithms so long as when they are used together they enhance

the separability of the data.

Many of Haralick’s original fourteen features contain redundant information or are

linearly dependant. Therefore, much work has been done to determine which fea-

tures provide the most information with regards to data separability. Baraldi and

Parmiggiani (1995) narrow Haralick’s original fourteen metrics down to six. The six

statistical parameters are energy, contrast, variance, correlation, entropy and inverse

difference moment, which is also known as homogeneity. In that paper, energy and con-

trast are considered to be the most efficient at discriminating different textural patterns.

Unfortunately, ENVI does not have the capability to compute energy, so homogeneity,

contrast, and entropy will be used in this research. The decision to use those three

arose from a conversation with the author of Scanlan (2003) who thesis was on using

GLCM metrics to evaluate background textures in simulated imagery. Equations 2.14

through 2.16 show the equations used to derive the scalar values of those three features

from the GLCMs.

Homogeneity =
m−1∑
i=0

m−1∑
j=0

p(i, j)
1 + (i− j)2

(2.14)
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Contrast =
m−1∑
i=0

m−1∑
j=0

(i− j)2 · p(i, j) (2.15)

Entropy = −
m−1∑
i=0

m−1∑
j=0

p(i, j) · log(p(i, j)) (2.16)

Baraldi and Parmiggiani (1995) also contains some very interesting observations

about extracting statistical features from images. The scalar results from the feature

equations just derived are very dependant on how they are implemented and the kinds

of textures they are implemented on. For example, textural and tonal information

can both be present in an image or either one can dominate the other. If texture

is the dominant information in the small area, then this area has a wide variety of

discrete tonal features. However, if the number of distinguishable discrete tonal features

declines, then the tonal properties dominate. Three variables exhibit control over the

values just described. They are:

• The size of the image window under investigation.

• The relative sizes of the discrete tonal features.

• The spatial distribution of distinguishable discrete tonal features.

The importance of developing classification and detection algorithms that include

both spectral and spatial information cannot be understated. In most surface mapping

applications, only spectral features are used. Pixel classifications are based solely on

their “color”, as with the generic GML classification algorithm described earlier. The

spatial relationship to neighboring pixels is irrelevant. In fact, even if all of the pixels in

the image were randomly distributed, each individual pixel would still be classified to

the exact same category as it would have been in the original image. Kiang (2002) does a
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comparison of classifying an Ikonos image based solely on spectral data to classification

which included both spectral and textural information from GLCMs. Compared to per-

pixel classification with only spectral measures, the textural features can improve the

accuracy by as much as 7% (or 12% relatively). Also, including the mean and standard

deviation of the pixel values under the GLCM window can improve the accuracy by as

much as 25% (or 43% relatively).

The combination of GML and GLCM algorithms will provide measures of both the

general spectral and spatial accuracy of the synthetic imagery. The real goal of the

Army MURI is to accomplish concealed target detection and therefore the final metric

will be to analyze both the truth and DIRSIG imagery with the RX algorithm.

2.3.4 RX

The RX algorithm was originally described by Reed and Yu (1990) and also Reed et al.

(1989). This algorithm relies on the assumption that the image clutter can be described

as a Gaussian random process with a fast spatially varying mean and a more slowly

varying covariance. The RX algorithm uses a combination of spatial and spectral

information to detect targets in an image through a convolution-like process. The

signature of the target is considered to be additive to the signature of the background

clutter in the calculations. An important aspect of the algorithm is that it has a

constant false alarm rate (CFAR). This property allows the user to have a much better

understanding of the detection results as the RX kernel passes over the image. As

the RX kernel, which will be described shortly, moves about the image, the statistics

underneath it change. Without the CFAR normalization it would be very difficult to

have any confidence in the stability of the detection rates throughout the image.

To begin the explanation of RX, let the spectral values of each pixel be represented
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by Equation 2.17, where DC is the digital count in that spectral band and l is the

number of bands in the image cube.

x =



DC1

DC2

...

DCl


(2.17)

Then, let the pixels under the RX kernel be represented by Equation 2.18. The

sub-image defined by the kernel represents a square matrix of N pixels centered at the

pixel of interest.

X =
(

x1 x2 . . . xN

)
(2.18)

The spatial shape of the target as it would be found under the kernel is expressed as

Equation 2.19. The values in the spatial shape vector in that equation are normalized

such that STS = 1.

ST =
(

s1 s2 . . . sN

)
(2.19)

From here, the algorithm is designed to go in two directions. One implementation

deals with a known target spectral signature, bT, shown in Equation 2.20.

bT =
(

b1 b2 . . . bN

)
(2.20)

The other implementation allows the user to detect anomalies, or signatures that

are significantly statistically separated from the local background clutter. To make the

RX algorithm an anomaly detector substitute Equation 2.21 for b.
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b̂ = XS (2.21)

Without derivation (which can be found in either of the two references mentioned

at the beginning of this section) the formula for the CFAR RX algorithm with a known

target spectra is shown in Equation 2.22. In that equation, M = 1
N (X− X̄)(X− X̄)T ,

is the covariance of the background clutter around the pixel of interest. Substituting

Equation 2.21 into Equation 2.22 yields the anomaly detection version of the algorithm.

Reed et al. (1989) showed how the two versions of the algorithm could be used in

tandem. There, the anomaly detector was run first and the spectral signature of the

pixel with the strongest response was used as b in the matched filter version to locate

all targets in the image with that spectral structure.

r(x) =

(
bTM−1XS

)2[
1− 1

N (XS)TM−1(XS)
]
[bTM−1b]

(2.22)

Furthermore, two hypotheses are being tested during each calculation of r(x). The

first hypothesis, H0 is defined as the pixel of interest containing only background, or

x(n) = x0(n). The second hypothesis is that the target signature is present at the

correct orientation, or x(n) = x0(n) + bs(n). To implement that equation, the user

must define some threshold value, r0. If the value of r(x) exceeds r0 then it is assumed

that hypothesis H1 is true, if r(x) < r0 then H0 is true. x0(n) is the vector of residual

clutter noise-only processes.

The four metrics described in the previous sections, ROC, GML, GLCM, and RX all

compliment each other well for the purpose of this research. ROC will provide a baseline

measure of radiometric accuracy. GML classification covers the generic spectral quality

of the synthetic imagery. The GLCM texture metrics will help determine if the model



CHAPTER 2. BACKGROUND 48

is correctly recreating the spatial variability that occurs in the real world. Finally, since

RX is a target/anomaly detection algorithm, it suits the overall purpose of the MURI

project well. The next section will describe how some other validation efforts have been

conducted and the relevant issues that were faced during their execution.

2.3.5 Other Validation Efforts

It is important to include a brief description of some other validation efforts that have

been done that are similar to the one being undertaken in this research. This section

contains an overview of the experiments and a summary of some of the problems that

were encountered so that similar misfortunes may be avoided.

One of the closest in objective was conducted by a team of scientists from the United

Kingdom. The set of experiments was called Trial SNAPSHOT, which was designed

to test the fidelity of the CAMEO-SIM model. The overall details and design of the

experiment can be found in Mitcell et al. (2000), and an analysis of the validation

effort and its results can be found in Mitchell et al. (2000); Mitcell et al. (2002). The

goal of Trial SNAPSHOT was to capture detailed information about a single, complex

real-world site. The data was acquired across the spectrum from 0.4 − 14µm using

visible band imaging spectroradiometers, telespecroradiometers (visible, NIR, SWIR,

and LWIR), calibrated color cameras, broadband SWIR and LWIR imagers and contact

reflectance measurement equipment. Seven instruments were used during the trial.

They included:

• Surface Optics Real Time Imaging Spectrometer (RTSIR)TM – visible and near

infrared imagery

• SpectracubeTM imaging specroradiometer – visible and near infrared imagery



CHAPTER 2. BACKGROUND 49

• Kodak DCS 420 digital camera – visible band imagery

• AGEMATM imaging infrared radiometer – 3-5 and 8-12 micron band imagery

• GER 3700TM telespectroradiometer – 0.4-2.5 micron spectral reflectance mea-

surements of different surfaces

• SpectrascanTM telespectroradiometer – visible band spectral radiance measure-

ments of white standard panel

• LMT luminance meter – luminance measurements of white standard panel to

monitor changes in illumination

The site selected for acquiring the imagery consisted of primarily south facing mixed

coniferous and deciduous woodland, but also contained uncultivated grassland and

tracks, very much like the MicroScene area at RIT. Controls were placed in the scene

for ground truth measurements. These included six painted panels - 3 matte panels

and 3 gloss panels, a landrover, and shaped wooden cut-outs with different paint and

camouflage material finishes to simulate men. Meteorological data was also collected

throughout the trials. Beginning one day prior to measurements, wind speed, wind

direction, average dry temperature, average wet bulb temperature, relative humidity,

average solar radiance, average net radiance, barometric pressure and soil temperature

were all recorded.

Three different real and synthetic pairs of the scene were created. The first pair

was imaged with no targets, the second contained the landrover partially obscured,

and the third pair showed the landrover completely out in the open (Mitchell et al.,

2000). To validate the results of the CAMEO-SIM imagery three types of analysis

were conducted. The first analysis tool selected was the use of higher-order statistics

(specifically fourth order). The second was a model based on the human visual system.
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Finally, multiresolution feature extraction was performed using difference of gaussian

(DoG) filters. These filters were chosen because of their importance in nearly all image

processing systems, including human vision and autonomous seekers.

The higher order statistics (HOS) metric was chosen because of its inclusion of the

images’ phase spectra, which provides clues about the shape and relative positions of

features in the image. The traditional mathematics was slightly modified so that local

statistics could be garnered from pairs of images being compared. Difference maps were

created which showed large values around regions of the scene containing the landrover

target implying that its modeling was in some way inadequate. The determination was

that the target, with its sharp edges, contained too much fine-scale coherence relative

to the real images. This drove an upgrade to the sensor model as it was not sufficiently

noisy at the finer scales. In the end, the HOS produced similar results between real

and synthetic versions of the same scene and different version of the real scene taken at

different times. Although, introducing the landrover into the real scene did not produce

the significant discrepancies that occurred when it was introduced into the synthetic

scene.

As described in Nyberg and Bohman (2001), multidimensional analysis can provide

target detection clues because man-made objects tend to be non-fractal, or finer details

do not emerge as one examines higher spatial resolutions. The SNAPSHOT team

examined this phenomenon in Filbee et al. (2002) and Mitchell et al. (2000); Mitcell

et al. (2002) using four parameters that they considered to be important to match

between real and synthetic textures:

1. A measure of overall clutter strength, pc.

2. A measure of image smoothness (spatial correlation called the self-similarity pa-

rameter), k.
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3. A measure of overall clutter density, a.

4. A measure of clutter uniformity, d.

The parameters can be plotted as a scatter plot to provide a comparison between

the real and synthetic scenes. Overlapping points suggest that the synthetic image

closely mimics the real image. Interestingly, Mitchell et al. (2000) points out that while

it is generally more important to know why a simulation went wrong, the scatter plots

can be useful for giving an indication of by how much it went wrong. The results of the

analysis were that the simulation was under-correlated spatially. This would lead to an

overestimate in the difficulty of detecting small-scale targets or camouflage structure

compared to large-scale information, which is very important to know when attempting

to train ATR algorithms.

Validations of earlier versions of the DIRSIG model have also been accomplished

(White, 1996; Kraska, 1996; Joseph, 1998; Mason et al., 1994). The work was generally

done as a validation of the radiometry model of DIRSIG. White and Kraska worked

in tandem to produce a recreation of a well studied 1km x 1km scene in northwestern

Rochester. White validated the visible portion of the model, while Kraska’s focus was

on the thermal. The majority of their time was spent on the construction of the model.

Digital elevation maps, city plans, and material samples were all gathered together to

replicate a truth image of the area taken with Bendix Line Scanner in the 8 − 14µm

band, an Inframetrics Model 600 IR Imaging Radiometer in the 8 − 14µm band, and

a Kodak Digital Camera System (DCS) - 420 for the visible region. The images were

taken both at nadir, from a low flying aircraft, and oblique viewing angles at resolutions

ranging from approximately 1 to 3 feet.

The approach used by both individuals was to spatially register the real and syn-

thetic images and produce difference metrics based on rank-order correlation and root-
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mean squared (RMS) error. RMS error is a difference metric that requires the two

images to be exactly spatially registered. This is inappropriate for this research for

reasons mentioned in the beginning of Section 2.3. Their result showed that DIRSIG

produced accurate radiometric data across the spectrum from .4 − 14µm. Although,

much work was done to produce geometric variation, qualitatively, the synthetic im-

agery was very flat. The size of the scene being recreated was considered very large

at the time, and time and technology constraints created an environment where lit-

tle detail could be provided to the model in terms of the number of materials in the

scene, texturing could not be added, and there was a lack of mixed pixels. Addition-

ally, Kraska’s thermal truth images were taken without a great deal of meteorological

ground truth which resulted in a trial and error approach for modifying the MODTRAN

inputs. Both Kraska (1996) and Joseph (1998) point out the importance of accurate

meteorological input data to the overall performance of MODTRAN.

Joseph (1998) continued Kraska and White’s work by conducting a broad validation

of DIRSIG from 0.4µm to 14µm wavelengths. In that work, he simulated an Army data

collection called the Western Rainbow study, which was designed to measure the spec-

tral signatures of various vehicles and backgrounds under differing conditions of camou-

flage, concealment and lighting at three study sites using Daedalus MSS, Hyperspectral

Digital Imagery Collection Experiment (HYDICE), and Spatially Enhanced Broadband

Array Spectrograph System (SEBASS). Joseph consolidated the three study sites into

one representative synthetic scene that was not meant to be spatially registered by any

means, but to provide a means to perform ROC calculations and qualitative spectral

comparisons.

Problems encountered by Joseph included undersampling, inadequate material database

population for characterizing some scene objects, and a lack of overall detail. Specifi-
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cally, his results showed that the synthetic vegetation class was habitually more radiant

than the real data. The author attributed the problem with the rank-order assigned

to the vegetation class to undersampling of the scene. Shadow and background effects

were not being simulated adequately and so a mixed vegetation material type was sub-

stituted into the simulation to increase the variability of the desert foliage and better

results occurred. The material database was also underpopulated with regard to some

of the object material types.

Joseph also demonstrated the importance of properly attributing object facets with

the correct material type. The emissivity data for a SCUD missile launcher was un-

available so the material data from an R20 vehicle was assigned to the synthetic SCUD

with erroneous consequences. The proximity of MicroScene proved invaluable in this

regard as any scene materials were easily accessible for measurement.

A lack of detail was the other issue Joseph faced. This problem has not only

plagued him but also most every other DIRSIG validation effort. A high-resolution

data collection effort has not been possible until now for a variety of reasons:

1. Computer processing has not been powerful enough.

2. Databases used have not contained the kind of variability characteristic of real-

world materials

3. Proper texturing algorithms had not been implemented or validated

For these reasons it was prudent to conduct this DIRSIG validation effort for veri-

fying exactly how capable this SIG tool is for modeling high-resolution scenes that were

previously too complex for simulation.
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2.4 Camouflage

Finally, it is necessary to discuss the various types and ways of concealing military

vehicles from view. People have been using camouflage in some form or another from

the beginning of human civilization. In fact, camouflage got its start long before hu-

mans ever thought of using it. The animal kingdom has been coming up with various

ingenious ways for hiding prey from predators since as far back as science can probe.

Also, many of the techniques that we use for concealment have been derived from the

methods that plants and animals use. This section provides a brief overview of cam-

ouflage in general. Following that is a discussion of the tactics that the Army uses to

conceal vehicles. That discussion is focused on the two kinds of concealment that are

modeled in the MicroScene area: natural camouflage and camouflage netting.

2.4.1 Camouflage Overview

Until very recently, as far as history goes, camouflage was designed around two vari-

ables, color and pattern. The color was designed to mimic the colors of the naturally

occurring backgrounds that a soldier may be hiding in. But, just because the colors

are right doesn’t render a soldier invisible. Too much of any one color, even if it does

match the background, can serve to distinguish its wearer. Therefore, the pattern of

the colors is also important. It must be designed to arrange the correct colors in such a

way that their spatial frequency matches the spatial frequency of the background. This

serves to disrupt the human visual system, which naturally categorizes things in the

world as being separate objects because they exhibit continuous outlines. Camouflage

disrupts the perceived continuity and hides its wearer from view even though they may

actually be otherwise unobscured from sight.

As technology advanced, it was soon discovered that camouflage may help hide its
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wearer from the human visual system, but may not provide any protection from other

kinds of sensors. New sensors were designed to take in wavelengths of light that are

undetectable to the human eye. These sensors, specifically thermal and SWIR types,

were immediately capable of differentiating camouflaged targets from their background

because of sharp thermal contrast or mismatched reflectance properties in the non-

visible portion of the spectrum. Current upgrades to camouflage include, materials

that exhibit similar spectral qualities to that of their respective backgrounds over a

much broader range of wavelengths, engine systems that mask their thermal output,

radar reflecting “stealth” materials, and even simple decoys.

2.4.2 Vehicle Camouflage

The two primary means of camouflage available for this research were natural vegeta-

tion and camouflage netting. Therefore, it is important to understand how the military

utilizes these two concealment techniques in more detail so that they could be accu-

rately modeled. According to the Department of the Army (1999), the field manual

on Camouflage, Concealment and Decoys (CCD), forests generally provide the best

type of natural screen against optical reconnaissance, especially if the crowns of the

trees are wide enough to prevent aerial observation of the ground. The importance

of shade in concealing vehicles was also mentioned. Whenever possible, branches and

vines are used to temporarily conceal vehicles, equipment, and personnel. This is done

by attaching vegetation to equipment with camouflage foliage brackets, spring clips, or

more expedient means (such as plastic tie-wraps). When implementing this conceal-

ment technique the orientation of the leaf is also important as the underside of green

vegetation is generally much lighter than the top.

The use of natural vegetation is mentioned as a temporary concealment technique
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because cut foliage wilts and changes color rapidly. This is due to the loss of water

and chlorophyll, the substance which gives vegetation is nice blending properties in the

NIR. For this reason, coniferous vegetation is preferred to deciduous because it holds its

chlorophyll for a longer period of time after being cut. All of this is not to exclude the

use of dead vegetation, though. Dried grass, hay, straw and branches can all be used

for texturing. It provides good blending qualities if part of the surrounding background

vegetation is also dead.

The other type of camouflage to be used in the MicroScene collection is camouflage

netting. The netting is generally available in three color patterns: desert, woodland,

and arctic. Also, each side of the netting has a slightly different pattern to allow for

seasonal variations. Most netting systems are modular and consist of a hexagon screen,

a diamond-shaped screen, a support system, and a repair kit. Any number of screens

can be joined together to cover objects or areas of varying sizes.

A basic camouflage net conceals in three different ways:

• Casts patterned shadows that breakup the characteristic outlines of an object.

• Dissipates infrared radiation.

• Simulates color and shadow patterns that are commonly found in a particular

region.

In the field, netting is rarely used without supplemental camouflage. Cut foliage can

be used to augment the concealment effect, although the same precautions regarding

orientation and wilting mentioned earlier should be adhered to here also.
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2.4.3 Camouflage in DIRSIG

Although it wasn’t necessary to produce the virtual camouflage net that was made for

the MicroScene model, Loyd and Sanders (2001) used a software package called SIM-

NET. It may be a useful automated alternative to the manual technique described in

Section 3.2.3.1. The program is designed to virtually drape a 2D fabric structure over

a 3-D object. It begins with a triangular facet representation of the fabric. Mathe-

matically, the facet vertices are simulated as point masses and the edges of the facets

are assumed to be springs. The process begins with the 2D fabric in a completely flat

state suspended above the object. Under the hood, the simulation is driving the fabric

to its lowest potential energy configuration, which is why the assumptions about point

masses and springs are made. All of the support structure of camouflage netting de-

scribed in the Army field manual on CCD can also be included for very realistic looking

camouflage.

Loyd explained that post-processing was necessary to replicate the texture of the

incised vinyl used to garnish the camouflage netting. In an example from that paper,

netting was draped over a SCUD missile Transporter Erector Launcher (TEL) that

contained 2226 facets before being converted into 3-D geometry with much finer facets

and then a subsequently higher facet count of about 105000. In the final version

each facet was constrained to be no bigger than 0.1 m. A CAD program was used

to randomly remove half of the facets to create netting geometry that contained holes.

After adding the holes, the remaining facets were randomly shifted on all three axes by a

margin of -1.5 to 1.5 cm with uniform probability to eliminate the artificial smoothness

created by the simulation. The constraint parameters used in the facet size, hole

creation, and vertex randomization were given no justification other than to show an

example result that was qualitatively realistic. After all was finished, the result was
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Figure 2.16: Diagram of DIRSIG’s treatment of NULL material mappings.

saved in *.OBJ format for inclusion into DIRSIG.

One of the problems with the method just described is that the holes in the net

needed to be cut from the model at the facet level. This is very difficult and it requires

many additional unnecessary facets to achieve accurate results. DIRSIG users can pro-

duce the same results with fewer facets and less work by capitalizing on its hierarchical

mapping capability. A material map can be assigned to the camouflage net model that

contains an index color that is referenced as “NULL” in the map’s look-up table. When

DIRSIG casts a ray that hits the portion of a material mapped facet with a NULL ma-

terial ID, the ray is allowed to pass through the facet as if it wasn’t there. A graphical

representation of the how DIRSIG treats NULL material mappings is shown in Figure

2.16. The capability reduces the modeling needs that would otherwise be required if

each hole in the net was cut from the model on a facet basis.

This concludes the background and literature review portion of this research. This

chapter provided an overview of many popular SIG tools available, including DIRSIG,

RIT’s own modeling software. It also described the four methods, ROC, GML, GLCM,

and RX that are used to validate the synthetic imagery created by DIRSIG, in detail.

Finally, a summary was given of camouflage and concealment techniques along with

how to model those techniques. The next chapter discusses the process for conducting

the truth image collection experiment, and the creation of the MicroScene model.
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Approach

A continuous improvement approach has been taken in the development of the synthetic

MicroScene model for this research. This means that the model was validated in a

cyclical fashion whereby the results were verified at certain milestones to assess the

areas that needed improvement. The discussion in this section will essentially be a

“How-to” guide for modeling some of the phenomenology that was created for this

model. Where appropriate, some results will also be included to explain the author’s

intent for using a particular method. The goal is to give future readers solutions to

many of the problems that required a good deal of time and research to accomplish.

The first section of this chapter is devoted to the ground truth collection with the

WASP and MISI sensors. The setup, data collected, problems faced, and the resulting

imagery will all be discussed. The second section will detail the work completed to get

the synthetic model of MicroScene into a configuration suitable for evaluation as well

as the development of a suitable synthetic MISI instrument.

59
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3.1 The Experiment

3.1.1 Collection Overview

Figure 3.1 provides a complete overview of the locations of the targets in MicroScene

as well as the locations of the sensors. The placement of those objects was carefully

selected so as to reduce the amount of buildings and open space in the background,

and to optimize the placement of the primary targets in the scene.

Figure 3.1: Sensor and target locations in MicroScene.

The scene was imaged with RIT’s MISI and WASP instruments. They were placed

on top of a scissor cart (see Figure 3.2) in the scene at the location depicted in Figure
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3.1. The sensors were lifted with the scissor cart to 50 feet above the ground. The base

of the cart was approximately 100 feet from the center of the target locations. The

resolution of the sensors at this distance ranged from approximately .25 inches (WASP

color camera) to 3 inches (LWIR detector on MISI).

Figure 3.2: WASP and MISI positioned on a scissor cart.

Three military Humvees were supplied through the generous assistance of the US

Marines of the 8th Tank Battalion in Rochester, NY. Each Humvee already had a level
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of standard woodland camouflage paint applied to it, so this form of camouflage was

included in all configurations. One of the Humvees is shown in 3.3. All three are

essentially the same.

Figure 3.3: Humvee target

To simulate the different ways a vehicle may be hidden by trees, the vehicles were

placed at three locations in the scene. The first placement was at the box labelled as

“Uncovered Humvee” in Figure 3.1. This was done so that no trees or forest are in front

the vehicle and only limited tree cover behind. The second level of concealment was

accomplished by placing the vehicle in the location of the the box labelled “Humvee

In Trees” so that the vehicle was surrounded by trees and only partially visible to the

sensors. Finally, the last Humvee was placed at the location of the box labelled “Camo

Humvee”, where it was draped with woodland camouflage netting. The setup can be

seen in Figure 3.4.

Cadre from the Army ROTC office at RIT were generous enough to assist in the
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setup of the camouflage netting. Their field experience in the setup was invaluable and

eliminated a large amount of time from the setup process. With their help, the camou-

flage was setup to the specifications set forth by the Army for camouflage deployment.

Spreaders and stakes were used to create a domed effect around the camouflage to elim-

inate any distinguishing edges. Supplemental camouflage (i.e. twigs, grass, leaves, etc.)

entwined in the net was not used for the sake of simplicity. The Humvee was placed in

this configuration in the open so that a clear view could be obtained of the camouflage

netting, its contours and also the shadowing created by the camouflage pattern.

Figure 3.4: Humvee target under camouflage.

In addition to being imaged by MISI and WASP, the LCSS camouflage was imaged

from underneath the camouflage with a standard digital camera. This image was taken

when the sun was directly overhead to maximize the speckled shadow pattern cast on

the Humvee from the netting. This image is shown in Figure 3.5.

Many other pieces of information were needed to correctly characterize the environ-
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Figure 3.5: Complex shadows cast by the camouflage netting.

ment and the objects in the scene for the simulation to be completed. In addition to

the image, many reflectance curves of the surrounding background were also collected

to populate the material database. Also, detailed meteorological data was collected

to categorize the effects of the weather. A number of tools were made available for

doing weather measurements, such as surface temperature, wind speeds and direction,

as well as humidity, at the time of the collect. A broadband measurement of the down-

welled radiance was also collected. The following materials and sensors were used in

the collection to gather the aforementioned data:

• ASD Spectroradiometer - spectral measurements from .4 to 2.5 µm

• SOC 400T FTIR - spectral measurements from 2 to 25 µm

• Portable Meteorological Station

- wind speed
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- temperature

- humidity

- data logging capability

• 1 white control tarp

• 1 black control tarp

• 3 tile control panels: black, gray, white

This collection was not done solely for the purpose of the completion of this project.

Other research, primarily dealing with the detection of buried land mines as well as

various projects within the CIS department, were also being conducted. While their

data may not be important to this project, some of instruments used to obtain that

data provided additional small target clutter that was included in the synthetic model

of the area. The following is a list of other items that appear in the scene that support

those other objectives.

• 4 simulant land mines buried to a depth of approximately 5cm

• 4 surrogates for simulating surface land mines

• 1 3kw generator

• 2 blackbody control targets

- CI Systems IR Radiation Source Controller

- Techne TU-16A

• Staring IR thermocouples
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• Contact thermocouples

Now that a general overview of the collection has been laid out, it is important to

continue with a more detailed account of the the operations that were conducted and

the timeline of events beginning with the pre-collection phase.

3.1.2 Pre-Collection Phase

Many issues needed to be resolved in the weeks prior to the experiment for it to occur

smoothly. These issues ranged from logistical matters to equipment setup. Due to the

unique nature of this data collection, a more in-depth overview of what went into its

accomplishment is being laid out here to assist in any similar future endeavors.

The data of the experiment was chosen to begin on Monday, 25 August 2003. All

of the equipment and personnel were scheduled to be on-hand for a full week to allow

for adjustments due to weather conditions or other unforseen events. Two weeks or

more prior to the event, weekly planning meetings were conducted, the scissor cart

and Humvees were reserved, and a data logger, cables, wires, and thermocouples were

purchased. Also, due to the unique implementation of the MISI sensor, a motorized

turntable was built to control its movement through the scene.

The WASP instrument consists of four framing array cameras. Therefore, no ad-

ditional setup was required beyond pointing them in the appropriate direction and

taking the images. MISI is a line scanner and, therefore, required the extra atten-

tion. To simulate aircraft movement, a mechanical turntable was placed under MISI.

A laptop computer controlled the turntable which rotated MISI through the scene to

advance each new line at a constant rate of about 20Hz. Normally, line scanners scan

in the horizontal direction (i.e. perpendicular to the flight line). Since the rotation of

the turntable provided the horizontal translation of the scanner, the instrument needed
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to be turned on its side so that the scan lines ran vertically through the scene.

At one week prior to the collection the following items were addressed. A high bay

was reserved from the Center for Industrial Management Systems (CIMS), a depart-

ment at RIT, for sensor storage and setup of the sensors on the scissor cart. RIT’s

Facilities Management team assisted by providing a 21Kw generator and gasoline, all-

weather tarps, a canopy tent, tables and chairs. Coordination with the soccer team as

well as Campus Safety was also accomplished. A work schedule was created to ensure

that collection was manned throughout the week and the area was cleared of debris

that would unnecessarily clutter the environment. Finally, the computers were tested

to ensure that they would be able to run the sensor remotely from the ground so that

no one would have to be with them up in the lift.

The control tarps, resolution chart, 2 blackbody generators, thermocouples, a portable

weather station, downwelled radiometers, the Humvees, camouflage, and MISI and

WASP were all put in place on the morning of the collection. Other miscellaneous items

that were obtained were liquid nitrogen for MISI, day and night clothing, mosquito re-

pellant, food, and entertainment for the workers.

3.1.3 Data Collection

Data was collected every hour, on the hour, with both WASP and MISI positioned

approximately 120 ft from the center of scene. Also, weather data and temperatures

were collected every 5 minutes. The first official images of the scene were taken at 1900

on Monday the 25th under sunny conditions with minimal cloud cover. The last images

were taken at 0600 on Tuesday due to rain. Fortunately, the emergency tear down plan

was implemented immediately and the sensors were wrapped in tarps and driven to a

loading bay where they could be kept under cover until the weather cleared.
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The team regrouped to start collecting imagery again Wednesday the 28th by 1000.

30 collections were obtained through Thursday at 1500. The cloud cover was nearly

non-existent on Thursday so it was decided to continue the collection and overlap some

of the previous collections in the hopes of getting even better data. There were 43

“good” collections over the four day period for a total of 215 images between the two

sensors. The data can be found on the CIS network in the /cis/static/dirs/MicroScene

directory.

Unfortunately, most of the spectrometer data collected by MISI turned out to have

a substantial amount of solar glare in the imagery. This problem was not observed

during the collection and wasn’t identified until post-analysis. Since the collection, a

shroud was created to be placed around the instrument so that only light coming from

the front of the sensor will reach the detector in any similar collection configurations.

For this reason, the validation was split between two images to encompass the

VIS/NIR spectrometer data. An image taken at 1000 did not contain the glare in 28

bands of the visible portion from .4 to .7 um, but did have glare in the NIR portion

of the spectrum. The opposite was true for an image taken at 1800. In this image, 15

bands of usable data from .73 to .99 um was used and so these two data sets became

the main drivers in the validation. Figures 3.6, 3.7 and 3.8 are sample images from the

Terrapix visible camera, a visible MISI image from 1000 and a NIR band from the MISI

image taken at 1800, respectively. The design of the synthetic version of MicroScene

that has been built to represent this truth imagery will be the focus of the rest of this

chapter.
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Figure 3.6: Terrapix image taken at 1000.

Figure 3.7: Color image from MISI’s vis spectrometer taken at 1000.
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Figure 3.8: Single band from MISI’s NIR spectrometer taken at 1800.
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3.2 Virtual MicroScene Construction

Virtual scene construction requires the merging of a great many individual pieces that

all must come together to produce as realistic a scene as possible. To address the spatial

aspects of the scene, the terrain must be synthesized, 3-D models of all of objects must

be created, various maps must also be built to provide realistic variability, and then

each of those pieces needs to be appropriately placed in the virtual world relative to

one another. The spatial qualities of imagery are also impacted by the characteristics

of the sensor used to produce that imagery. The focal length, detector size, camera

type (e.g. framing array or line scanner) and optical properties impart distinct effects

into the imagery.

The spectral aspects are perhaps more important than the spatial aspects for this

type of scene. Accurate spectral signatures require detailed collection of material

reflectance spectra, accurate atmospheric estimation, and even the inclusion of bi-

directional effects for non-Lambertian material types. Again, the sensor plays a major

role in the resulting spectral signatures in the scene. Detailed knowledge of the spectral

response function of the sensor must be known so that it can be used to convolve the

DIRSIG derived entrance aperture radiance in the same manner as the corresponding

physical sensor.

This section will describe the process that was used to develop the MicroScene

model into its current configuration. It begins with an overview of how the terrain was

created. Next, the modeling and placement of the scene vegetation will be described.

Then, the process for making the manmade object models will be discussed. Finally,

an overview will be presented of the creation of the virtual MISI sensor.
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3.2.1 Synthetic Terrain Creation

The first step in synthetic scene creation is producing the terrain for the objects in the

scene to rest on. The MicroScene terrain map is derived from a survey of the actual

MicroScene area. A grayscale .pgm image was created from that survey which describes

the layout of the land in an image format. The terrain model was created using four

different graylevel values which corresponded to terrain heights in units of meters.

Similar to most terrain models developed at RIT, this image was passed through

a locally developed IDL procedure that interpolated values between the four different

elevations so that smooth transitions between elevations occurred. The problem with

this approach for creating a high-resolution scene like this one was that there was very

little control over the amount of smoothing and the smoothing was applied evenly

throughout the image.

Rather than use the interpolating program, the DEM image was manually smoothed

in an image editing package so that the terrain matched as closely as possible to the

actual contours of the MicroScene area. This method of generating realistic surface

elevation transitions was particularly necessary in the area of the scene just to the left

of the shed (see Figure 3.6). When the actual shed was built, a large amount of dirt was

excavated from the hillside to even out the ground. Special attention was placed on the

area where the dirt was taken from because it had a sharp elevation change and also on

the general size and shape of the hill behind the objects in the scene. Once the image

was finalized it was facetized using a UNIX based program called pgm2gdb. The

specific command line used in its creation is shown here for reference in case the model

is ever updated. These parameters are essential for ensuring that a new model would

be at the same height and have the same ground sample distance (GSD). (Ientilucci,

2003) provides a more detailed step-by-step overview of creating terrain models in this
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way, as well as the syntax for using the pgm2gdb utility.

pgm2gdb NewMicrosceneTerrain 10000 1 0 0 158 .288 .0157

A flat extension to the terrain model was created in addition to the detailed terrain

model for the portion of the scene immediately in front of the imagers. This plate

extends about a 1000 meters into the distance and the background objects, such as the

buildings and more trees, rest on it. The oblique viewing angle of the sensors required

that this addition be made so that the virtual landscape appears to extend all the way

to the horizon.

Once the facetized terrain model was generated it was overlaid with three different

mapping images that are designed to induce realistic variability. This is important

because it is done without the need for increasing the number of facets used to define

the geometry of the terrain or varying the material properties of the terrain on a facet-

by-facet basis. The final terrain model combines material, texture and bump maps.

A material map is used to distinguish different material types within an object. In

this scene, it is primarily used to create the transition between the grassy region to

the dirt area in front of the shed. The first approach taken to accomplish this was to

use the spray brush feature in a image editing software package to randomly distribute

the color that identified dirt in the map across the transition. It was very obvious that

this was not producing the kind of transition seen in the truth imagery. The transition

was not simply random like the spray brush was creating, but had some definite spatial

structure as well.

The next approach was to take a picture of the transition region with a digital cam-

era and import that image into the editing software. Since the dirt was lighter than the

grass in the images, it was supposed that the two could be separated using thresholding

techniques. This turned out to be the case. After adjusting the thresholding level to the
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desired amount, the transition region was cropped out of the image and then pasted

into the material map image. The black and white colors of the thresholded image

were reassigned to the material IDs for grass and dirt. Then, they were interactively

arranged along the transition boundary using cutting, pasting, and rotation to recreate

the same spatially structured transition seen in the actual MicroScene area. Figure 3.9

shows the resulting transition region cropped from a DIRSIG rendering of the area.

Figure 3.9: Transition region in synthetic MicroScene.

A texture map is used to enhance the variability within an individual material type.

It imparts variability into the grass and dirt in this model. Initially, a one-foot GSD

texture image was used for the grass, but it was obviously not at a high enough level

of detail to be used for these high-resolution images. The one-foot imagery was very

blocky and looked artificial. Therefore, an approximately three-inch GSD Landcare

image of the scene was obtained. This image was registered to the DEM image that

produces the 3-D terrain model by using ENVI’s image registration tools.

Finally, a bump map is an image that is used by DIRSIG to characterize the amount

of deflection that should be added to an incident ray that impacts the flat facet surfaces.

The bump mapping effect was used also on both the grass and dirt regions. It was

created in Photoshop using its cloud generating texture package. The “perlin” texture
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was selected and an entire image was made of that texture. Various scaling parameters

were assigned to the map until it produced an effect that seemed realistic.

There is also one minor quirk about the model that should be pointed out here.

This model was built with the positive y direction pointing north, in terms of DIRSIG

world coordinates. It was made this way because the overhead imagery that is applied

to the terrain was produced in this manner. Unfortunately, it wasn’t realized until

much later in the development process that DIRSIG uses the positive x direction as its

basis for true north. The result is that the sun location is not accurate.

A few things needed to be done to correct the location of the sun beginning with

the use of a special tag called “USE ALT EPHEMERIS GEOMETRY”. For this model

that tag must be placed in the options section of the configuration file and set to

“TRUE”. This tag is supposed to force DIRSIG to use the positive y direction as north.

Unfortunately, this did not work exactly as planned and so a more brute force method

was used to override the solar location completely. Prior to running DIRSIG the user

can set a UNIX environment variable called SUN ANGLES with the solar declination

and azimuth. For example, the UNIX command used to set the sun correctly for the

1000 image is as follows:

setenv SUN ANGLES ‘‘53.318248 68.070033’’

To produce the correct sun location, those parameters must be used in conjunction

with the “USE ALT EPHEMERIS GEOMETRY” tag.

There is one drawback to this method, though. It only works in the VIS-NIR region

of the spectrum. Updating this environment variable does not affect how the sun is

positioned for the thermal regions with respect to the dynamic model. The user is

restricted to either letting DIRSIG position the sun based on the positive x axis as

north or setting the USE ALT EPHEMERIS GEOMETRY option to TRUE so that
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the positive y axis is north. A utility was created that allowed a user to rotate all

objects in a DIRSIG .ODB file. While the utility worked for the objects in the scene,

unfortunately all of the texture and material maps were unable to be rotated. For this

research, the SUN ANGLES override was sufficient as the VIS-NIR region is all that

is being validated. In the future this problem is projected to be completely remedied

through features unique to the next generation of DIRSIG. DIRSIG 4 will allow the

user more control of the sun location than is currently available in DIRSIG 3. The

capability in the new version will eliminate the thermal issue.

3.2.2 Terrain Vegetation

This section contains a description of the various methods that were either attempted

or used in the current version of the scene for creating the background vegetation. The

vegetation was by far the most difficult aspect of the scene to make look realistic both

spatially and spectrally. The high-resolution requirements of the scene are in direct

conflict with the memory and computational constraints imposed by the systems being

used to model these scenes. The trees and the 3-D grassy region on the hill need to

contain hundreds of thousands of facets to get the necessary level of detail. Making

changes and updates proved to be a slow and difficult process because of the computer

power limitations. The reader should understand this while going through this section

and realize the necessary trade-offs of each of the methods described before undertaking

a similar project.

3.2.2.1 3-D Grass

In the proposal for this project an idea was bantered about that relied on a series of

shells, similar to the models used for the camouflage netting that would be molded to
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the hillside and hovered just above it at various increments. Then a texture map with

imagery of the plantlife and a material map with the inclusion of a NULL material that

allowed rays to pass through to under layers would be placed on the shells. The idea

was that this configuration would be able to relatively closely simulate the variability

and appearance of the actual plantlife with many fewer facets than would be required

to model individual plants.

It turned out that modeling the actual plantlife was not as difficult, and it could be

done without taking up a large amount of memory. To begin the terrain model needed

to be imported into Rhino CAD. Then, the Drape command was used to create a

NURBS surface1 that matched the contours of the terrain model’s triangular mesh.

At this point, a 3-D model of a flat patch of grass was imported into Rhino. The

patch of grass was originally very square, made of long, thin facets, contained roughly

20000 of those facets, and only covered an area of about 7x4 feet. It was randomized

and redrawn so that there were no hard linear edges at the boarders of the patch and

the total area increased to 18x10 feet. 18 feet was about the distance from the base of

the hill to where trees began growing. The grass patch is used repeatedly across the

hill side, so the number of facets needed to be reduced to about 10000 total.

The reduction in the number of facets helped speed up the modeling process and also

required much less memory than if the original patch had been used. Unfortunately,

the new patch was much less dense than the original and so the grass facets were slanted

backward from the sensor position so that more surface area of each facet could be seen

by the sensors. A second patch of grass was created from the first and it was rotated

by 180 degrees. The two patches of grass were alternatingly molded to the contours
1NURBS stands for non-uniform rational B-spline. It is a mathematical way of defining curves,

surfaces, and solids. Rhino is built to handle objects described in this way much more efficient than
facetized mesh objects.
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of the hillside by using the Flow command to shape the grass patches along isoparms

generated from the NURBS terrain model using the ExtractIsoparm function.

The grass model was saved in .OBJ format for importation into Bulldozer. Then,

a model of a small clump of grass was used to patch up any holes or trouble spots

left over from the modeling. Bulldozer’s ability to randomly assign rotation values was

used to assist in the randomization of the placement of these patches. A few instances

of a model for goldenrod were also added to the grass.

The result of this process can be seen in the top image of Figure 3.10. A qualitative

analysis of the figure shows that the grass is pretty good. While it does look somewhat

more like a flowing wheat field than the more irregular vegetation along the hillside

shown in the bottom image, the results were encouraging.

Unfortunately, this method generated grass that looked good only from the direction

of the MISI sensor. From the back, the grass was practically transparent because all of

the facets were facing nearly parallel to that line of sight. Since this model is destined to

become the basis for wider research than simply this project, a different model needed

to be made.

There is a freeware 3-D CAD package called Blender. Blender is the result of

a compilation of a decade of work done by various individuals on the software’s open

source code. The package can be downloaded at http://www.blender3d.com. A blender

module, called Fiber Version 2, was imported into blender to create a better version

of the 3-D grass region on the MicroScene hill. Fiber Version 2 can be obtained at

http://oregonstate.edu/∼dennisa/Blender/Fiber2/. It is generally used to create long

strand-like objects like, hair, grass, or fibers.

To ensure the grass model followed the contours of the terrain model, the facetized

terrain was imported into Blender. Then, all of the facets were deleted in the terrain



CHAPTER 3. APPROACH 79

Figure 3.10: Top: Grass model rendered in DIRSIG – Bottom: Digital image of Mi-
croScene

except for the ones on the hill where the grass was to be “grown”. This process was

facilitated by importing the material map used to create the dirt/grass transition. The

material map was laid over the terrain and that allowed for the location of the excavated

dirt region to be deleted from the grass growing software more accurately. The Fiber

Version 2 software allows the user to set a series of options to obtain the desired grass

effect. Height, blade thickness, bending, randomization and density were among the

options that could be changed. Again, realism was balanced with the facet count to

keep the model within memory requirements. The results are shown in Figure 3.11.

The grass model shown in that figure is the one used int eh latest version of MicroScene.
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Figure 3.11: Blender generated grass model rendered in DIRSIG.

3.2.2.2 Semi-Automated Tree Placement

The current MicroScene model is populated with four different kinds of trees that were

all produced using the TreePro vegetation modeling software. Two are deciduous and

two are coniferous. The deciduous trees are primarily in the background and cannot be

readily seen in the truth imagery. Coniferous trees dominate the portion of the forest

that is visible to the MISI and WASP sensors. Therefore, a great deal of time was

spent trying to find ways to make the forest look realistic in variability, while keeping

the entire scene within the limitations of the computers available for rendering it.

Essentially, the modeling effort began by examining a host of tree models and then

selecting the best ones for the scene. It was soon realized that it is difficult to separate

one tree from the next at this resolution. So, only one pine tree model is used to

generate all of the pine trees in the forest with the exception of the four trees that

appear on the far right in the MISI truth imagery (see Figure 3.7 and 3.8). These four

trees stood out so much that it was necessary to create a tree model specific to that

type of tree.
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One tree model was selected to represent each pine tree in the forest because DIRSIG

allows for users to instance models into the scene at multiple locations without requiring

more memory for each instance. The original model is loaded once and then it is

referenced for each instance. Getting these trees in their appropriate locations was

done with one of the most powerful and also one of the simplest tools created for this

project.

That IDL program is called TreePlanter and its code can be found in Appendix

B. The program works based on simple photogrammetry principles and it generates a

.ODB text file in DIRSIG format. This utility was employed to plant the entire forest

of trees behind the MicroScene area, and also the trees in the far background, without

going through Bulldozer or doing the calculations by hand.

The main requirement of the program is an overhead image of the area that is

registered to the DIRSIG coordinate system. To obtain an overhead of MicroScene to

be used by the program, the WASP system was flown over the MicroScene area at an

altitude of 4000 feet above the ground. Based on the Terrapix camera’s 9µm detector

size and 55mm focal length, the ground sample distance (GSD) of each pixel in the

image is 0.2 meters. Photoshop was used, because of its image layering capability, to

place black pixels at the centers of each tree in the forested areas in the image.

For simplicity sake, and to conserve computer memory, the virtual forest was de-

signed using three different sizes of the single tree model. Three different image layers

were created in the photo editing software. These three layers were made to represent

small, medium and large versions of that tree model. For each tree in the forest, a non-

white2 pixel was placed in the appropriate layer, at that tree’s center. After each tree
2Any non-white color can be used to make it easier for the user to differentiate which layer a tree has

been planted in. The colors must be converted to 8-bit gray-scale with a pure white (255) background
before being imported into the program.
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was marked, the resulting three layers, one for each tree size, were saved as individual

.TIF images (without the overhead image) on a solid white background.

Each image is kept separate so that they can be imported into the program indi-

vidually and set the options appropriately for that tree size. TreePlanter.pro requires

the user set a list of options befor each run. Table 3.1 lists all of those command line

options and their meanings.

Variable Meaning
XSCALE GSD in x direction
YSCALE GSD in y direction
XORIGIN x pixel location of known DIRSIG coordinate
YORIGIN y pixel location of known DIRSIG coordinate

XLOCATION x location of origin pixel in DIRSIG coordinates
YLOCATION y location of origin pixel in DIRSIG coordinates
ZLOCATION z location of origin pixel in DIRSIG coordinates

OUTPUTFILENAME name of output file
PATHNAME .GDB file location on UNIX stations

SCALESTRING x and y scale to adjust tree size properly
Format example: SCALESTRING = “.6, .6”

HEIGHT z scale factor to be output

Table 3.1: Summary of command line options for TreePlanter.pro.

As can be seen from the list of command line options in Table 3.1, the user must

have some a priori information. For starters, the GSD of the overhead image must

be known. The user must also know the x and y location of a reference point in the

image that is also known in DIRSIG world coordinates. This point is crucial because

it is used as the starting point for every distance calculation. The program converts

the euclidian distance in pixels from that location in the image to every other pixel

location and then converts the pixel distance to DIRSIG world coordinates based on

the scale of each pixel. The program automatically rotates each object randomly about

the z-axis and also randomly adds a value of ± .1 to the z scale value of each instance
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for height variability.

The resulting .ODB file contains all the instances of the the object file being planted.

It is completely configured to be copied into the main DIRSIG .ODB file. One of

the more helpful additional features of the program is that each instance in the file

has a comment directly above it that gives the location of the instance in the x and

y coordinates of the overhead image. This is extremely useful if the user identifies

prominent instances of objects and wants to make subsequent changes to enhance their

accuracy. The location comments in the output files make this very easy. The trees

that are located at the very edge of the forest, just behind the camouflaged Humvee

and shed, were updated in this way.

Approximately 450 trees were planted in the virtual MicroScene using this process

and it was completed in only 30-40 minutes. This process is great for planting large

quantities of all kinds of generic objects, not just trees. For example, rocks or bushes

could also be used.

The images in Figure 3.12 shows how accurate the technique was in recreating the

forest region around MicroScene. The image on the left was taken with the panchro-

matic imager on WASP and the image on the right was rendered in DIRSIG. Spectral

considerations are not important for comparing these two images. The WASP image

was taken in the fall after the leaves had changed colors causing some trees to appear

much brighter than they did in the summer. They are meant to show that if overhead

imagery is available, then realistic forests can be populated with a fraction of the effort

that has been put forward in the past.
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(a) WASP overhead imagery (Fall). (b) DIRSIG overhead imagery (Summer).

Figure 3.12: Spatial comparison of WASP and DIRSIG overhead imagery.

3.2.2.3 Coniferous Modeling Issues

Once the spatial accuracy was acceptable, the next challenge was to correctly model

the tree’s spectral qualities. Again, resolution and memory requirements played a large

role in the type of pine tree model that would be used. Also, considerations were made

as to how light should be allowed to pass through the branches of these models.

TreePro allows a user to model coniferous trees in two different ways. The first

method reduces the total number of facets required to model the tree by modeling at

the branch level rather than the pine needle level. The branches are modeled as planar

facets in the shape of a “+” sign that follows the contours of the branches. The resulting

trees look realistic, but somewhat artificial at this resolution. A high-resolution example

of this type of tree is shown in Figure 3.13.

Modeling pine trees in this way requires the user to make assumptions about how

light should be allowed to pass through the branches. In reality light may pass right

through a clump of pine needles unaffected, it may be reflected off of the needles in
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Figure 3.13: TreePro coniferous tree modeled at the branch level.

different directions, or it may be affected by the transmissive properties of the needles.

Unfortunately, with this type of model, incoming rays of light can only be affected in

one way and the three processes just described must be consolidated into one material

type for the DIRSIG database to calculate from.

The emissivity file used for the pine needle spectra was measured in the lab with

a CARY 500 spectrometer. It was accomplished by taping individual pine needles

together in a row such that as many gaps as possible were eliminated. The bunch was

measured both horizontally and vertically in the instrument. The needles were also

measured as a random cluster. The CARY had difficulty with measuring the random

cluster because of its inherent non-uniformity. Also, the spectra from the pine needles

that were taped together in both the horizontal and vertical orientations were nearly

identical. So, that spectra was chosen to be used in the DIRSIG emissivity database.

The resulting spectral curves will be discussed in more detail in Section 4.2, but

essentially, the resulting DIRSIG imagery that was modeled to match the 1000 truth

imagery contained trees with much lower radiance counts. Also, a “halo” effect can
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be seen in Figure 3.7 that makes the trees appear brighter as one looks further from

their center. The halo effect could not be recreated with the pine trees modeled at the

branch level. In real trees, the roundish needles reflect light in all directions, but the

trees modeled at the branch level could only reflect light in one of four directions as

dictated by the “+” sign design mentioned earlier.

Transmissive measurements of the pine needles were also made on the CARY 500,

but it is very difficult to ensure that the transmission value produced by the measure-

ment is not attributable to gaps between the pine needles in the clump. Therefore, an

attempt was made to alleviate the lower radiance of the model by artificially increasing

the transmission through the pine needle facets. Appropriate radiance levels could be

attained if the transmission of the facets was scaled to unreasonable levels such that

Kirchoff’s Law was violated. In addition to it being physically inaccurate, this change

that seemed to fix the 1000 imagery made the synthetic 1800 images completely inaccu-

rate. The sun condition at 1800 was in back of the sensor and that created a situation

where transmissive effects were not the primary driver of radiance values. The pine

trees in the 1800 synthetic image produced radiance values more than five times greater

than the truth imagery. These results necessitated the change to the trees modeled at

the pine needle level.

A coniferous tree modeled in TreePro at the pine needle level is shown in Figure 3.14.

This model contains considerably more facets than the branch level trees, but is still

capable of being rendered on the machines available at RIT. These trees are the ones

that are currently used in the model. The finer detail in these trees allows for a similar

tree halo effect. Unfortunately, when rendered, the radiance values produced by them

are still lower than the trees from the truth imagery. The problem was hypothesized

to be an issue with the measured pine needle spectra. Though it wasn’t specifically
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Figure 3.14: TreePro coniferous tree modeled at the pine needle level.

noticed during the ground truth collection, newer buds on coniferous trees generally

appear much brighter than the rest of the tree. After all else failed, while attempting

to get the modeled trees to produce similar radiance spectra to the truth imagery, new

pine needle buds were removed from a tree and were also measured on the CARY 500.

The needles were measured in the same manner as described earlier and their general

reflectance was slightly higher than the original measurements. A new emissivity file

was created from the new measurement and the trees were re-rendered. Unfortunately,

this also did not solve the problem as the radiance values were only about .2 radiance

counts greater than when the original pine needle emissivity was used.

Other attempts were made to artificially reproduce the higher radiance values, such

as making the needles very specular and simply increasing the reflectance of the nee-

dles manually. Certain pixels became brighter, but statistically the trees were more

inaccurate because of these outliers. The average value was still much lower than the

truth imagery suggested it should be.

The next possible step in trying to fix the tree models would be to increase the
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tree’s level of detail even more by replacing the flat pine needles that TreePro used

with rounded ones. Perhaps this would allow for more light to be scattered in more

directions and help to alleviate the heavily shadowed synthetic trees in the scene. The

CIS department does not have a tree modeling program capable of producing this level

of detail so trees of this kind could not be created for this project.

The phenomenon may also be associated with some microscopic mechanism pecu-

liar to the pine needle itself. An interesting paper was discovered on modeling light

scattering caused by human hair. In Marscher et al. (2003), detailed analysis of the

microscopic surface of a human hair is determined as the cause of non-uniform scat-

tering. When a model is used that takes this micro-roughness into account, then the

modeled hair exhibits more realistic reflective properties. While the exact same mech-

anism described in that paper may not be the cause of the discrepancy seen in the

pine trees of MicroScene, it does offer a glimpse of how microscopic interactions can

manifest themselves at the macroscopic level.

3.2.3 3-D Models of Manmade Objects

Once the terrain and vegetation was finished, a large number of 3-D models needed

to be created to populate the area with all of the same clutter as the truth imagery.

3-D facetized models of the various objects in the MicroScene area were built using

the Rhinoceros CAD software package. Figure 3.15 shows a few of the more detailed

CAD models that were built for this scene. From the top-left going clockwise they

are: a downwelled radiometer, a shed, a toy wagon with an electric blackbody on it,

a generator, a portable weather station, and finally a Humvee. That figure provides a

sense of the level of detail that is trying to be attained in this model. These objects

were placed in the scene using a combination of the Bulldozer scene placement tool and
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Figure 3.15: Various detailed models built for the virtual MicroScene.

empirical measurements taken during the actual collection.

3.2.3.1 The Humvees

The shed was the first model built because of its simplicity. The author had no experi-

ence with 3-D CAD software prior to this research and that model provided a relatively

easy first production. Once the shed was complete, the next step was to tackle the var-

ious Humvee models and their different levels of concealment. Again, there were three

different configurations that were imaged: out in the open, concealed by trees, and con-

cealed by camouflage. Each of these configurations needed to be modeled and placed

in the appropriate location in the scene.
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Fortunately, the Center for Imaging Science had a 3-D model of a Humvee that was

in a format suitable for being imported into Rhino. This model required a small amount

of scaling to match it’s dimensions to that of the Humvees used during the data collec-

tion. There are a few minor differences between this model and the actual Humvees.

A crashbar on the front grill, hood hooks, and a slightly modified undercarriage were

added to the base Humvee model.

That Humvee model could be directly used for two of the configurations mentioned

earlier, but virtual support structure and draped netting were still required for the

creation of the camouflaged configuration. The support structure was tackled first.

A single support pole was created with the same dimensions as the ones used. The

spreader at the top of the pole was even bowed slightly downward to represent the

pressure that the actual net put on its support structure. The single pole was replicated

four more times and all five pole models were placed in the correct locations and slant

angles around the virtual vehicle. The Humvee model with the camouflage support

structure is shown in Figure 3.16

Figure 3.16: Humvee with support structure rendered in Rhino.
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The proposal for this research spelled out the original plan for creating a realistically

draped camouflage net by using the SIMNET software described in (Loyd and Sanders,

2001). That was the original plan because of the author’s lack of knowledge at the

time on using the modeling software. It turned out that creating realistically draped

camouflage netting was not as difficult as expected. To begin its construction, eight sets

of control points were placed from the ground on one side, over the support structure,

to the ground on the other side of the vehicle. A curve was interpolated through each

of these sets to form the contours of the netting. Careful consideration was taken to

ensure that these lines did not fall below the plane of the spreaders. Once the curves

were in place the Loft command was used to create a surface that encapsulated the

vehicle just above the spreaders in the shape dictated by the control curves.

A significant problem was encountered when the model for the netting was rendered

in DIRSIG. This problem is shown in Figure 3.17. This is a preview image of the cam-

ouflage netting rendered in DIRSIG. The obvious problem is that there are unintended

holes in the netting along the seams of the facets.

All models that are drawn in Rhino are saved out at .OBJ files. The .OBJ files are

also compatible with the Bulldozer utility. Bulldozer can import .OBJ files and convert

them to .GDB files suitable for DIRSIG 3. After a great deal of troubleshooting, it was

determined that the problem was occurring as a result of the way Rhino exported the

facetized geometry. DIRSIG relies on triangular facets, but Rhino was exporting those

facets as quadrilaterals... mostly non-coplanar quadrilaterals3. DIRSIG did not know

how to handle the non-coplanar vertices of those facets and so interpolated them into

planar facets. The result was the gaps that are evident along the facet seams in Figure
3Rhino 2.0 does allow the user to save files as raw triangles, but doing so eliminates all of the u, v

texture coordinate information that will be needed when DIRSIG 4.0 is released for texture mapping
as well as the material identification numbers.



CHAPTER 3. APPROACH 92

Figure 3.17: DIRSIG preview image of camouflage netting with non-coplanar quads.

3.17.

The solution to the problem was to triangulate all of the facets before rendering the

model in DIRSIG. This process is sometimes referred to as tessellation. The basic idea

is to split each quad into two triangles by bisecting it with a line between two opposite

vertices. A local UNIX utility was developed called munchquads that converts non-

coplanar quads in .GDB or .OBJ files into triangular facets without the loss of material

properties or u, v coordinates. The resulting file can be saved as either a .GDB or .OBJ

file.

All of the process just mentioned was accomplished only to get the general shape

of the camouflage netting correct. Real netting contains different colors and it also is

full of holes. DIRSIG’s hierarchical mapping structure was instrumental for developing

realistic virtual camouflage netting with all of these traits. A three color material

map was created from a thresholded digital camera image of the net. The image
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Figure 3.18: Threshold generated material map for camouflage netting.

was thresholded to a level that differentiated the net from the holes in the net in the

same manner as described in Section 3.2.1 for creating the dirt/grass transition on

the terrain. The white areas were recolored to represent the pattern of the net’s two

different camouflage colors. Rather than point to a measured material file, the black

areas were assigned the NULL material ID. The camouflage material map is shown in

Figure 3.18. The black areas in Figure 3.18 correspond to the areas assigned with the

NULL ID tag in the material lookup table.

The dramatic results of this process are shown in Figure 3.19. The image on the

left was taken with a standard digital camera from underneath the camouflage net

around midday. The image on the right was created with DIRSIG by placing a similar

“synthetic” camera under the synthetic net. The intricate shadow pattern on the vehicle

is apparent in both images. It should be noted that DIRSIG’s BRDF model, which

helps to determine a more realistic background shape factor for each facet, was turned

on for this image. The run time was dramatically increased, but the result was a much

more realistic image. This side-by-side comparison is an example of the level of detail

that can be achieved in DIRSIG.

There is more to this image than simply the shadow pattern, though. In general,

when DIRSIG generates a scene, facets are considered to have only one side to speed

up the rendering process. When creating a scene like this, it is important that the
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(a) Digital camera image of the Humvee underneath cam-
ouflage.

(b) DIRSIG image of the Humvee underneath camouflage.

Figure 3.19: Truth vs. DIRSIG imagery comparison of a Humvee underneath camou-
flage netting.

facets that represent the net are visible from both sides because a ray that is allowed

to pass through one side may intersect net on the other side. On the far right and left

sides of both images in Figure 3.19, the underside of the camouflage net can be seen.

The effect of the NULL material can also be seen in these regions as pockets of blue

sky show through what would otherwise be a solid structure. The user must set the

DOUBLE SIDED tag in the .MAT file to TRUE to make the facets associated with a

particular material ID double sided.

The effects of taking the extra time to render the image with the ENABLE BRDF

tag turned on in the DIRSIG configuration file are also evident in the figure. When

images are rendered without the BRDF option turned on, shadows are generally much

darker than they should be. Very little light shows up in regions hidden from direct

sunlight because of the shape factor assumptions that DIRSIG makes to speed up

rendering time. This is especially true in shadows casted by the camouflage net, the
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crash bar, and in the wheel wells. Turning BRDF on allows for background reflected

sunlight to contribute to the radiance from objects in the shade.

Another effect of using BRDF is that all of the shadows are not uniform. There

is a certain amount of variability created as a result of variations in the background

shape factor surrounding each point in the scene. This effect can also be seen in the

real image in Figure 3.5.

Turning this option on will increase rendering time greatly. This image takes ap-

proximately 2 weeks to complete with full BRDF turned on as compared to about 12

hours without it. Both times were calculated based on Sun Blade 1000 systems with 1

gigabyte of memory. For qualitative similarity, a small amount of transmission can be

added to the otherwise opaque material of the camouflage netting. This will allow more

light to impact areas in the camouflage generated shade and simulate the additional

radiance seen in the shade in truth imagery. This shortcut will not recreate the shape

factor variability or general additional realism provided by using BRDF calculations.

Modeling the appropriate sensor effects can be accomplished once the 3-D geometry

of the scene is complete. That is the focus of the next section.

3.2.4 Sensor Location and Configurations

Once the models were built and then placed in the scene at the appropriate location,

the next step was to image them with virtual versions of the MISI and WASP sensors.

Both sensors were located in the real scene at exactly 100 ft from the door handle of

the shed approximately 45 degrees west of north. They were then lifted 50 feet by the

scissor cart. The actual elevation used in the simulation is 54 ft because of the height

of the aperture above the deck of the scissor cart. They are positioned in the virtual

scene at the same relative coordinates.
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Once the sensor locations were set appropriately, two configuration files were created

to account for the two types of sensors. The visible Terrapix camera from the WASP

sensor was modeled first because of the simplicity of the framing array design. It

was much easier to verify the spatial creation of the MicroScene area when it was

rendered in this way because none of the geometric distortions associated with MISI’s

line scanner design corrupted the imagery. Since the WASP sensor was only used to

quickly verify relative spatial locations of objects in the scene, a scaled down version

of the 16 megapixel focal plane was used to speed up the rendering time.

The MISI configuration file required a great deal more setup. DIRSIG contains

routines to model sensor motion in many different ways, but simulating an airplane

hovering stationary at 54 feet while pitching through a 90 degree arc was not one of

them. A flight profile file needed to be created that dictated the exact position of the

sensor for each individual line scan. The orientation of the sensor is described in terms

of yaw, roll and pitch in DIRSIG as if it is being flown in an airplane. DIRSIG also

needs to know which direction the sensor is heading in so it knows the basis for the

yaw, roll and pitch. In the MicroScene configuration, MISI is stationary, so DIRSIG

cannot base it usual calculation which is based on average flight direction. Therefore,

the USE SCENE PLATFORM ANGLES option in the configuration file was set to

TRUE, so that the sensor heading was assumed to be in the positive y direction.

One of the benefits of a line scanning system like MISI is that the rendering can be

broken into many pieces that can be modeled in parallel on different systems. Rendering

the entire 1600 x 800 pixel image with 28 bands required nearly a week to render on a

single machine, so the DIRSIG sensor profile file was broken up into 10 pieces. Each

piece was rendered in about a half a day and then each piece was stitched back together

using ENVI’s mosaicking tool. This cannot be done with framing array sensors in
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DIRSIG as of version 3.

3.2.5 MISI Image Calibration

Before the truth and synthetic imagery could be compared or appropriate noise could

be added to the synthetic imagery, the real MISI images needed to be calibrated. The

concept behind the process was described in Section 2.2.1, but a few comments will be

made here to describe the actual process in ENVI for calibrating the RAW imagery.

Raw MISI data files are grouped by system board and then by bands. The bands are

not necessarily in the correct order. An in-house ENVI module is available that sorts

the raw MISI data into the appropriate groupings and band orders. The most important

output from that process for this research is the uncalibrated 70-band, spectrometer

image.

To calibrate the image, the dark region at the top of the image was selected with

the ENVI’s ROI tool. The mean value statistics were computed on the ROI, which

produced a bias value in each of the 70 bands. The result was saved as a text file. The

gain values had already been established during the calibration of the sensor and were

also recorded in a text file. An important part of this step is that each of the values

in the bias file needed to be negated so that when they are applied as the offset they

were subtracted rather than added to the imagery. Finally, The gain and bias values

were applied to the imagery by editing the header file for the uncalibrated image file in

ENVI and importing the text files for both the gains and biases. To calibrate the data,

the Apply Gain and Offset button was selected under the Basic tools ⇒ Preprocessing

menu. The gain and offset values are read directly from the image header file and the

result is the calibrated image file. The same result can be achieved by using ENVI’s

Spectral Math tool.
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This dark region subtraction method for removing the bias from the truth imagery

was somewhat difficult due to some unknown sources of error. For example, when the

GML classification was accomplished for the first time, the dark bands on each side of

the 1000 truth imagery classified into different classes. This obviously pointed to some

significant problem with the bias level as they both should have contained the same

values. The shutter was closed during both measurements. The difference between the

two regions amounted to approximately 7 radiance counts on average across all bands.

At the same time, the DIRSIG and truth spectral comparisons were producing results

where the truth spectra from nearly all materials was slightly higher. When the truth

imagery was recalibrated with the biases from the other dark region, then the spectral

curves practically fell on top of each other as will be seen in the next chapter.

The 1800 imagery did not contain a similar difference in the dark regions. Although

the radiance curve comparison did produce nearly the same level of bias that was seen

in the original incorrectly calibrated 1000 truth imagery. After analyzing the 1800 in

depth and discussing the issue with the resident MISI experts, it was theorized that

there may be an additional source of stray light that is coming through only when

the shutter is open. In an attempt to determine the amount of the additional light,

the grass region in the DIRSIG imagery was used as a control material because of its

consistent accuracy throughout this research. A bias was then computed, based on

MISI’s gain values and the mean radiance of the synthetic grass, that would force the

grass in the truth imagery to equal its simulated spectra. The bias levels produced a

similar 7 radiance counts of difference from the original calibration. This results lends

credibility to the calibration adjustment based on the same difference seen in the 1000

imagery. The truth imagery was recalibrated with the new biases. The recalibration of

the 1800 truth imagery removed its consistent bias from the spectral curve comparison.
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During the MISI calibration process, any band of data that is not working properly

or is too far out of tolerance will be labeled as a “bad band”. This bad bands list can

also be imported into the images header file so that the spectral bands that cannot be

relied upon are not used in any calculations. Once the bad bands were established the

result was a 28 band calibrated visible MISI image and a 15 band calibrated NIR MISI

image. These two images were derived from the 1000 and 1800 images respectively

because of the stray light issue mentioned in Section 3.1. They are the ones used to

validate the DIRSIG imagery. They are also the basis for providing information about

the optical PSF of MISI as well as the amount of noise it produces. The derivation of

those two phenomena will be described in the following two sections.

3.2.6 MISI Point Spread Function

Version 3 of DIRSIG does not allow the user to do PSFs on the fly, at least not

completely. Basically, the PSF in DIRSIG is more of a weighted material mixer because

no information is distributed between pixels. The oversampled rays cast for each pixel

only affect that specific pixel. Therefore, any optical PSF must be applied in post-

processing.

Before post-processing could be accomplished, MISI’s PSF had to be calculated.

The method based on the edge spread function described in Section 2.2.1.2 was used to

extract MISI’s PSF since there were insufficient resources to do a full MTF measurement

in the lab. The edge with the most contrast and most consistency on each side of the

transition in the truth imagery was the transition region between the sky and one of

the buildings in the background shown in Figure 3.20.

The values across a single band in this region was extracted and then imported

into IDL. The discrete derivative of the transition was taken to produce the LSF of the
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Figure 3.20: Transition region used to determine MISI LSF

system. Then, a gaussian function was curve fit to the discrete LSF. IDL provides a

function called GAUSS FIT to do just this. One of the outputs of the process is the

standard deviation, σ, of the fitted gaussian. The σ value returned was 0.864910. This

number describes the 1-D width, in pixels, of the LSF.

MISI is a line scanner and therefore it was necessary to determine how the LSF

changes in the horizontal and vertical direction. A horizontal transition region was

chosen in the same location as the vertical. The σ value in the horizontal direction was

0.871707. For simplicity, the PSF was assumed to be rotationally symmetric because

this result was not significantly different enough from the value of σ extracted from the

vertical slice. To create the two dimensional PSF kernel, a 7x7 array was created who’s

values were generated from the 2-D gaussian function, which represents the rotationally

symmetric LSF, described in Equation 3.1. The resulting kernel is shown in Figure 3.21.

2DGuass(x, y) =
1

2πσ2
e

x2+y2

2σ2 (3.1)
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

0.000001 0.000037 0.000267 0.000515 0.000267 0.000037 0.000001
0.000039 0.001048 0.007544 0.014567 0.007544 0.001048 0.000039
0.000290 0.007783 0.056032 0.108194 0.056032 0.007783 0.000290
0.000566 0.015185 0.109323 0.211095 0.109323 0.015185 0.000566
0.000290 0.007783 0.056032 0.108194 0.056032 0.007783 0.000290
0.000039 0.001048 0.007544 0.014567 0.007544 0.001048 0.000039
0.000001 0.000037 0.000267 0.000515 0.000267 0.000037 0.000001


Figure 3.21: MISI PSF kernel

The PSF shown in Figure 3.21 was saved to an ASCII text file and then imported

into ENVI using the Convolutions and Morphology tool. The PSF kernel was applied

to the synthetic imagery to simulate the effects of MISI’s optics on the truth imagery.

Once the imagery is blurred appropriately, the synthetic noise must be added as the

final step in creating a synthetic version of the MISI sensor.

3.2.7 MISI Synthetic Noise Generation

Preliminary analysis of the DIRSIG generated imagery with the RX algorithm showed

that the data did not have enough variability. The multiple matrix inversions in the

algorithm were constantly producing inaccurate results because of improperly formed

matrices derived from regions in the image that were too stable. Therefore, it was

decided to add the noise characteristic of the MISI imagery to the DIRSIG renderings.

Section 2.2.1 discussed how the dark regions in the MISI imagery could be used to

obtain the noise statistics of the sensor. ENVI allows detailed reports to be made that

show the standard deviation of the noise in each band. The simplest solution to adding

noise to the DIRSIG imagery would have been to generate random additive noise on

a band by band basis with a zero mean (because DIRSIG is being rendered to match

the calibrated MISI imagery) and a standard deviation equal to that of the MISI band
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being rendered based on the ENVI report. Unfortunately, this solution would eliminate

all of the known data about how the noise is correlated from band to band.

The technique for creating the correlated noise cubes is fairly straightforward and

can be accomplished entirely in ENVI. The first step is to use the Region of Interest

(ROI) tool to select the dark region from a MISI image and then subset that region into

its own image. A rectangular ROI works best. The next step is to use the Forward PC

Rotation button under the Transform menu option. From here select Compute New

Statistics and Rotate. A menu will appear that prompts for the name of a statistics

file to save the transform covariance matrix in. This file will be needed for the inverse

transform later on. Then, proceed with the forward transform. The purpose of using

Principle Component Analysis (PCA) is to orthogonalize the noise, which makes it

completely de-correlated. The last step in this part of the process is to use the Compute

Statistics button from the Basic Tools menu option. Compute the statistics of the de-

correlated noise image.

Now that the forward transform statistics are known and saved, an uncorrelated

noise cube can be generated using an IDL procedure developed by the author. This very

simple procedure centered around IDL’s RANDOMN function to generate random

noise images with the same dimensions as the DIRSIG imagery. 28 noise images were

generated to match the 28 “good” visible bands of the 1000 MISI image. The same

was done for the 15 bands in the 1800 image. The key to making this work correctly

is that the random numbers generated by RANDOMN must be multiplied by the

respective standard deviation of each band computed from the forward PC transformed

noise imagery. They must also be laid out in the same order, which goes from largest

to smallest standard deviation because of the way the eigenvectors are sorted. This

ensures that when the synthetic noise cube is back transformed, its band by band
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statistics will match the original statistics. The bands are stacked and the whole cube

is saved out as a single .TIF file.

Once the uncorrelated noise cube is generated with the same statistics as the forward

PC transformed noise it must be imported into ENVI for the final step. This time,

the Inverse PC Rotation button is selected from the Transform menu option. The

synthetic noise cube is selected as the input file and then the statistics file that was

generated during the forward PC rotation is used as the statistics file for the inverse.

The result is a correlated noise cube with statistics that match the characteristics of the

sensor and it’s of the same size as the DIRSIG rendered imagery. Then, all that needs

to be done is to add the noise cube to the DIRSIG imagery using the Spectral Math

tool from the Basic Tools menu option. Figure 3.22 shows a graphical representation

of this process.

Figure 3.22: Process flow for creating correlated noise for DIRSIG imagery.

The previous sections described the unique processing steps of creating the synthetic

scene. For a beginner building a similar model, a great deal of time will be spent simply

learning how DIRSIG and CAD modeling tools work. It is extremely important to keep

in mind the capabilities of the systems that will render the scene. A balancing act must

be done between producing highly detailed objects while keeping the number of facets to

a minimum. That way, memory constraints and run times will not become prohibitive.

Most modeling packages allow the user to minimize the number of facets required for

each object without significantly impacting the quality of the model. Trial and error
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approaches will probably be required to choose the right amount of optimization.

There is obviously more work that can be accomplished to characterize how a given

sensor affects the imagery it produces, but the methods described above are required

to get the model accurate to at least first order. A baseline estimation of the optical

PSF added to the synthetic imagery provides an added level of realism. Also, adding

noise allows for algorithms to work properly by inducing local variability to the pristine

surfaces generated by DIRSIG.

The last section of this chapter describes the details of the RX algorithm that

needed to be programmed as an ENVI module for this research. The GLCM and GML

classifier are already included, so their actual implementation will not be discussed.

3.2.8 RX Algorithm Implementation

A substantial amount of time was devoted to the implementation of the RX algorithm.

The RX code used for the comparisons in this study was written in IDL and then a

frontend was implemented for ENVI to facilitate its use. The ENVI frontend allowed

easy implementation and distribution to other interested parties.

Figure 3.23 shows the window progression that a user would go through to run the

RX algorithm. The algorithm is setup to run on any image file that can be loaded

into ENVI. As demonstrated by the “RX Input File” graphical user interface (GUI),

this implementation works with the same file interaction GUI’s that ENVI users are

familiar with.

Once a file is selected, the “RX Parameters” box appears. All of the options pre-

sented in (Reed et al., 1989) are present here. The top section of the dialog box asks

the user to set two options. The first is whether to use image-wide statistics or not.

Remember from Section 2.3.4, the RX algorithm primarily works by comparing the
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Figure 3.23: RX GUI windows.

spectral and spatial characteristics of a group of pixels to their surrounding pixels in a

local neighborhood. This approach can be modified by computing the spectral covari-

ance of the entire image and using that as the basis for the comparison. This approach

reduces the ability of the algorithm to work effectively, but it works much faster since

only one matrix inversion needs to be accomplished for the entire process.

The other option allows the user would like to implement RX as a matched filter.

If ‘No’ is selected, then the algorithm works in anomaly detection mode. If ‘Yes’ is

selected then then the user is prompted with the “RX Input ENVI Spectral Library”

dialog box to input a desired target spectra in ENVI Spectral Library format. in (Reed

et al., 1989), the authors run RX in anomaly detection mode and then select the spectra
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Figure 3.24: Neighborhood and spatial shape of RX kernel

of the pixel that provides the greatest return. Then, RX is run in matched filter mode

with the selected spectra input as the target spectra. Users of this interface can easily

recreate this approach by using ENVI’s ‘z-profile’ tool over a pixel of interest and then

saving the result as an ENVI Spectral Library. Once that is accomplished, that library

file should be selected in the “RX Input ENVI Spectral Library” dialog box.

The middle section in the “RX Parameters” box asks the user to define the size

of the local neighborhood to compare the target pixel against and also for the target

window size. After running the algorithm several times, the author found it worked

best with a neighborhood that was 45x45 pixels in area. Since the spatial shape of an

unknown object is very rarely known, this interface simplifies the creation of the spatial

structure of the target by only allowing symmetric differences in size to be input. The

author found that a spatial shape of 3x3 or 5x5 worked best. Image noise will generate

false alarms when a single pixel target windows was used. To help illustrate how this

works, Figure 3.24 shows what the kernel would look like if “Kernel Size (NxN)” were

set to 5x5 and the “Spatial Extent of Target (SxS)” were set to 3x3. The current

implementation of the algorithm does not allow the user to define anything other than

square target shapes. The reader should note that the N and S used here are not

meant to correspond to those variables used in Section 2.3.4.

Finally, the bottom section of the “RX Parameters” dialog box lets the user output
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the resulting RX “image” to memory or save it to a file. The Interactive Stretching

tool under the Enhance menu option of an image window is the best tool for examining

images produced from the algorithm. The more positive the values are, the more

responsive that pixel location is, so the Interactive Stretching can be used to threshold

the image to find the most responsive locations.



Chapter 4

Results

This chapter will present the DIRSIG validation results that were obtained at the

conclusion of this research. The beginning is a qualitative analysis of the actual imagery

from both MISI and DIRSIG as well as a similar analysis of the radiance spectra of the

more important materials and objects in the scene.

The qualitative comparisons were by far the most useful tools for making decisions

about how to update the model in the early portion of its development cycle. The

spatial qualities of any scene are the first noticed by the observer and require the most

focus to obtain a realistic comparison. Spectral comparisons were also extensively used

throughout the development. A great deal of information can be gathered from doing

simple side-by-side comparisons of radiance curves. The general accuracy of the emis-

sivity files, weather parameters, and bi-directional effects can all be seen without the

need for detailed metric analysis. The side-by-side spatial and spectral characteristics,

along with the ROC results, of the scene will be presented at the beginning of this

chapter.

More quantitative analysis is more important as the model matures. For most of

108
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the metrics used here, the model needed to be generally accurate by the qualitative

standards mentioned in the last paragraph before they would produce any kind of

similarity in the results. The more quantitative comparisons described in Chapter 2,

GML classification, GLCM texture metrics, and RX target detection will conclude this

chapter. Their analysis consists of side-by-side comparisons of how they operated on

both the truth and synthetic imagery. It was not initially expected that these analysis

tools would provide much useful information on how to proceed with enhancing the

model in future development cycles, but they were surprisingly useful. This is especially

true of the GML classification and RX detection results. More on that topic will be

presented in their respective sections, but first, the side-by-side imagery comparison

will be presented.

4.1 Qualitative Image Comparison

Figures 4.1 and 4.2 show the truth image on the top and DIRSIG image on the bottom

for the 1000 and 1800 acquisition times. The spatial quality of the scenes are very

similar. Remember, everything in the scene is empirically derived. The locations of all

of the objects were taken from overhead imagery or were measured during the collection.

MISI’s focal length, duty cycle, PSF, noise, and detector properties were all put into

the model as is, and the resulting synthetic imagery is very encouraging. The imagery

shows that DIRSIG is capable of capturing the spatial distortions and tangential effects

of very unique sensor configurations like the one used in this experiment.

The foreground of the DIRSIG image does a pretty good job of representing the

realism of the truth imagery at this high resolution and oblique view angle. All of

the terrain, vegetation, and large and small clutter in the scene produce a realistic

synthetic image. The transition regions and shadowing effects also correlate well. Most
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(a) MISI - 1000

(b) DIRSIG - 1000

Figure 4.1: True color MISI vs. DIRSIG image comparison.

of the scenery in the DIRSIG imagery is exactly the same in both images, but a few

of the smaller targets were either moved, removed, or added between the time when
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(a) MISI - 1800

(b) DIRSIG - 1800

Figure 4.2: .811 µm band MISI vs. DIRSIG image comparison.

the two images were taken. So, there are some minor differences between the two shots

besides just the atmospheric and solar positioning changes associated with the time of

day difference.
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The most encouraging aspect of comparing the truth and synthetic imagery is that

the primary targets, the Humvees, are modeled extremely well. In the DIRSIG image,

all three levels of concealment produce very similar results and look very much like their

truth counterparts. The time spent creating the virtual camouflage netting seems to

have paid off and the Humvee in the trees shows up in nearly exactly the same manner

as the real Humvee placed there.

The issues that has been found with modeling high resolution scenes at this kind

of oblique viewing angle can be seen in the background of the DIRSIG imagery. The

first issue is really one of time spent modeling. A literally endless amount of time can

be spent making fine adjustments to the foreground portion of the scene and it only

covers a small area in the total FOV of the MISI sensor. The total background region

covers an area on the order of square kilometers. Unfortunately, there simply was not

enough time to model the background to a similar level of detail as the foreground. The

resolution requirements are not as great, fortunately, but even so, modeling realistic

background variability could required as much or even more time and resources.

The second issue deals with the material and texture maps used to create the terrain

variability. DIRSIG tiles the maps, described in Section 3.2.1, when the object that

the map is applied to is larger than the map. For example, the dirt region, that is

meant to only be in front of the shed, gets repeated off in the distance. This occurs

because the material map used for the terrain needed to be extremely large to create

the necessary detail in the grass-to-dirt transition regions, but it would have been too

large, and consumed too many system resources, if it would have been created to fit

the entire terrain map at this resolution. To the eye, this issue is barely noticeable, but

it will come back up later when the anomaly detection algorithm is run on the image.

The solution didn’t make it into the validation imagery, but has been updated in
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the model. To eliminate the problem, the portion of the terrain model that is in the

background was separated from the foreground in Rhino CAD. The foreground was left

unchanged and the background material ID was reassigned from the material map ID

to simply the grass ID. This eliminated the material map from being applied to this

region. The texture map is still tiled though, but that cannot be seen in this imagery

due to the resolution of the sensor off in the distance. Anyone who uses this model for

overhead images may encounter the texture tiling in that portion of the scene.

Another less noticeable issue is that the terrain model seems to break down slightly

in the far right portion of the DIRSIG imagery. The shadowing of the terrain facets

contains some very jagged corners that is not realistic. This is most noticeable in the

1800 image because of the sun angle. Two things could be done to alleviate this. The

first and more costly option would be increase the size of the terrain model. Since this

portion of the model is not significant to the primary area of MicroScene, it doesn’t

make much sense. An alternative would be to change the way that DIRSIG models

object shadowing. Currently, shadows are applied to objects according to the normals

of their facets. A gradient based shadowing technique would be more appropriate for

maintaining realistic terrain surfaces without having to increase the size of the model.

It should also be pointed out that the blurry portion at the bottom of the MISI

imagery is a result of the line scanner going out of focus as the scan mirror moves the

field of view closer to the sensor. Modeling this effect was not a goal of the research and

so the lower quarter of the MISI imagery should be disregarded for all of the analysis

in this paper.

Remember, the scene was created using a cyclical development approach. The

spatial qualities of the scene were the primary focus of the first development cycle. The

focus of the next portion of the model development was on the spectral properties of
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objects in the scene.

4.2 Qualitative Spectral Comparison

The spectral radiance accuracy for the visible region of the spectrum is shown in Figures

4.3 and 4.4. Radiance spectra from the NIR region is shown in Figures 4.5 and 4.6.

The captions to each of the subfigures show two metrics of accuracy. The first is RMS

error between the two radiance curves and the second is a percent error measurement

between the DIRSIG radiance as compared to the truth spectra. The percent error

is an average error accross all of the spectral bands of the given material type. The

spectra in the figure were obtained by averaging the pixels in a region of interest over

each of the targets.

15 targets were selected from the 1000 imagery for analysis, while only 12 were

used from the 1800 imagery. In the 1800 imagery, the rollers were mostly obscured

by shadows from the grassy region on the hillside. Unfortunately, the Humvee in the

trees was unable to be decerned in either the truth or DIRSIG imagery due to the

shadows of the surrounding trees. Finally, the portable weather station, was removed

from MISI’s FOV when the 1800 truth imagery was taken and so it was also removed

in the synthetic shot at that time.

4.2.1 Control Target Analysis

The first five material types in Figures 4.3 and 4.5 show the accuracy of the control

tarps and panels that were used in the scene. Ironically and also unfortunately, they

were the most difficult material types in the scene to simulate spectrally. One of the

lessons learned for obtaining ground truth imagery is that control panels should ideally

be spectrally flat, and as Lambertian as possible to simplify their measurement and
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(a) RMS error = 22.82, % Error = -1.43% (b) RMS error = 28.02, % Error = 24.08%

(c) RMS error = 71.32, % Error = -11.50% (d) RMS error = 43.82, % Error = 4.69%

(e) RMS error = 61.67, % Error = 9.55% (f) RMS error = 1.52, % Error = -9.20%

Figure 4.3: MISI vs. DIRSIG spectral comparison in the visible region at 1000.
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(a) RMS error = 3.92, % Error = -64.74% (b) RMS error = 3.20, % Error = -4.32%

(c) RMS error = 3.47, % Error = 15.92% (d) RMS error = 2.52, % Error = -48.05%

(e) RMS error = 12.49, % Error = -38.80% (f) RMS error = 10.81, % Error = -10.40%

(g) RMS error = 2.47, % Error = 25.55% (h) RMS error = 46.16, %Error = 96.38%

Figure 4.4: MISI vs. DIRSIG spectral comparison in the visible region at 1000.
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(a) RMS error = 6.76, % Error = -49.78% (b) RMS error = 2.50, % Error = -2.48%

(c) RMS error = 7.88, % Error = -17.06% (d) RMS error = 19.64, % Error = 39.33%

(e) RMS error = 27.66, % Error = 54.61% (f) RMS error = 0.15, % Error = 0.03%

Figure 4.5: MISI vs. DIRSIG spectral comparison in the NIR region at 1800.
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(a) RMS error = 5.65, % Error = -2.16% (b) RMS error = 2.29, % Error = -0.95%

(c) RMS error = 2.39, % Error = 18.45% (d) RMS error = 11.94, % Error = -26.64%

(e) RMS error = 5.96, % Error = 18.57% (f) RMS error = 4.11, % Error = 36.18%

Figure 4.6: MISI vs. DIRSIG spectral comparison in the NIR region at 1800.
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maximize their utility as control objects. The panels and tarps that were used in the

ground truth collection were selected simply because they appeared black, gray and

white to the human eye and the specular properties of the materials was not given

significant thought. As a result, the black tarp and all three ceramic panels initially

produced simulated radiance curves that were much lower than the truth suggested in

the 1000 imagery where the sun-target-sensor angle was almost exactly specular.

Because these objects are significantly non-Lambertian, DIRSIG’s BRDF option

was turned on for rendering the scenes. As with all of the objects in the scene, the

emissivity database was constrained to only use emissivities that had been measured

either in the field with the ASD instrument or in the lab with the CARY 500. Unfor-

tunately, a measured value for the specularity parameter was unable to be accurately

estimated. The materials were measured on the CARY 500 with and without the light

trap inside the integrating sphere. It turns out that the size of the specular lobe of the

materials was much greater than the size of the light trap, so the difference between

the two measurements was not enough to produce the results seen in the truth imagery.

Therefore, the specularity parameter was manually adjusted until the simulated radi-

ance curve was as close as possible to the curves obtained from the truth imagery. The

spectral plots in Figure 4.5 show the results after the specularity parameter had been

adjusted.

4.2.2 Vegetation and Terrain Analysis

Obtaining accurate spectral signatures for background clutter requires a great deal of

time spent focusing on variability and positioning as described in the last chapter.

The most accurate spectra throughout the development of the model was the radiance

measured from the grass region in the scene. As can be seen in both the 1000 and 1800
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comparisons. The dirt region was also very accurate. The trees on the other hand were

very difficult to model accurately.

Many of the difficulties associated with the trees was described in Section 3.2.2.3.

From the beginning, the mean radiance in the trees was below their radiance of the

truth imagery. Different tree models were used, different spatial configurations, the

transmissive properties and also the specularity were adjusted in an attempt to make

them more realistic. The problem with modeling the trees in this scene results from a

phenomena that the author refers to as “tree halo”. The trees in the truth imagery get

brighter as one moves from their center toward the end of their branches. Also, in the

truth imagery, the radiance from the trees is greater as one moves from the bottom to

the tops.

Unfortunately, the author was unable to recreate this effect in DIRSIG to the same

degree as can be seen in the the truth imagery. The halo effect was unable to be

recreated at all with trees modeled at the branch level. It can be somewhat reproduced

with trees modeled at the pine needle level, but not to the same degree of magnitude.

Limited success was achieved in the 1000 imagery when the thickness of the tree facets

was changed to an artificially small value. This effectively increased the transmission

of the pine trees and as a result the radiance went up. Unfortunately, this is unrealistic

and it also destroyed the 1800 imagery where the radiance from the trees grew by orders

of magnitude. Since this experiment was conducted, DIRSIG was modified to no longer

allow a violation of Kirchoff’s law and emissivities and transmissions are capped so that

they cannot add to a value greater than one.

Another aspect of the 1800 imagery should also be pointed out here before the

classification results are presented. While the grass and trees compare favorably be-

tween the truth and synthetic imagery at this time, the truth trees and grass in the
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foreground produce almost identical spectral radiance curves. This class inseparability

complicates the classification of the 1800 imagery that will be presented shortly.

The grass in the background is also much brighter than the grass in the foreground

in the 1800 imagery. This could be a result of the fact that this region is on one of

the schools soccer fields which is watered daily. The higher radiance counts could have

resulted from either having just been watered or simply that this grass is more healthy

than the grass in the foreground. The spectra of the grass on the soccer field was not

measured at the time and therefore was not included in the material database used in

the model.

4.2.3 Humvee and Small Target Analysis

The Humvees and small targets in the scene produce radiance curves that are for the

most part very similar to the truth. This is especially true of the Humvee in the

open and the one under the camouflage net. The Humvee in the trees shows a similar

shape, but lower general radiance count, than the truth imagery. It is possible that the

specular sun-target-sensor angle is also the cause of this discrepancy. Specularity was

not added to the Humvee model. Interestingly, though, DIRSIG’s Humvee in the trees

does show a difference of 4-5 radiance counts in the green region over the Humvee in

the open. This could possibly be a result of the surrounding vegetation and show that

DIRSIG is capable of rendering the effect commonly referred to as “tree shine”.

The rest of the scene contains a large amount of small target clutter. Some of it

contains actual measured spectra and other objects were placed in the scene simply to

provide more realistic spatial variability. The emissivity of the weather station, rollers,

wood ramp, and shed shingles were all measured. Each of these objects is also fairly

accurate with the exception of the weather station. Only two pixels could be measured
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of this target from the truth imagery because of its small size and MTF effects. Exact

location, pixel phasing, and PSF measurement inaccuracy could all account for the

difference. These concepts should be considered when attempting to model a similar

scene at high resolution. There is a lot of potential for the model to break down

radiometrically when the target is small as compared to the PSF kernel size.

4.2.4 Rank-Order Correlation Results

ROC will be presented here as another metric that the reader may be able to obtain

additional validation information from. Although it is generally a more effective metric

when it is used to compare images in the thermal region of the spectrum. Figures 4.7

through Figure 4.12. The results were obtained from three different spectral bands in

both image sets.

Material Identification Table
1 Humvee Under Camo
2 Trees
3 Grass
4 Shingles
5 Humvee In Open
6 Roller Tops
7 Dirt
8 Humvee In Trees
9 Wood Ramp
10 Roller Ends
11 Met Station
12 Black Tarp
13 White Tarp
14 Black Panel
15 Gray Panel
16 White Panel

Figure 4.7: ROC results for .458µm band.

That concludes the qualitative comparison of the imagery. The spectral and spatial
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Material Identification Table
1 Humvee Under Camo
2 Trees
3 Shingles
4 Humvee In Open
5 Roller Tops
6 Grass
7 Dirt
8 Humvee In Trees
9 Roller Ends
10 Met Station
11 Wood Ramp
12 Black Tarp
13 White Tarp
14 Gray Panel
15 Black Panel
16 White Panel

Figure 4.8: ROC results for .546µm band.

Material Identification Table
1 Trees
2 Humvee Under Camo
3 Shingles
4 Humvee In Open
5 Grass
6 Roller Tops
7 Humvee In Trees
8 Dirt
9 Roller Ends
10 Met Station
11 Wood Ramp
12 Black Tarp
13 White Tarp
14 Gray Panel
15 Black Panel
16 White Panel

Figure 4.9: ROC results for .640µm band.
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Material Identification Table
1 Black Tarp
2 Black Panel
3 Humvee In Open
4 Shingles
5 Trees
6 Wood Ramp
7 Dirt
8 Humvee Under Camo
9 Grass
10 Gray Panel
11 White Panel
12 White Tarp

Figure 4.10: ROC results for .731µm band.

Material Identification Table
1 Black Tarp
2 Shingles
3 Humvee In Open
4 Black Panel
5 Dirt
6 Wood Ramp
7 Trees
8 Grass
9 Gray Panel
10 White Panel
11 Humvee Under Camo
12 White Tarp

Figure 4.11: ROC results for .865µm band.
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Material Identification Table
1 Black Tarp
2 White Tarp
3 Trees
4 Humvee In Open
5 Wood Ramp
6 Grass
7 Gray Panel
8 White Panel
9 Dirt
10 Black Panel
11 Humvee Under Camo
12 Shingles

Figure 4.12: ROC results for .993µm band.

accuracy of the DIRSIG imagery is generally very encouraging. There are many more

positive comparisons than negative throughout the model. This is especially true of the

nearly Lambertian materials in the scene. The control panels were difficult, but with

the inclusion of the simple BRDF model, even they could be forced to simulate nearly

accurate radiance spectra. Some of the vegetation did not model quite right either,

but their results are still fairly close. This issue is predominantly focused on the tops

of the trees, where many different attempts were made to correct the issue through

both spectral and spatial changes with limited success. Certain other materials in the

scene were not able to be validated due to the resolution or measurement capability,

such as the bark on the trees and the textured vinyl siding on the shed. For some of

the small targets, generic emissivity values were used because the object was primarily

in place for visual clutter and not for accurate spectral comparison modeling. One

representative example of this is the red paint on parts of the generator. Generic

red paint was used because of the difficulty of measuring the spectra of the generator

with the tools available at RIT. In summary, all of the spectral curves used in the
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comparison were measured directly from the objects being compared. It is estimated

that approximately 85% of the scene is modeled with spectra that was measured directly

from the objects in the scene. The rest is given representative generic spectra where

required by measurement limitations or when inconsequential to the analysis. The

next step in the development cycle was to see if the model was capable of training and

developing classification and detection algorithms.

4.3 Gaussian Maximum Likelihood Classification Results

After significant data collection, scene development, and sensor characterization, the

model was ready to be tested for its primary purpose of training and developing detec-

tion algorithms. Detection algorithms generally look for small targets, but the modeler

cannot focus solely on the accuracy of those few pixels that encompass the target; the

entire synthetic image must be accurate. It is very important that a diverse background

surrounds that target so that the algorithm will have sufficient variability in the syn-

thetic image it is operating on to perform as it would on real data. Therefore, the GML

classification algorithm was selected to determine if data derived from the MicroScene

model could be used to populate a training set for classifying the truth imagery. Six

target classes, the dirt, grass, trees, white tarp, black tarp, and Humvee were chosen

from the DIRSIG imagery. The Humvee class was taken from the top of the Humvee

in the open. The resulting classification image derived from the 1000 imagery is shown

in Figure 4.13(a). For comparison, the same training set was also used to classify the

DIRSIG image that it was derived from. The results of that classification are shown in

Figure 4.13(b).

The MISI imagery still displays more variability than the DIRSIG imagery in those

two figures, but the classes line up very well between the two data sets with the ex-
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(a) GML classified MISI image using DIRSIG de-
rived training data.

(b) GML classified DIRSIG image using DIRSIG
derived training data.

(c) GML classified MISI image using MISI derived
training data.

Classification Key

Figure 4.13: 1000 MISI vs. DIRSIG GML classification comparison.
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ception of a great deal of Humvee class showing up in the trees. Other than that the

classifier found the rest of the trees, the portion of the dirt that was in direct sunlight,

and most of the grass. Portions of the Humvee are classified correctly, but it is not

surprising that the Humvee was also classified as dirt and trees, since the Humvees

in the scene had recently been through training exercises and had not been washed.

Aside from the trees, the Humvee class also shows up in the grass, in the shadows, and

around the camouflage netting. This is not all that surprising either, since the Humvee

camouflage paint is meant to blend in with these objects. The shed also classifies as

Humvee in both data sets.

Also of note are how the algorithm reacted to the smaller targets in the scene. For

instance, unclassified portions of the imagery correlate well in both images. The most

obvious region is the sky, which was not an input class, but also many of the small

targets in the scene are not classified. The classifier leaving the small targets out of

the general classification suggests that the anomaly detection algorithms will be able

to exploit those targets. Where the small targets are classified, such as the small set of

flags in the center of the image and the base of the weather station, they classify in to

the same classes.

The white and black tarps are left unclassified based on the threshold confidence

level that was set to produce the classification image. If the GML algorithm is set so

that it classifies every pixel in the image, then a small amount of the white tarp is

classified correctly in the truth imagery.

The classification image in Figure 4.13(c) was made by using training data of the

same classes, but this time they were derived directly from the MISI imagery. The

major difference between this image and the DIRSIG derived classification in Figure

4.13(a) is that the Humvee class is largely removed from the trees. This is a result
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of the problem discussed earlier on how the trees increase in radiance as one analyzes

from the bottom to the top of the trees. The radiance values produced in DIRSIG do

not reach the radiance level at the top of the trees in the truth imagery and therefore

they are classified into the brighter Humvee class. Overall, though, the DIRSIG derived

training data does a good a job of classifying the truth imagery.

Figures 4.14(a) and 4.14(b) show a comparison of the same classification routine for

the 1800 image set. The same classes were used and were obtained from the DIRSIG

1800 imagery. Unfortunately, the 1800 truth imagery is extremely difficult to classify

correctly because of the lack of class separability in the truth imagery, especially be-

tween the trees and the grass. Even though the trees tend to classify as grass more

than they do when the DIRSIG image is classified, the dirt and Humvee regions classify

very similarly. The Humvee class shows up over the camouflage net and also in the

trees where there are shadows in both images. Portions of the tarps in both image sets

are classified as trees and there is even some correct classification of the white tarp.

Finally, portions of the shed and background buildings both classify as trees in both

images.

Again, the truth imagery was classified using truth derived classes and that result

is shown in Figure 4.14(c). The image is dominated by tree class. There is also more

Humvee class along the ground than in the image that was classified with the DIRSIG

derived classes. This image proves the difficulty associated with classifying this scene

at this time of day and sensor configuration. Even when the classes are derived directly

from the image itself, the classification results are not very good.

This section provided the results of general image classification using the GML

classification algorithm. The results showed that DIRSIG is fairly capable of generating

class statistics that can be used to classify real imagery to an acceptable level. This is
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(a) GML classified MISI image using DIRSIG de-
rived training data.

(b) GML classified DIRSIG image using DIRSIG
derived training data.

(c) GML classified MISI image using MISI derived
training data.

Classification Key

Figure 4.14: 1800 MISI vs. DIRSIG GML classification comparison.
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very encouraging and it also proves that the background surrounding the targets in the

scene have sufficient realism to allow for algorithmic detection to occur properly. One

more validation technique needs to be presented before the target detection results are

shown. GML classification is purely spectral in nature and gives no consideration to

the spatial qualities of the scene. Since the target detection algorithm being using in

this research has a spatial component, it is important to attempt to validate the spatial

qualities of the scene. The next section provides the results of that validation through

the use of GLCM derived texture metrics.

4.4 Grey-Level Co-occurrence Matrices Results

In addition to GML classification, ENVI also includes a module to compute texture

images based on GLCMs. As described in Section 2.3.3, these images are difficult to

interpret by themselves. Therefore, the validation of the scene using GLCM texture

metrics has been broken into three pieces. The first is a simple side-by-side comparison

of GLCM imagery from both DIRSIG and MISI. Next, regions of interest over the

grass, trees and dirt regions in the images are compared by taking an average value

across the region in an attempt to quantify the accuracy of the results. Finally, as

described by Baraldi and Parmiggiani (1995), the GLCM results were added to the

original truth and synthetic imagery as additional bands and then GML classification

was re-performed on the new image sets.

Six different configurations were used to produce the images that are shown in

Figures 4.15 through 4.18. Homogeneity, contrast, and entropy were calculated from

two different GLCM runs. The first run used a one pixel shift in the x direction and a

31x31 pixel kernel. The second used a one pixel shift in the y direction with the same

kernel. Homogeneity was placed in the red channel, contrast in the green and entropy
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in the blue. All six configurations were run on the .555µm band of the 1000 image set

and the .776µm band of the 1800 image set.

It is difficult to obtain any real answers about accuracy from these images, but in

general, it appears that the “color” of the images tend to be consistent across a given

material type. An interesting result of the operation is that small targets and targets

with hard edges produce very unique signatures. Remember, a 31x31 kernel was used.

The result seems to be that small targets, or at least small regions with high contrast

edges, produce large bright blocks in the imagery. A few good examples are the soccer

goal posts, the shed, and the transition from the shutter being closed for the dark scan

and actual image acquisition in the MISI images where a vertical pixel shift is used.

Another observation that can be made about the GLCM images begins to reveal one

of the significant issues of doing target detection or texture based image classification

at a slant-angle viewing geometry. The problem lies in the spatially varying GIFOV

of the sensor. While this isn’t as problematic for the trees or dirt in this specific

imagery, the grass texture changes significantly as one moves from the foreground into

the background. The GLCM algorithm uses a fixed kernel size to produce its results

and does not take this change in GSD into account. This issue will crop up again in

the RX results comparison.

(a) MISI .555µm - horizontal GLCM. (b) DIRSIG 555µm - horizontal GLCM.

Figure 4.15: Comparison of GLCM results with a 1 pixel shift in the x direction using
a 31x31 window on the .555µm band in the 1000 imagery.



CHAPTER 4. RESULTS 133

(a) MISI .555µm - vertical GLCM. (b) DIRSIG .555µm - vertical GLCM.

Figure 4.16: Comparison of GLCM results with a 1 pixel shift in the y direction using
a 31x31 window on the .555µm band in the 1000 imagery.

(a) MISI .776µm - horizontal GLCM. (b) DIRSIG .776µm - horizontal GLCM.

Figure 4.17: Comparison of GLCM results with a 1 pixel shift in the x direction using
a 31x31 window on the .776µm band in the 1800 imagery.

(a) MISI .776µm - vertical GLCM. (b) DIRSIG .776µm - vertical GLCM.

Figure 4.18: Comparison of GLCM results with a 1 pixel shift in the y direction using
a 31x31 window on the .776µm band in the 1800 imagery.

Figures 4.19 through 4.21 are plots of mean GLCM values for homogeneity, contrast

and entropy that are derived from the grass, trees and dirt from truth and synthetic
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imagery. All of these plots show very encouraging results. In every one, with the

exception of Figure 4.20(c), the value trends are very consistent between both data

sets. It is unclear why the trees produce such a significantly greater contrast value in

only the horizontally shifted GLCM image of the .776µm band.

Figure 4.19: Mean GLCM values of grass regions : 1=Homogeneity, 2=Contrast, 3=En-
tropy.

Since the plots of the GLCM metrics seem very encouraging, each of the six GLCM

configurations was added back to the image that it was derived from as additional

bands of data. Then, GML classification was run on the new image. In Section 4.3

the classification algorithm strictly operated on the radiance of single pixels. Once

the GLCM bands were added back to the original imagery, those new bands act as a

spectral representation of the spatial texture of the surrounding neighborhood of pixels.

In essence, the GML classifier is now basing its classification decisions on both spatial

and spectral information.
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Figure 4.20: Mean GLCM values of trees regions : 1=Homogeneity, 2=Contrast, 3=En-
tropy.

Figure 4.21: Mean GLCM values of Dirt regions : 1=Homogeneity, 2=Contrast, 3=En-
tropy.
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The results of running the GML classifier on the 1000 image set with the GLCM

bands added back is shown in Figure 4.22. The same six classes were used as before

and the similarity between the two images is very impressive. Also, compared to the

original classification results (see Figure 4.13(a) and 4.13(b)) the Humvee no longer

shows up in anywhere near the quantity that it did before, which significantly increases

the detection rate if this were the algorithm being used to find Humvees in the imagery.

The top of the trees in the truth imagery is still not classified into the correct class,

but at least more of the trees are classified correctly. Also, the grass is much more

accurately classified whereas before it contained a lot of stray tree class. The new

results also correctly classify portions of both the black and white tarp. This was not

the case originally.

The 31x31 kernel used to create the GLCM images acts as somewhat of a low-pass

filter to the resulting imagery. The small target issues discussed above are a result of

the kernel size. For this reason, the entire image was allowed to be classified as one of

the six classes with no unclassified pixels. Keeping unclassified regions in an attempt to

find anomalous small targets was not possible because the small targets were essentially

destroyed by the kernel.

Also, the kernel size produces blocky classification. The bright spots around high

contrast edges that can be seen in Figures 4.15 through 4.18 heavily influence the

classification results in the window around that edge. The trees on the right hand side

of the two image sets get classified as blocks of dirt and tree in both GLCM classification

images in Figure 4.22. Some small targets, such as the flag set, get classified as blocks

of trees in both image sets, as well.

This same technique was used on the 1800 image set, but the results were not suc-

cessful. Essentially the entire image was classified as trees. Apparently, the GLCM
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metrics only served to provide additional weight to the tree class and the entire clas-

sification of the difficult to separate spectra were overpowered by the dominant tree

class.

Classification Key

Figure 4.22: GML classification of 1000 imagery that includes the derived GLCM
images.

That concludes the discussion of the general image comparison and classification.

From the results presented so far, DIRSIG is capable of accurately recreating the spatial

and spectral qualities of truth imagery. Also, both the spectral and spatial properties

of the synthetic imagery can be used to derive class statistics with enough quality for

doing reasonably accurate real image classification. The final step in this validation

is to provide the results of running a target detection algorithm on the two data sets.

The next, and final, section in this chapter is devoted to the RX algorithm results.
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4.5 RX Results

RX performs well in regions where the targets are small, relative to the neighborhood

size chosen, and are significantly different from their background. While an exhaustive

analysis of the algorithm was not accomplished, it was determined that the best results

were found when a 45x45 pixel neighborhood was used with a 5x5 spatial subset.

The success criteria for this research is not to determine the best way to use any

particular algorithm, but to generate synthetic imagery that produces similar results

to real imagery under target detection analysis.

The results of running the RX algorithm in anomaly detection mode on the MISI

and DIRSIG images are shown in Figure 4.23. The gray-scale image produced by the

algorithm was thresholded and then the entire image was dilated with a 9x9 kernel for

presentability. In Figure 4.23, the circled regions represent known targets in the scene

that were detected by the algorithm. Also for presentability, the original image has

been added back to the RX image to help the reader identify the targets identified by

the algorithm.

(a) MISI - 1000 (b) DIRSIG - 1000

Figure 4.23: RX run in anomaly detection mode on 1000 RX imagery.

Most all of these targets were detected in both images. All other points shown in

the anomaly detection images that are not circled are either false alarms or interesting
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(a) MISI - 1800 (b) DIRSIG - 1800

Figure 4.24: RX run in anomaly detection mode on 1800 RX imagery.

targets that are unknown and therefore were not modeled. The results are nearly

identical for the detected objects in the two scenes. The objects that are detected

are the weather station, the control panels, portions of the Humvee in the open and

the one in the trees, the generator and blackbody in front of the shed, the rollers, the

downwelled radiometer, and finally a group of small flags and a rock. The Humvee

under the camouflage was not considered anomalous in either truth images and the

Humvee in the open was not detected in the 1800 truth imagery. The Humvee in the

trees was not detected in either the truth or synthetic 1800 imagery as it is completely

hidden in the shadows.

Originally, it was thought that only the qualitative spatial and spectral comparisons

would be useful for making changes to the model, but the anomaly detection algorithm

turned out to be very important as well. The group of small flags and the rock were not

in the model until after the RX algorithm was run on the scene. They both produced

significant returns in the truth imagery even though they were thought to be insignifi-

cant. Therefore, they were both added to the latest version of the model. This shows

that these algorithms can not only validate, but also help to identify improvements and

provide direction in to the next step in the continuous improvement of the model.

A comparison of the false alarms in Figure 4.23 are also fairly consistent. Portions
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of the skyline and tops of the trees are selected as anomalies by the algorithm in both

sets of images. RX also has the habit of producing seemingly random results over

uniform areas. This becomes more evident when the algorithm is run in matched filter

mode as will be discussed shortly.

Some of the false alarms in the DIRSIG imagery are a result of the material map

tiling issue discussed earlier. The dirt region repeats in the distance. As it gets farther

out, it’s total size in pixels gets closer to the 5x5 square target region of the RX

kernel. The algorithm only sees dirt in the target pixels and grass in the neighborhood

pixels. More time spent modeling detail into the background would help decrease these

artificial false alarms.

As mentioned in the section on the GLCM results, the oblique viewing angle of the

scene produces spatially varying GIFOVs of the sensor. This impacts the results of the

algorithm’s performance. Objects that would be large, and not considered anomalous,

if they were in the foreground of the image, produce large RX results in the background.

The top right portion of the 1800 DIRSIG imagery in Figure 4.24 show a great deal of

this issue. In addition to the tiled dirt region, there are a number of trees that appear

almost exactly in the 5x5 window of the algorithm and also produce large results. This

phenomenon should be considered when doing off-nadir analysis using the RX, or any

other spatially dependant, algorithm. Fortunately, the DIRSIG model reproduces this

effect accurately so that the RX results are similar between it and the truth imagery

with respect to this issue.

Figures 4.25 and 4.26 show the results of the RX algorithm running on both sets

of data in matched filter mode. The input spectra for the algorithm was selected as

the mean radiance spectra of the Humvee in the open. That seemed like a reasonable

amount of a priori knowledge for running this kind of detection in the field. The
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threshold point for the RX results was chosen at the point where the Humvee in the

trees was just classified as a target in the truth imagery. Again, the same threshold

point was used in the DIRSIG image. Target points in the images in Figures 4.25 and

4.26 are only circled if they are over the location of one of the Humvees.

(a) MISI - 1000 (b) DIRSIG - 1000

Figure 4.25: RX run in matched filter mode using DIRSIG derived Humvee on 1000
imagery.

(a) MISI - 1800 (b) DIRSIG - 1800

Figure 4.26: RX run in matched filter mode using DIRSIG derived Humvee on 1800
imagery.

This time, the algorithm finds the Humvee in the trees and also the Humvee in the

open in both 1000 images. In the DIRSIG image, the Humvee under the camouflage

netting also gets detected in that data set. There are a significant number of false

alarms in both image sets, especially at 1000. In general, a number of the small targets

in the scene were still detected in the DIRSIG image, while they were not in the truth.
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Also, the truth imagery contains a quite a few other, seemingly random, false alarms

scattered across the image. Analysis of the truth imagery in these locations did not

reveal any obvious reason for this. While not as prevalent in the DIRSIG image, a

few of the false alarms in that image are also over regions where there is no target of

interest.

Only the Humvee in the open was detected in the 1800 truth imagery. Again, the

Humvee in the trees is invisible due to the shadows. There are fewer false alarms in

the two images in contrast to the 1000 imagery. These false alarms are also seemingly

random, with no noticeable reason for the large return value. From a comparison

perspective, though, both data sets produce similar numbers of false alarms in both

the 1000 and 1800 data sets. This fact alone lends credibility to the models ability to

perform accurately under the algorithms scrutiny.

The histograms of the gray-scale RX images prior to thresholding are also im-

portant. The plots of those histograms can be seen in Figures 4.27 and 4.28. The

histograms of the gray-scale RX images are nearly identical between the truth and

synthetic images. This was the reason why the exact same threshold value used to

threshold the truth imagery could be used to threshold the synthetic imagery. The

similarities in the histograms show that the detection rates for the synthetic imagery

will be very comparable to the truth imagery regardless of the threshold level chosen.

This also lends credibility to DIRSIG’s ability to generate synthetic imagery useful for

target detection algorithm training.

In all, the algorithms produced very similar results. The RX algorithm appears

to react to insignificant portions of the scene, especially when used in matched filter

mode. Even though these regions did not always match up perfectly between the truth

and synthetic imagery, they did produce similar quantities of false alarm rates in all
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(a) 1000 Anomaly RX - DIRSIG. (b) 1000 Anomaly RX - MISI.

(c) 1000 Match RX - DIRSIG. (d) 1000 Match RX - MISI.

Figure 4.27: Histograms of the RX algorithm results from the 1000 imagery.
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(a) 1800 Anomaly RX - DIRSIG. (b) 1800 Anomaly RX - MISI.

(c) 1800 Match RX - DIRSIG. (d) 1800 Match RX - MISI.

Figure 4.28: Histograms of the RX algorithm results from the 1800 imagery.
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the image sets. The RX algorithm was even surprisingly discovered to be an effective

means of identifying necessary improvements to the model. This occurred because

the algorithm identified objects in the truth image that were not expected to be of

significance and were not initially modeled.

This completes the validation of the DIRSIG model as compared to the truth im-

agery of the scene the model was based on. Many metrics were used to assist in detailing

the ability of the DIRSIG model to reproduce real scenes accurately for the purpose of

image classification and target detection. The final portion of this paper will present

some conclusions recommendations for further study that have been drawn from these

results.



Chapter 5

Conclusions and

Recommendations

The goal of this research is to determine DIRSIG’s ability to model real scenes accu-

rately enough so that it could be used as a training tool for algorithm development.

It consisted of three major parts. The first part was collecting truth imagery to be

used as the basis for the comparison. The second portion was to construct a virtual

replica of that scene and then render the scene in DIRSIG. Finally, the two scenes were

compared using a number of analysis tools.

The ground truth collection was largely a success. An enormous amount of data

was obtained that included spectral information from the visible through the long-wave

portion of the spectrum using two different imaging instruments. Many people from

across the Imaging Science department came together to make this happen through a

great deal of planning and imagination. To the author’s knowledge is was the first col-

lection of its kind, where that type and amount of data was collected using a stationary

imager setup. In addition to all of the data collected on concealed targets, there is
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an additional amount of thermal information that was collected in support of buried

landmine detection.

Even with all of that preparation, there were still a number of lessons learned during

and after the collection was accomplished. Those issues primarily deal with the control

objects that are used and the stray light that plagued most of the MISI spectrometer

imagery. Some detector bias calibration issues were also addressed in this research,

but the uncertainty in the MISI imagery is not enough to discredit the results of the

DIRSIG comparison.

The creation of the synthetic model of the MicroScene area required considerably

more time than initially expected. That additional time required to get the model to

its current state took time away from diving deeper into the finer points of the scene.

The trees and background are the two main areas that could still use more time. The

background simply requires additional clutter to make it more appealing to the viewer,

but the trees are a different story. Multiple attempts were made to recreate the radiance

level seen in the truth imagery without as much success as is thought possible. Many

different tree models were tried as well as geometric configurations.

A number of tools were used to accomplish this main validation objective. Qual-

itative comparisons between the DIRSIG and truth images were accomplished of the

general spatial and spectral aspects of the scene. Also, more quantitative comparisons

were made. First, ROC curves were produced. The scene was also classified using the

GML classification algorithm. Next, GLCM derived texture metrics were run on the

imagery. These results were combined into the original data set and GML classification

was rerun on the hybrid scene. Finally, the RX target detection algorithm was run on

the data sets.

Overall, the results of this research show that DIRSIG is capable of being used to
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train and develop classification and target detection algorithms. Visual comparisons

of the spatial and spectral qualities of the scene show that DIRSIG produces very

similar results to truth imagery. These results are confirmed under different times of

day and while maintaining an adherence whenever possible to actual measured material

properties and sensor characteristics. DIRSIG appears to handle the unique viewing

geometry and high-resolution without any significantly restrictive problems. Even the

extremely high resolution shot taken from underneath the camouflage netting produced

a very realistic result. That image alone validated many of DIRSIG’s capabilities, such

as shape factor determination and material maps with NULL material IDs. It also

proved how intricate models can be created with relatively few facets if DIRSIG’s

hierarchical mapping structure is used appropriately.

The general truth image classification using DIRSIG derived training classes worked

fairly well in the 1000 imagery where there was more class separability. The classifi-

cation process was not as successful in the 1800 imagery. The results of the GLCM

metrics was more successful than initially expected. Those results were powerful enough

to make the classification of the 1000 imagery even more accurate. Finally, the RX al-

gorithm showed a great deal of similarity between the truth and synthetic imagery in

both anomaly and matched filter mode. Small targets in both scenes were similarly

detected and false alarm rates were comparable.

A few issues were discovered along the way that another DIRSIG user trying to

develop a similar scene would need to keep in mind. First, DIRSIG will tile the image

maps used to induce object variability. Depending on the viewing geometry and system

constraints, this may or may not become an issue. The anomaly detection results

showed how this issue can produce false alarms.

Also, DIRSIG models near-Lambertian materials much more accurately than specu-
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lar ones. This is a result of two issues. First, there is very limited support for modeling

specularity in DIRSIG 3. Second, there is currently no means available at RIT for mea-

suring the bi-directional reflectance properties of different material types. So, while all

of the Lambertian material properties in the scene were used as they were measured

from either the ASD field instrument or the CARY 500, there was no way to measure

non-Lambertian properties. This issue was especially prevalent in the black control

tarp and all of the control panels. The radiance values of these objects in the truth

imagery were used as the basis for tuning the specularity value of those material types

in the DIRSIG material file.

The final topic is the potential directions that MicroScene could be taken in the

future. The first and foremost of these new directions deals with the needs of the Army

MURI group. When this project was proposed, more information was supposed to be

provided to the author in terms of what types of phenomenology should be validated in

this model. The specifics of the term “phenomenology” were never relayed and so the

analysis tools that were used here were selected as the author’s idea of what the model

should be able to accomplish with regard to concealed target detection. As with any

simulated scene, we will never have the knowledge or computing power to be able to

recreate the infinitely complex interactions that occur in the real world. That is why

it is unrealistic for people to assume that any model is phenomenologically accurate

without reference to some specific phenomena. Therefore, future work on this project

should be accomplished based on the suggestions of the phenomenology and modeling

segments of the Army MURI team to determine what specific phenomenology should

be targeted for modeling accuracy. Then, whatever algorithm is determined to do the

best job at detecting concealed targets, based on that phenomenon, can be used as a

more appropriate metric for validating the scene.
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Second, this scene is ideal for doing more detailed analysis of how DIRSIG models

vegetation at high-resolution. The pine trees in the scene required unique modeling

solutions that would not have been required in lower resolution scenes. But still, the

differences seen between the truth and synthetic scenes with respect to the trees is

enough to make one believe that there is phenomenology associated with the tiny

interactions of the needles that is manifesting itself in the truth imagery that DIRSIG

may or may not be able to recreate.

The spatial realism of the trees may also become and issue if further research is done

with active systems, such as LIDAR or RADAR. Many applications for these types of

sensors are geared toward elevation estimation. The virtual forest was planted from a

2-D overhead image. Therefore the locations of the trees in the scene is very accurate,

but no detailed measurement of the height of those trees was accomplished. The actual

height of the forest canopy in MicroScene will need additional scrutiny before the model

can be used for accurate simulation of height variability using any of DIRSIG’s more

advanced active sensor models.

In addition to the trees, more three-dimensional detail will be needed if the resolu-

tion requirements increase much beyond the model’s current capability of approximately

3 inches. The sub-inch resolution of the WASP camera shows individual blades of grass

and more variability in the grassy region on the hill. The hierarchical 2-D mapping

structure of DIRSIG that worked so well for modeling the terrain may need to be re-

placed by 3-D grass models. Currently, the hill is modeled three-dimensionally, but

with somewhat uniform grass and stalks of weeds placed randomly throughout. The

model of this region is currently limited to only the grass material ID. In reality there

are different types of plants with small flowers and slightly different colored leaves. At

higher resolutions, these nuances may become important. This variability was indistin-
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guishable in the MISI truth imagery. Also, no 3-D plant variability is included in the

model beyond the foreground. The forest floor is only modeled with the 2-D texture

map and the 3-D trees. This may not be realistic for targets hidden in that area of the

scene.

The model is also ideally suited for being expanded into the thermal portion of the

spectrum because of the large amount of thermal information that was obtained during

the truth imagery collection. Both aspects of the Army MURI project, concealed target

and landmine detection, could potentially benefit from thermal properties being added

to this model. To accomplish this, the sun location correction described in Section 3.2.1

would need to be mitigated in the next version of DIRSIG and many of the material

emissivity files would need to be expanded beyond 2.5µm. Aside from those two issues,

the scene geometry and truth imagery are already in place.

Another area for future work on this model is to add empirically derived BRDF in-

formation about the materials and objects in the scene. Once the capability to measure

this type of information becomes available at RIT, and DIRSIG is capable of handling

it, the model should be revalidated with that more accurate spectral information.

Finally, the power of the model could really be expressed if this type of research was

done in reverse. Since it has been shown that a model can be built from information

gathered from a real scene, then it is the logical next step (and more realistic premise)

that a synthetic scene should be created and then comparison imagery could be taken.

This is truly the conditions that the ultimate user of the Army MURI group’s research

would be operating under in the field. In this more realistic scenario, a computer would

be tasked to simulate a scene and the target conditions prior to an operator being there

physically. Successfully demonstrating DIRSIG’s ability to generate realistic scenes and

a priori data sets under these conditions would be a significant step toward the ultimate
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goal of using simulated data to train target detection algorithms.
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Appendix A

RX Code

pro RX doit , f i d=f id , dims=dims , pos=pos , N=N, b=b , IMAGE WIDE=iw , S=S , $
out name=out name , in memory=in memory

;N = number o f p i x e l s a lone one s i d e o f ke rne l
; b = an opt i ona l s p e c t r a l vec tor FOR matched f i l t e r v e r s i on .

; I f NOT se t THEN b = X bar##S
;IMAGE WIDE = only compute a s i n g l e covar iance based on image wide s t a t i s t i c s
; S = the s p a t i a l shape ke rne l

! e r r o r=0
on ioerror , t r oub l e
in memory = KEYWORD SET( in memory )

ENVI FILE QUERY, f id , fname=fname , x s t a r t=xstar t , y s t a r t=ys t a r t
ns = dims [ 2 ] − dims [ 1 ] + 1
nl = dims [ 4 ] − dims [ 3 ] + 1

or ig image = FLTARR(ns , nl , n e lements ( pos ) )

FOR i =0, n e lements ( pos)−1 DO BEGIN
or ig image [∗ ,∗ , i ] = ENVI GET DATA( f i d=f id , dims=dims , pos=pos [ i ] )

ENDFOR

sz = i n t a r r (3 )
sz [ 0 ] = n elements ( pos )
sz [ 1 ] = ns
sz [ 2 ] = nl

GET LUN, uni t
IF ( in memory ) THEN $

mem res = FLTARR( sz [ 1 ] , sz [ 2 ] ) $
ELSE $

OPENW, unit , out name

L = sz [ 0 ] ; number o f bands

IF NOT KEYWORD SET(b) THEN BEGIN
b = FLTARR(1 ,L)
ma t c h f i l t e r = 0

ENDIF ELSE mat ch f i l t e r = 1

; i n i t i a l i z e v a r i a b l e s
M inv = FLTARR(L ,L) ; i nve r t ed covar iance matrix o f subwindow
r = FLTARR( sz [ 1 ] , sz [ 2 ] )
avg=FLTARR(1 ,L)
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Krnl = FLTARR(N,N) ; s p a t i a l subwindow
Krnl [N/2−S/2 : n/2+S/2 ,N/2−S/2 :N/2+S/2 ] = 1.0/FLOAT(S)
S = reform ( Krnl , 1 , n e lements ( Krnl ) )

; i n i t i a l i z e r
r [∗ ,∗ ] = 0

IF ( iw ) THEN BEGIN
print , ”Making Image Covariance ”
avg or ig image = FLOAT( or ig image ) ; i n i t i a l i z e Mean X to s i z e o f X

FOR i = 0 , L−1 DO BEGIN
avg or ig image [∗ ,∗ , i ] = FLOAT(( t o t a l ( o r ig image [∗ ,∗ , i ] ) ) ) $

/FLOAT( sz [ 1 ] ∗ sz [ 2 ] )
ENDFOR

X bar = or ig image − avg or ig image

; r eo rde r X bar in to a vector
X bar = reform (X bar , N elements ( X bar [∗ ,∗ , 0 ] ) , L)

; compute covar iance
M = (1 . 0/FLOAT( N elements ( X bar [ ∗ , 0 ] ) ) ) ∗ ( X bar)##TRANSPOSE( X bar )
M inv = inve r t (M, status , / double )
print , ’ s t a tu s = ’ , s t a tu s

ENDIF

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

s0=0 l
s1=0 l
s2=0 l

; Begin Computation o f r by moving NxN kerne l through image
IF ( in memory ) THEN t s t r = ’Output to Memory ’ $
ELSE t s t r = ’Output F i l e : ’ + out name
ENVI REPORT INIT , [ ’ Input F i l e : ’ + fname , t s t r ] , $

t i t l e=’RX Proces s ing ’ , base=rbase , / in t e rupt

ENVI REPORT INC, rbases , sz [1]−1−N

FOR i = N/2 , sz [1]−1−N/2 DO BEGIN
FOR j = N/2 , sz [2]−1−N/2 DO BEGIN

ENVI REPORT STAT, rbase , i , sz [1]−1−N, cance l=cance l
IF ( cance l ) THEN BEGIN

! e r r o r = env i c a n c e l v a l ( )
GOTO, t r oub l e

ENDIF

IF ( iw ) THEN BEGIN

; c r e a t e X from NxN subwindow from or ig image
X = FLOAT( or ig image [ ( i−N/2 ) : ( i+N/2) , ( j−N/2 ) : ( j+N/2 ) ,∗ ] )

X bar = X − avg or ig image [ n e lements (X) ]

; r eo rde r X bar in to a vector
X bar = reform (X bar , n e lements ( X bar [∗ ,∗ , 0 ] ) , L)

ENDIF ELSE BEGIN

; c r e a t e X from NxN subwindow from or ig image
X = FLOAT( or ig image [ ( i−N/2 ) : ( i+N/2) , ( j−N/2 ) : ( j+N/2 ) ,∗ ] )
Mean X = X

FOR c = 0 , L−1 DO BEGIN
Mean X [∗ ,∗ , c ] = FLOAT( t o t a l (X[∗ ,∗ , c ] ) ) /FLOAT(N∗N)

ENDFOR

X bar = X − Mean X

; r eo rde r X bar in to a vector
X bar = reform (X bar , n e lements ( X bar [∗ ,∗ , 0 ] ) , L)

; compute covar iance
M = (1 . 0/FLOAT( N elements ( X bar [ ∗ , 0 ] ) ) ) ∗ ( X bar)##TRANSPOSE( X bar )
M inv = l a i n v e r t (M, s t a tu s=status , / double )
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IF ( s t a tu s EQ 0) THEN s0=s0+1 l
IF ( s t a tu s EQ 1) THEN s1=s1+1 l
IF ( s t a tu s EQ 2) THEN s2=s2+1 l

endelse

IF NOT mat ch f i l t e r THEN BEGIN
temp b = X bar##S ; anomaly de t e c to r ve r s i on

ENDIF ELSE BEGIN
IF iw THEN temp b = b−avg or ig image [ 0 , 0 ,∗ ]
IF NOT iw THEN temp b = b−Mean X [ 0 , 0 ,∗ ]

endelse

; compute r
r [ i , j ] = ( (TRANSPOSE( temp b)##M inv##X bar##S)ˆ2) $

/((1 .0 −1.0/FLOAT(N∗N)∗TRANSPOSE( X bar##S)##M inv##(X bar##S ) ) $
∗(TRANSPOSE( temp b)##M inv##temp b ) )

ENDFOR
ENDFOR

print , ’Good Inv e r s i on s : ’ , s0
print , ’No So lut i on Inv e r s i on s : ’ , s1
print , ’Bad Approximation Inve r s i on s : ’ , s2

IF ( in memory ) THEN $
mem res = r $

ELSE $
writeu , unit , r

! e r r o r = 0
t roub l e : IF ( ! e r r o r NE 0) THEN $

ENVI IO ERROR, ’RX Proces s ing ’ , un i t = unit
FREE LUN, uni t

IF ( ! e r r o r EQ 0) THEN BEGIN
de s c r i p = ’RX Proces s ing ’
IF ( in memory ) THEN $
ENVI ENTER DATA, mem res , d e s c r i p=descr ip , $

x s t a r t=xs t a r t+dims [ 1 ] , y s t a r t=ys t a r t+dims [ 3 ] , $
r f i d=r f i d $

ELSE $
ENVI SETUP HEAD, fname=out name , ns=ns , n l=nl , nb=1, $
data type=4, i n t e r l e a v e =0, x s t a r t=xs t a r t+dims [ 1 ] , $
y s t a r t=ys t a r t+dims [ 3 ] , /write , /open , r f i d=r f i d , $
de s c r i p=de s c r i p

ENDIF

ENVI REPORT INIT , base=rbase , / f i n i s h
end

pro RX handler , ev

WIDGET CONTROL, ev . id , ge t uva lue=uvalue

IF ( uvalue EQ ’ r x hand l e r ’ ) THEN BEGIN
ENVI SELECT, t i t l e=’RX Input F i l e ’ , f i d=f id , dims=dims , pos=pos

IF ( f i d EQ −1) THEN RETURN

; Build ENVI widget window
base = WIDGET AUTO BASE( t i t l e =’RX Parameters ’ )
sb = WIDGET BASE( base , /column , / frame )
sb1 = WIDGET BASE( sb , /row )
sb2 = WIDGET BASE( sb , /row )
mw = WIDGET MENU( sb1 , prompt = ’Use Image Wide Covariance ? ’ , $

l i s t =[ ’No ’ , ’ Yes ’ ] , / exc l , d e f a u l t p t r =0, $
rows=0, uvalue=’ iw ’ , / auto )

mw1 = WIDGET MENU( sb2 , prompt = ’Use As Matched F i l t e r ? ’ , $
l i s t =[ ’No ’ , ’ Yes ’ ] , / exc l , d e f a u l t p t r =0, $
rows=0, uvalue=’ use match ’ , / auto )

sb = WIDGET BASE( base , /column , / frame )
sb1 = WIDGET BASE( sb , /row )
wp = WIDGET PARAM( sb1 , prompt=’ Kernel s i z e (NxN) −− N = ’ , $

dt=2, xs=0, uvalue=’N ’ , d e f au l t = 15 , /auto )
sb2 = WIDGET BASE( sb , /row )
wp1 = WIDGET PARAM( sb2 , prompt=’ Spa t i a l extent o f t a r g e t ( SxS ) −− S = ’ , $
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dt=2, xs=0, uvalue=’S ’ , d e f au l t = 3 , /auto )
sb = WIDGET BASE( base , /column , / frame )
ofw = WIDGET OUTfm( sb , func=’ env i out check ’ , uvalue = ’ out f ’ , / auto )

r e s u l t = auto wid mng ( base )
IF ( r e s u l t . accept EQ 0) THEN RETURN
iw = r e s u l t . iw
N = r e s u l t .N
S = r e s u l t . S

IF r e s u l t . use match THEN BEGIN
ENVI SELECT, t i t l e=’RX Input ENVI Spec t ra l Library ’ , $

f i l e t y p e =4, f i d=f idb , dims=dimsb , pos=posb

IF ( f i db EQ −1) THEN RETURN
ENDIF

;N must be an odd i n t e g e r
IF (N MOD 2) NE 1 THEN BEGIN

mstr = ’N must be an odd i n t e g e r . ’
ENVI ERROR, mstr , /warning
RETURN

ENDIF

; S must be odd i n t e g e r
IF (S MOD 2) EQ 0 THEN BEGIN

mstr = ’S must be odd . ’
ENVI ERROR, mstr , /warning
RETURN

ENDIF

; S must be l e s s than N
IF (S gt N) THEN BEGIN

mstr = ’S must l e s s than N. ’
ENVI ERROR, mstr , /warning
RETURN

ENDIF

IF r e s u l t . use match THEN BEGIN
b = TRANSPOSE(ENVI GET DATA( f i d=f idb , dims=dimsb , pos=pos ) )
rx do i t , f i d=f id , dims=dims , pos=pos , N=f i x (N) , $

S=f i x (S ) , b=b , IMAGE WIDE=iw , out name=r e s u l t . out f . name , $
in memory=r e s u l t . out f . in memory

ENDIF ELSE BEGIN
rx do i t , f i d=f id , dims=dims , pos=pos , N=f i x (N) , $

S=f i x (S ) , IMAGE WIDE=iw , out name=r e s u l t . out f . name , $
in memory=r e s u l t . out f . in memory

endelse
ENDIF

end
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TreePlanter Code

PRO TreePlanter , x s c a l e=xsca le , y s c a l e=ysca le , $
xo r i g i n=xor ig in , y o r i g i n=yor ig in , $
x l o ca t i on=xlocat ion , y l o ca t i on=ylocat ion , $
z l o c a t i o n=z loca t i on , output f i l ename=outputf i lename , $
pathname=pathname , s c a l e s t r i n g=s c a l e s t r i n g , he ight=he ight

IF not KEYWORD SET( x s ca l e ) THEN x s ca l e = .2
IF not KEYWORD SET( y s ca l e ) THEN y s ca l e = .2
IF not KEYWORD SET( xo r i g i n ) THEN xo r i g i n = 608
IF not KEYWORD SET( yo r i g i n ) THEN yo r i g i n = 769
IF not KEYWORD SET( x l o ca t i on ) THEN x l o ca t i on = 108.2
IF not KEYWORD SET( y l o ca t i on ) THEN y l o ca t i on = 79.1
IF not KEYWORD SET( z l o c a t i o n ) THEN z l o c a t i o n = 159.0
IF not KEYWORD SET( output f i l ename ) THEN $

output f i l ename = ”DIRSIG”
IF not KEYWORD SET(pathname ) THEN pathname = $

”/ d i r s /home/ d i r s i g /microscene /gdb/”

; s c a l e s t r i n g = x and y s c a l e to ad jus t t r e e s i z e proper ly $
− Format example : ” . 6 , . 6”

; image must be a g ray s ca l e or indexed co l o r image
t r e e l o c a t i o n s imag e = r ev e r s e (READ IMAGE(DIALOG PICKFILE $

(FILTER = [ ’ ∗ . t i f ’ ] ) ) , 2 )

sz = SIZE( t r e e l o c a t i on s image , /dim)

; tree numbers = INTARR( sz [ 0 ] , sz [ 1 ] )

t r e e s = WHERE( t r e e l o c a t i o n s imag e NE 255)

openw , lun , STRCOMPRESS(STRTRIM( s t r i n g ( output f i l ename +”.odb”) $
, 2 ) ) , / get lun , width=1000

PRINTF, lun , ”OBJECT {”
PRINTF, lun , ” ” + STRCOMPRESS(STRTRIM( s t r i n g ( $

”GDB FILENAME = ” , pathname ) , 2 ) )
PRINTF, lun , ” UNITS = METERS”
PRINTF, lun , ” INSTANCES {”

t r e e c o o rd s = f l t a r r (2 )

FOR i =0, N ELEMENTS( t r e e s )−1 DO BEGIN
xval = t r e e s [ i ] mod sz [ 0 ]
yval = sz [ 1 ] − 1 − t r e e s [ i ] / sz [ 0 ]
t r e e c o o rd s [ 0 ] = x l o ca t i on + ( xval − xo r i g i n )∗ x s ca l e

162
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t r e e c o o rd s [ 1 ] = y l o ca t i on + ( yo r i g i n − yval )∗ y s ca l e

s t r = STRCOMPRESS(STRTRIM( s t r i n g (”#” , i +1, ” : x = ” , $
xval , ” y = ” , yval ) , 2 ) )

PRINTF, lun , ” ” + s t r

s t r = STRCOMPRESS(STRTRIM( s t r i n g (”INFO = ” , t r e e c o o rd s [ 0 ] , $
” , ” , t r e e c o o rd s [ 1 ] , ” , ” , z l o ca t i on , ” , ” , s c a l e s t r i n g , $
” , ” , he ight+(randomu( seed ) − . 5 )∗ . 1 , ” , 0 , 0 , ” , $
f i x ( randomu( seed )∗360 ) ) , 2 ) )

PRINTF, lun , ” ” + s t r

ENDFOR

PRINTF, lun , ” }”
PRINTF, lun , ”}”
FREE LUN, lun

END


