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ABSTRACT 

 The analysis and quantitative measurement of image texture is a complex and 
intriguing problem that has recently received a considerable amount of attention from the 
diverse fields of computer graphics, human vision, biomedical imaging, computer science, 
and remote sensing.  In particular, textural feature quantification and extraction are crucial 
tasks for each of these disciplines, and as such numerous techniques have been developed in 
order to effectively segment or classify images based on textures, as well as for synthesizing 
textures.  However, validation and performance analysis of these texture characterization 
models has been largely qualitative in nature based on conducting visual inspections of 
synthetic textures in order to judge the degree of similarity to the original sample texture 
imagery. 
 In this work, four fundamentally different texture modeling algorithms have been 
implemented as necessary into the Digital Imaging and Remote Sensing Synthetic Image 
Generation (DIRSIG) model.  Two of the models tested are variants of a statistical Z-Score 
selection model, while the remaining two involve a texture synthesis and a spectral end-
member fractional abundance map approach, respectively.  A detailed validation and 
comparative performance analysis of each model was then carried out on several texturally 
significant regions of two counterpart real and synthetic DIRSIG images which contain 
differing spatial and spectral resolutions.  The quantitative assessment of each model utilized 
a set of four performance metrics that were derived from spatial Gray Level Co-occurrence 
Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, mean filter 
(MF) spatial metrics, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) 
metric which permits the simultaneous measurement of spatial and spectral texture.  These 
performance measures in combination attempt to determine which texture characterization 
model best captures the correct statistical and radiometric attributes of the corresponding 
real image textures in both the spatial and spectral domains. The motivation for this work is 
to refine our understanding of the complexities of texture phenomena so that an optimal 
texture characterization model that can accurately account for these complexities can be 
eventually implemented into a synthetic image generation (SIG) model.  Further, conclusions 
will be drawn regarding which of the existing texture models achieve realistic levels of spatial 
and spectral clutter, thereby permitting more effective and robust testing of hyperspectral 
algorithms in synthetic imagery.   
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1.  Introduction 

 Texture has become one of the most important yet astoundingly complex properties 

of digital images over the past twenty-five years.  This is evidenced by its wide variety of 

applications, ranging from the fields of computer vision and graphics for texture synthesis, 

analysis and characterization, to the biomedical community for cellular microtexture analysis, 

to the remote sensing and image processing community for image classification, feature 

extraction, target detection, and synthetic image generation (SIG) models.  While texture is 

indeed an intuitive concept, it nonetheless has an elusive formal definition; in fact, there is 

no single universally accepted definition of the term “texture.”  Instead, it seems to depend 

heavily on the particular application, such as those listed above.   

 For example, even in the broadest sense, a definition of texture as either a surface or 

an image property has not been adequately formulated, so even in our everyday language, 

one would likely be challenged to describe the meaning of texture.  Webster’s dictionary 

defines texture in two contexts as “a distinctive, complex, underlying pattern or structure” 

and “the quality of a surface of woven material” [Webster’s, 1986].  Clearly these are 

referring to texture as a physical surface property.  In terms of remote sensing applications, it 

can be said that image texture describes the structure of the variation in brightness within an 

object of interest [Schott, 1997], or at larger scales, between objects of interest (i.e., transition 

regions).  These textures often arise from variations in target reflectance, since most targets 

are composed of heterogeneous mixtures of several materials from a family of spectral 

reflectance curves.  Further affecting the appearance of image texture is topographic effects 

such as sun-target angles and variations in insolation (shadowing). 

 In the texture synthesis literature, the concept of image texture tends to stray from 

material spectral properties, since synthesis models are concerned with mathematically 

modeling texture as a random process, where the goal is to produce synthetic textures that 

appear to have been generated from the same underlying process [De Bonet & Viola, 1998].  

This leads to the concept of “visual texture” which has been defined as “a set of repeating 

structural elements subject to randomness in location, size, color, and orientation” 
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[Simoncelli and Portilla, 1998] or “the visual effect which is produced by a spatial 

distribution of tonal variations over relatively small areas” [Baraldi and Parmiggiani, 1995].  

Essentially, textures are viewed in this field as structures composed of a large number of 

more or less ordered similar elements or patterns, characterized by primitives and placement 

rules, where if the primitives contain a high level of gray-level variation in a small region, it is 

known as a microtexture [Ganesan and Bhattacharyya, 1995].  Most texture synthesis models 

are concerned with modeling such microtextures, usually only in a single band or in RGB 

space.  Only recently have there been efforts to produce multispectral or hyperspectral 

texture synthesis models, and some variants of these models will be among those tested in 

this work.    

 The above discussion serves as a preliminary illustration of the complexity and 

challenges of texture characterization.  For instance, if we cannot adequately describe texture 

even in terms of our own vocabulary, then how does one suppose that we can train a 

computer to quantify or even produce it?  Further, while most texture synthesis algorithms 

aim to produce textures that are perceptually similar to the human eye, a major problem lies 

in the fact that the mechanism of the human visual system (HVS) for texture discrimination 

is not very well understood.  However, producing realistic and visually similar synthetic 

texture is only the first challenge.  There is an additional need for a robust, quantitative 

method of measuring how well synthetic textures are represented in relation to their truth 

counterparts.  Unfortunately, there has not been much work performed exclusively on this 

aspect other than the use of human subjects to judge whether real and synthetic textures are 

perceptually similar, which roughly equates to the mere matching of first-order statistics, 

which do not solely suffice for adequate texture description [Van de Wouver et al., 1999, 

Simoncelli & Portilla, 1998].  Measurement and quantification of texture is a challenging task 

in itself, not to mention the difficulties in establishing mathematically how well a synthetic 

texture is represented compared to a real image. 

 In this work, four different texture characterization models (described in the 

following sections) will be implemented as necessary into the Digital Imaging and Remote 
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Sensing Synthetic Image Generation (DIRSIG) model, and subsequently tested on several 

regions of two synthetic images and compared with their truth image counterparts.  The 

models to be tested cover traditional and ad hoc statistical z-score based methods already 

available in DIRSIG, as well as a texture synthesis statistical model, and an approach which 

utilizes end-member fractional abundance maps to create synthetic texture.  Each of the 

models will require variable implementation efforts, since some models currently reside 

within DIRSIG capabilities, while others have never been used in the DIRSIG environment.  

This comparative performance analysis will require the use of quantitative methods to 

determine how well each model characterizes texture within a given material type, as well as 

at transition regions between material types, in both spatial and spectral dimensions.  Much 

of the testing methodology is derived from classification literature based on the use of Gray 

Level Co-Occurrence Matrices (GLCMs), since this method has consistently been shown to 

achieve the best results for discriminative power between texture features.  

 This research attempts to indicate how well we currently understand how to model 

texture in synthetic imagery, and more importantly determine how to improve synthetic 

texture in DIRSIG imagery.  The importance of modeling texture that is both visually and 

statistically accurate cannot be overstated.  For instance, when dealing with spectrally similar 

materials in classification situations, textures often become crucial criteria for class 

discrimination.  Also, since textures are a fundamental component of human recognition of 

real-world targets, realistic looking synthetic targets are essential, especially for analyst 

training situations.  Lastly, since many multi/hyperspectral algorithms seek to exploit spatial 

and spectral patterns simultaneously, it is of paramount importance that fidelity in both 

dimensions is preserved in the synthetic image generation process.  To illustrate this 

importance, consider a scene in which the mean brightness levels of two image regions 

representing samples of forest and water respectively are identical for a certain spectral band.  

If the spatial texture is not well characterized such that these two materials cannot be 

differentiated, then classification algorithms run on the SIG image will likely fail, while target 

detection algorithms will produce an unacceptable false alarm rate.  On the other hand, if the 
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background clutter is unrealistically benign, overly optimistic estimates of detection 

performance may result.  Hence the necessity of characterizing textures correctly in a 

mathematical and statistical sense, both spatially and spectrally.  One of the most powerful 

advantages offered through the use of synthetic imagery is the ability to test hyperspectral 

algorithms with great flexibility.  But in order to reap the benefits of synthetic imagery for 

algorithm testing and development, realistic levels of spatial and spectral clutter must be 

achieved so that we can reliably estimate how these algorithms will perform on real-world 

imagery.  One must keep in mind that the purpose of mathematically modeling texture (or 

any phenomenon for that matter), is not to simplify the problem, but rather to be able to 

understand and include in the model the very complexities that make texture such a 

challenging problem. 
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2.  Work Statement 

 The following section details the specific objectives of this research: 

1. Incorporate and/or implement four different texture modeling algorithms (as 

necessary) into the DIRSIG environment.  The four texture characterization models to be 

tested in this research are: 

 a. The Single-Bandpass (SBP) Z-Score Selection Model; 

 b. The Multiple-Bandpass (MBP) Z-Score Selection Model; 

 c. A Statistical Texture Synthesis (TS) Model; and 

 d. A Fraction Map (FM) Texture Characterization Model. 

2. Construct DIRSIG synthetic imagery using each of the four texture models.  These 

simulated scenes will be rendered at differing spatial and spectral resolutions in order to 

more robustly test the texture models.  The real imagery sets to be used for DIRSIG scene 

construction are: 

a. Kodak CitiPix imagery with GSD of 0.45 m, and spectral coverage of 400 – 

700 nm and; 

b. Hyperspectral Digital Imagery Collection Experiment Atmospheric and 

Radiation Measurement (HYDICE ARM) imagery with GSD of 1.7375 m and 

spectral coverage of 400 nm – 2,500 nm. 

3. Application of a series of four texture performance metrics on all of the resultant 

DIRSIG imagery.  The following performance metrics will in combination assess how well 

both spatial and spectral texture is characterized in the DIRSIG scenes as compared with the 

corresponding real imagery: 

 a. Mean Filter (MF) Spatial Metric; 

 b. Gray-Level Co-Occurrence Matrix (GLCM) Spatial Metric; 

 c. Signal-to-Clutter Ratio (SCR) Spectral Metric and; 

 d. Spectral Co-Occurrence Matrix (SCM) combined spatial-spectral metric. 
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4. Conduct a quantitative comparative performance analysis of all four texture models 

by analyzing the results of the four performance metrics.  A qualitative visual analysis will 

also be included.  The assessment of each model will focus on: 

 a. Which models perform better overall; 

 b. Why some models perform better or worse than others, including how each 

of the models can be improved; 

 c. How we can improve our understanding of texture phenomena and how to 

model statistically and radiometrically correct synthetic image texture; 

 d. If model performance depends on different types of texture, and if certain 

models perform better for homogeneous (within-material class) or transition 

(between material class) textures; 

 e. If model performance depends on the spatial or spectral resolution at which 

the texture is being modeled and; 

 f. How the models perform in terms of fidelity in both the spatial and spectral 

domains. 

  

  

 

 

 

 

 

 

 



 7

3.  Background and Literature Review 

 This section will detail several theoretical aspects of this research.  First, some 

background theory on texture phenomena, analysis, and quantification is presented as a 

review of the prominent methods relevant to this work.  Next, an introductory discussion on 

the general design of DIRSIG, as well as the texture characterization models currently 

available for use in DIRSIG are described.  Some results of previous work with analysis of 

these texture models are also discussed.  Thereafter, a brief literature review of the basic 

theory and evolution of several ad hoc texture synthesis algorithms is introduced, leading to 

a more detailed overview of Tyrrell’s S/P, Quilting, and Spectral Expansion texture synthesis 

models that will be tested in this research.  Lastly, a theoretical description of an end-

member Fraction Map (FM) approach to texture characterization is presented.   

 

3.1  Image Texture Theory 

 As mentioned in Section 1, there are many existing definitions of texture, and its 

interpretation depends on the particular application.  Despite this controversy in attempting 

to provide both qualitative and quantitative meanings to texture, all disciplines seem to agree 

on two aspects: first, that there is indeed a significant variation between nearby pixels with 

respect to intensity levels observed in digital images, and secondly that texture is a 

homogeneous property at some spatial scale larger than the resolution of the image. 

 Since texture is a familiar, intuitive, and naturally occurring phenomenon in images, it 

has been an active field of study dating back to early studies of textural perception and 

discrimination [Julesz, 1962].  The Julesz conjecture focused on the measure of perceptual 

closeness of texture images, relying on the assumption that the HVS preattentively 

distinguishes between textures with different first- and second-order probability 

distributions.  As such, this work was the foundation for much more extensive research on 

texture synthesis models which have evolved significantly in their ability to capture both 

stochastic and ordered textures, and accordingly have grown with respect to mathematical 

and computational complexity.  Meanwhile, pioneering work by Haralick [1973, 1979] took a 
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different approach to quantifying texture through both statistical and structural methods, 

from which most modern literature on texture-based feature extraction, classification, and 

measurement was derived.  Over the years, numerous variants of texture analysis and 

quantification were spawned, ranging from Gray Level Co-Occurrence Matrices (GLCMs), 

texture vectors [Berger, 1998], texture spectra [Wang, 1990], and texture metrics based in the 

frequency domain [Stromberg & Farr, 1986].  Many ad hoc techniques were later developed 

for more effective and computationally efficient classification methods that utilized spatial 

texture features.  One method that has shown great resilience and consistently excellent 

results is the GLCM approach, and this will be the main focus of section 3.1.2 on texture 

quantification since it is most applicable to the work reported here.  First, however, we 

present an introduction to the terminology used to describe some of the prominent types of 

naturally-occurring textures that are often used as sample templates in order to synthesize 

textures.   

 

 3.1.1  Origin, Types, and Descriptions of Texture 

 A review of the semantics involved with describing different types of textures will be 

useful in several capacities of this work.  For instance, when applying any of the texture 

performance metrics to use in the quantitative assessment of its characterization in a 

synthetic image, one must consider the type of texture that is present in order to determine 

the parameters to use in its measurement.  This is the case in particular for GLCM texture 

measurements.  Also, the quantification of how well a texture synthesis model performs 

often depends on the type of texture being modeled.  As we will see in section 3.3.3 on 

texture synthesis models, fundamentally different texture models tend to reproduce certain 

texture types better than others.  Therefore, some examples of texture types will be 

introduced here so that the reader is familiar with the terminology. 

 As mentioned previously, the phenomenon of textures in an image are due in large 

part to the variability in spectral reflectance of different material types, as well as shadowing 

and topographic effects.  These instances tend to refer to variability within single material 
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classes.  However, at larger scales textures are often the result of mixtures of different 

materials, whether areal, aggregate, or intimate with respect to mixture properties.  Figure 1 

shows an example of each of these three classes of material mixtures for a 50% mix of sand 

and clay.   

 

 

 

 

 

 

 

 

 

Figure 1: Illustration of the areal, aggregate, and intimate types of material mixtures often 
observed in digital images. 

 

In this work, texture analysis will be performed for both single-material class 

“homogeneous” textures (such as the above aggregate and intimate material mixtures), as 

well as for transition regions between material classes (such as the areal mixture) in both real 

and synthetic images.  An entire taxonomy of different texture types has evolved within the 

literature based on their visual appearance in both natural and texture images.  A popular 

collection of sample texture images that is consistently cited especially in the texture 

synthesis and visual texture literature is the Brodatz texture database [Brodatz, 1966], which 

is featured on several academic websites.  This collection is considered to be one of the most 

complete representations of texture types in existence.  Although the emphasis within this 

database is heavier on monochrome (and some RGB) microtextures that would be more 

applicable in biomedical cellular imaging, there are nonetheless many textures that are 

applicable to remote sensing imagery.  There are also other more recently developed 

databases with more interesting RGB textures, such as the Visual Texture (VisTex) database 
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created at MIT with the intention of providing a large set of high quality textures for 

computer vision applications.  The goal of VisTex is to provide texture images that are 

representative of real world conditions, and while VisTex can serve as a replacement for 

traditional texture collections, it also includes examples of many non-traditional textures.  As 

mentioned, most texture synthesis models, including the S/P and Quilting models [Tyrrell, 

2002] to be tested in this work, have extensively used these sample texture images to test 

their models and validate the results. 

 The first and most basic level of texture nomenclature is that which simply applies 

semantic meaning to its appearance, and refers to the observable physical properties of the 

texture.  Some typical examples are natural, artificial, stochastic, directional, grainy, coarse, 

periodic, pseudo-periodic, aperiodic, extended, regular, homogeneous, and mixture.  Some 

textures are adequately described by one or more of these descriptors.  These adjectives are 

clearly descriptive in nature and not at all mathematical, but they do offer the advantage of 

matching our intuition.  One must also keep in mind that visual descriptions of texture such 

as these depend on the resolution of the texture image.  For example, heterogeneous 

textures can appear very homogeneous at larger scales.  Some VisTex examples are shown in 

Figures 2 (a) - (k), while traditional Brodatz binary textures are shown in Figures 3 (a) – (d).  

These latter figures show the results of a texture synthesis-by-analysis technique used by 

Jacovitti et al [1998], with the smaller sample binary texture random fields on the left and 

their synthetic realizations on the right.  One will also find sample Brodatz textures and 

some preliminary texture synthesis results using S/P and Quilting models in Figures 29-33. 
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Figure 2 (a): Periodic, coarse texture. 

 

 
Figure 2 (b): Grainy texture. 

 

 
Figure 2 (c): Coarse, structural texture. 
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Figure 2 (d): Directional, aperiodic texture. 

 

 
Figure 2 (e): Pseudo-Periodic texture. 

 

 
Figure 2 (f): Stochastic texture. 
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Figure 2 (g): Natural texture. 

 

 
Figure 2 (h): Pseudo-Periodic, structural texture. 

 

 
Figure 2 (i): Aperiodic texture. 
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Figure 2 (j): Mixed texture. 

 

 
Figure 2 (k): Stochastic, mixed texture. 
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Figure 3(a) – (d): Sample binary texture images and their corresponding synthesis-by-analysis 
results.  The sample textures are (from top to bottom) directional, grainy, coarse, and near-

regular). 
 

The subjectivity in describing these textures in this manner is evident, and often this 

qualitative nomenclature depends on the interpretation of the observer. 

 There are also more concise definitions of texture types that refer to the detailed 

content of the texture.  This second level of texture nomenclature is still mostly descriptive, 

but it is often used to subdivide semantically similar texture types.  Haralick [1979] first 

introduced this terminology based on the concept of texture being composed of two basic 

dimensions.  The first dimension is concerned with tonal primitives or local properties, while 

the second dimension is a description of the spatial dependence or interaction between the 

primitives.  He postulated that texture is described by the number and types of its primitives 

and their spatial organization or layout.  Being dissatisfied with adjective-based texture 

description, he first attempted to map semantic meaning into precise properties of tonal 

primitives and their spatial distribution properties.  He also introduced texture and tone as 

independent concepts.  For example, when a small image patch has little variation of tonal 

primitives, the dominant property of that area is tone; whereas if the patch has wide 

variation of tonal primitives, the dominant property is texture. 
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 Among the many semi-quantitative second-level texture descriptors, there are four 

key terms that are relevant to this work, which serve to differentiate fine versus coarse 

textures, as well as weak versus strong textures.  A fine texture results when the spatial 

pattern in the tonal primitives is random and the gray tone variation between primitives is 

wide, and these are generally characterized by smaller primitives and higher spatial 

frequencies.  On the other hand, as the spatial pattern becomes more definite and the tonal 

regions involve larger primitives with lower spatial frequencies, a coarse texture results.   

 Weak textures are those which have little spatial interaction between primitives and 

can be described and/or differentiated by determining the frequency at which various 

primitives occur in some local neighborhood.  Strong textures are defined as those in which 

the primitives are somewhat regular with nonrandom spatial interactions.  These are 

described by the frequency of co-occurrence of primitive pairs in a specified spatial 

relationship.   

 Note that these texture primitives may be as simple as single pixel gray levels, or they 

may consist of simple patterns from which more complicated ones can be built (this latter 

interpretation is commonly used in computer vision and texture synthesis fields, and may 

also refer to this basic texture unit as a “texture element” or “texel”).  There are numerous 

published methods for defining the primitives and their spatial relationships, but this is far 

beyond the scope of this work.  The texture types and descriptors introduced above provide 

the foundation for much more quantitative texture measurement and analysis which are 

presented in the next subsection.  

 

3.1.2  Texture Measurement, Analysis, and Quantification 

 In the literature, there are three main ways that textures are used in imaging 

applications.  These are: 

 a. To segment an image based on textures; 

 b. To classify a segmented image by using texture features either exclusively 

 or as supplemental info to spectral content; and 
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 c. To produce descriptions in order to synthesize textures. 

 In addition, there are three common texture analysis methods that are used for each 

of these tasks.  These are structural, spectral, and statistical approaches.  These methods can also 

be thought of as the third level of texture nomenclature in the form of mathematical texture 

descriptors, since they each have their own quantifiable measure of texture features largely 

derived from the second level descriptors.  Since this research will focus on more of a 

statistical method of texture quantification, this approach will be the main focus of this 

section, while the other methods will merely be briefly introduced.  Also, all three of these 

basic approaches to texture contain numerous variants of mathematical methods for 

quantifying and analyzing textures.  A description of these methods is well beyond the scope 

of this paper, since only the methods pursued in this research will be reviewed. 

 Structural approaches to descriptions and models of texture are based on the view 

that textures are made up of primitives which appear in near regular repetitive spatial 

patterns.  In order to describe the particular texture, a primitive must be defined with a 

prescribed placement rule.  This effectively defines a “grammar” for the way that the pattern 

of the texture produces structure.  This methodology forms the basis of much texture 

synthesis work, and tends to be used in tandem with statistical models in most texture 

synthesis-by-analysis research (see Section 3.3.3).  An image of a brick wall is a prime 

example suited to this approach (see Figure 4). 

 

 
 

Figure 4: VisTex sample texture image well-suited for structural approach to texture 
description. 
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 An alternative method is to use Fourier spectrum analysis in order to provide 

information on texture frequency (eg. low or high energy along a particular radius) and its 

orientation (eg. low or high energy along a particular angle).  This method is most 

advantageous for periodic textures or for extracting edge features, but is not always effective 

with other texture types such as those introduced above which are important in remote 

sensing imagery. 

 Since textures often tend to be random in nature, but with certain consistent 

properties, a very effective method for describing and quantifying textures is through their 

statistical properties.  At its most fundamental level, this would involve measurements using 

the image histogram and computing the moments of intensity such as mean, variance, skew, 

and kurtosis.  Of course, these measures alone do not consider the position of pixels, and 

only provides information as to the coarseness of the texture.  The aim of the statistical 

approach is to characterize the stochastic properties of the spatial distribution of gray levels 

in an image.  As such, it became apparent that there was a need to obtain a simultaneous 

parametric measure of spatial relationships between pixel gray levels.  This motivation is 

what led to Haralick’s development of the Gray Level Co-Occurrence Matrix (GLCM).  

Although the GLCM method of texture measurement is sometimes considered to be a 

purely statistical approach, it can also be viewed as a combined statistical-structural approach 

to texture description due to its ability to parametrically account for pixel gray-level spatial 

arrangements. 

 The GLCM approach rapidly became a prominent tool for applications such as 

texture feature extraction, image segmentation, image classification [Yang & Hung, 2002; 

Wikantika et al., 2000], and even texture analysis and synthesis [Lohmann, 1995].  All of 

these methods have found great success with the GLCM tool compared with the 

performance of other methods.  In fact, Lohmann found that while the structural approach 

describes spatial relationships between larger primitives, such as “blobs” or “dots”, the 

statistical method offers the advantage of producing spatial relationship measures between 

individual pixels.  As such, statistical measures such as the GLCM tend to work ideally for 
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finer textures, which are the prominent texture features observed in remote sensing satellite 

and aerial imagery.  Although there are numerous more mathematically complex statistical 

methods of texture segmentation and description methods, such as Markov Random Field 

models [Cross & Jain, 1983], textural energy filters [Laws, 1985], and fractal-based 

approaches [Keller & Chen, 1989], comparative studies have demonstrated the power of the 

GLCM approach as the most consistent performer among texture quantification tools over a 

broad range of texture types.  There have also been several ad hoc methods which attempt 

to improve the computational efficiency of the GLCM method when applied image wide for 

classification, such as linked lists [Clausi and Jernigan, 1998] and hybrid structures [Clausi 

and Zhao, 2002], however these extensions of the GLCM will not be discussed here since 

the GLCM will be used in its traditional form for this work.  The reason for adopting the 

conventional method is because increased-efficiency algorithms tend to sacrifice information 

for computational speed or improved sorting and data storage usually through quantization 

of pixel gray levels to reduce dimensionality of the analysis.  In this research, the proposed 

GLCM analysis will not be image wide, and will be over smaller subimage regions likely 

consisting of a small portion of the possible dynamic range of digital images.  The following 

section will detail the basic theory behind GLCMs and subsequently describe the GLCM-

derived statistics used in the literature for texture feature discrimination and/or 

quantification. 

 

  3.1.2.1  The GLCM Approach to Texture 

 As mentioned, the GLCM approach is, in its simplest form, a statistical method to 

capture the spatial structure of an image in a given bandpass by statistically sampling the way 

that certain gray levels occur in relation to other gray levels. In Haralick’s GLCM method, 

the probability density function (PDF) of various gray levels is computed at different 

directions (α ) with different distances (d) between the gray levels, and is represented in the 

form of matrices.  The technique involves first finding the probability of co-occurrence 

between two gray levels i and j at a given orientation and distance, for all possible co-



 20

occurring pairs in an image window.  The GLCM stores these probabilities and is thus 

dimensioned to the number of gray levels available in the window.  The values may be either 

in integer form, or they may be normalized by the number of gray levels in the window to 

form a true PDF so that the entries only take on values between 0 and 1.  The next step is to 

calculate the texture features by applying selected statistics to the resulting GLCM.  Several 

of these GLCM-derived statistics known as texture features are discussed later.  For most 

image segmentation applications, these texture features are assumed to belong to the center 

pixel of the window.  Also, for most textural property description considerations, distances 

of one pixel and angles of 0, 45, 90, and 135 degrees are used.  For example, the (d = 1,α  = 

0)-pixel pairs are horizontally adjacent, the (d = 1,α  = 90)-pixel pairs are vertically adjacent, 

the (d = 1, α  = 45)-pixel pairs are right-diagonal neighbors, and the (d = 1, α  = 135)-pixel 

pairs are left-diagonal neighbors.  If we let m denote the number of gray levels in the 

window, then the (d,α ) co-occurrence matrix C is an (m x m) matrix, where an entry cij of C 

denotes the number of pairs of pixels separated by distance d at angleα , which have gray 

values i and j.  Note that a convention of ( )yx ∆∆ ,  is also sometimes used. 

 Under this convention, the entries cij of a C(i, j, 1, 0) GLCM record the number of 

horizontal co-occurrences of gray values i and j, while that for a C(i, j, 1, 90) GLCM record 

the number of their vertical co-occurrences, and so forth.  Lohmann also contends that in 

most cases, GLCMs are used in small neighborhoods of s x s pixels, where typically 5 < s < 

15 for the purpose of analyzing textures.  The following example of the computation of 

GLCMs will be sufficiently demonstrative that we can avoid the cumbersome mathematical 

notation involved with a theoretical definition in set notation. 

 Consider Figure 5(a), which represents a 4 x 4 subimage with four gray levels, 

ranging from 0 to 3.  The general form of the GLCM is depicted in Figure 5(b), which 

describes which entries are placed into the matrix, in its un-normalized form. 
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Figure 5(a): 4 x 4 subimage for GLCM computation example. 

 

 

 0 1 2 3 

0 #(0,0) #(0,1) #(0,2) #(0,3)

1 #(1,0) #(1,1) #(1,2) #(1,3)

2 #(2,0) #(2,1) #(2,2) #(2,3)

3 #(3,0) #(3,1) #(3,2) #(3,3)

 

Figure 5(b): General form of GLCM. 

The corresponding spatial co-occurrence calculations for d = 1 and angles of 0, 45, 90, and 

135 degrees are as follows: 
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Haralick went on to define 14 texture features derived from GLCMs, which are 

essentially statistical measures, some of which are correlated to other measures, and some 

being better texture measures than others.  Much of the literature has been devoted to 

narrowing down these features into manageable sizes, so that just a few measures in 

combination optimally capture the spatial structure of the texture through their statistics [eg. 

Zucker et al, 1980].  The original fourteen features, which can be categorized into four 

different classes [Gotlieb & Kreyszig, 1990], are as follows: 

 a. Visual Textural Characteristics:  Energy/Angular Second 

 Moment/Uniformity/Homogeneity (f1), Contrast (f2), and Correlation (f3);  

 b. Statistics-Based:  Variance (f4), Inverse Difference Moment (f5), Sum 

 Average (f6), Sum Variance (f7), and Difference Variance (f10); 

 c. Information Theory- Based:  Sum Entropy (f8), Entropy (f9), and 

 Difference Entropy (f10); and 

 d. Information Measures of Correlation (IMC):  IMC I (f12), IMC II (f13), 

 and Maximal Correlation Coefficient (f14).    

There have since been several other variants in addition to the above list, but they are 

beyond the scope of this work, and unnecessary to introduce due to their redundancy.  Six of 

these fourteen GLCM-derived statistical parameters are arguably considered to be the most 

relevant for best texture discrimination results: Energy (also known as Angular Second 

Moment or Uniformity or Homogeneity), Contrast, Variance, Correlation, Entropy, and 

Inverse Difference Moment.  These statistical parameters are listed in mathematical form 

below [Haralick, 1973, 1979; Rosenblum, Salvaggio, & Schott, 1990].  As introduced earlier, 

m is the number of gray levels in the region under consideration, while C(i,j) is the (i,j)th 

entry of the un-normalized GLCM and c(i,j) is the (i,j)th entry of the normalized GLCM, so 

that we have c(i,j) = (C(i,j)/m) and 
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which leads to the formal definitions of these eight main features: 
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where xµ , yµ , xσ , and yσ  are the means and standard deviations of the rows and columns 

of C, respectively.  ENVI also produces the statistic of Dissimilarity, which is quite similar to 

Contrast, except |i – j| replaces the (i – j)2 term.  Gotlieb & Kreyszig evaluated the 

performance of texture classification using these six features (f1, f2, f3, f4, f5, and f9) in 
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different combinations, and found that usually combinations of three to four features 

produced the best results for texture discrimination.  Some other authors [Hauta-Kasari et 

al., 1999] also contend that, as long as there are a low number of gray levels in a small image 

window, then a sparse GLCM can itself be used as a feature for adequate texture description.  

Baraldi and Parmiggiani [1995] also attempted to investigate the statistical meaning of the 

same six features by associating a textural interpretation to each of them.  This work is 

important because it serves to relate theoretical meaning to the visual appearance of each 

parameter.  This can theoretically allow for the use of certain GLCM-related statistical 

measures to advertently capture certain types of scene-dependent texture in both real and 

synthetic imagery.  What this also means is that it is theoretically possible to compare these 

measures from corresponding real and synthetic textures in order to determine which real 

texture features are not captured in the synthetic image (or vice versa in the case that the 

synthetic image contains artifact textures not present in the original texture) based on 

mismatch of these statistics.  Thus, these features can be used to gauge similarity between 

real and synthetic textures.  This obvious power and flexibility of using the GLCM approach 

to texture feature quantification and discrimination is the main reason why this method has 

been selected for this work.  While some authors cite the GLCM approach as cumbersome 

for image-wide classification considerations due to the large number of parameters and 

computations involved, it is the very availability of these parameters that makes this method 

adaptive and flexible enough to employ as a detailed texture feature descriptor for comparing 

real and synthetic textures in local neighborhoods, and for the comparative performance 

analysis of texture modeling algorithms.  One final note is that this method has the potential 

to be extended to describe spectral information, as will be described in Section 4. 

 

3.2  DIRSIG Introduction 

 This section is intended to acquaint the reader with the fundamental design and 

functions of DIRSIG, which will prepare the reader for a theoretical discussion of the 

traditional texture characterization methods that are used to produce realistic-looking scenes, 
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which will be presented in section 3.3.  This will include the original Single-Bandpass (SBP) 

Z-Score Selection model, as well as the augmented model which uses Multiple Bandpass 

(MBP) regions in the selection of spectral reflectance curves for a given pixel.  First, however 

a brief discussion ensues on the purpose, motivation, and challenges involved in producing 

synthetic imagery. 

 

 3.2.1  Why Use Synthetic Image Generation Models? 

Synthetic image generation (SIG) has quickly become a popular and powerful tool in the 

remote sensing community and beyond. While this process of modeling the world in order 

to mimic real images demands a detailed knowledge of the entire image chain, it also serves 

as one of the most useful tools in obtaining such an understanding by helping to visualize 

each aspect of the image chain.  If properly implemented, synthetic image generation offers 

the advantage of merging the radiometric, spatial, and spectral aspects of the image chain in 

a way that can very closely resemble the actual process, which would be otherwise 

impossible to gain such an accurate systems perspective.  It must be kept in mind however, 

that as valuable as these tools are, they will only perform as well as our understanding of the 

process that we are studying, and accordingly the SIG models should be treated as 

approximations of the actual process, and not as completely accurate representations.   

 There are many advantages of synthetic image generation in its applications to the 

study of imaging systems and image analysis.  The most attractive aspect is that synthetic 

images can be produced over a range of spatial, spectral, and radiometric performance 

specifications, providing versatility in constructing realistic scenes.  In particular, synthetic 

images are commonly used for the testing and development of algorithms on scenes 

containing a target of interest over widely varying scenarios, scene components, and 

acquisition conditions.  Further, since SIG models are often highly modularized and are 

composed of submodels, the identification of weak links in the chain is thus made easier by 

isolating each major component of the imaging chain and analyzing the level of accuracy and 

fidelity produced at each step.  As such, these models can provide diagnoses as to whether 
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simplifying assumptions made along the chain were valid, or if certain aspects have been 

completely overlooked. 

 As detailed by Schott [1997], synthetic images are often flat in appearance relative to 

real imagery and they tend to lack exquisite detail often because of the inability to reproduce 

the complexities of naturally varying texture in many material classes (such as with the case 

of DIRSIG, as described in the next section).  However, it is not always the case of a lack of 

understanding or the inability to adequately describe detailed textural features in synthetic 

images that produces this flat appearance; in fact, this flatness can be considered satisfactory 

as long as the crucial elements of the scene under study are well represented and if the 

statistics and radiometry are deemed reasonably close to what is observed in real imagery.  In 

applications where more structural detail is required, one frequently encounters the “textural 

dilemma” of synthetic image generation, which essentially is a trade-off between the 

immense time and effort involved in building models to great levels of detail and the 

negative impact this has on unpalatably long simulation run times, which often deems the 

extra effort unjustifiable.  Despite this dilemma, it has always been highly desirable to be able 

to construct synthetic images with detailed textural features so as to attain optimal quality 

and fidelity, while having the ability to quantify how well it represents a real scene.  It is also 

appealing to be able to determine whether improved textural feature representations by way 

of the use of different texture characterization models (of varying sophistication) in synthetic 

images will have a significant impact on the overall image chain.  This is ultimately what will 

be investigated in this study. 

 

 3.2.2  The Modular Design of DIRSIG  

 The Digital Imaging and Remote Sensing Image Generation (DIRSIG) Model is an 

integrated collection of independent first principles based submodels which work in 

conjunction to produce radiance field images with high radiometric fidelity in the 0.3 – 20 

micron region of the electromagnetic spectrum.  It is comprised of five main submodels 

which are designed to allow for a high degree of flexibility and interchangeability within the 
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DIRSIG model, as well as to diagnose and improve the model by isolating and analyzing 

each submodel.  The submodels are as follows: 

a. Scene Geometry Submodel:  This provides the mechanism through which 

collections of three-dimensional targets are incorporated into the synthetic 

image generation environment, usually in the form of three-dimensional wire 

frame models.  They are generated either in an AutoCad environment or by 

use of a computer graphics software package called Rhinoceros, after which 

the object facets are attributed and placed into the synthetic scene using a 

locally produced program called Bulldozer.  This submodel also establishes 

the relative positions of the sensor, targets, and other aspects of the scene, as 

pictured in Figure 6; 

 
Figure 6: The relative geometry of the sensor and the scene being constructed is 

established using the scene geometry submodel in DIRSIG (illustrations courtesy of 
the DIRSIG homepage). 

 

b. Ray Tracing Submodel:  Searches the database produced by the scene 

geometry submodel in order to generate lists of objects and other facets that 

intersect rays corresponding to a given pixel.  For a given pixel, the facets 

encountered may be either opaque or obscuring transmissive bodies such as 

clouds or plumes.  The DIRSIG ray tracer utilizes a non-uniform spatial 

subdivision method called an octree, as illustrated in Figure 7. 
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Figure 7: The ray tracing submodel determines which object facets contribute to the radiance 

for a given pixel. 
 

 The ray tracer also establishes solar shadowing histories for temperature 

 predictions and background contributions for  radiometry computations at 

 diffuse surfaces. This in turn is used by the radiometry submodel for radiance 

 computations; 

c. Thermal Submodel:  Uses a forward chaining differential model called 

THERM in order to account for thermal material properties, meteorological 

histories, and solar shadow histories.  The output imagery of this submodel is 

highly characteristic of that seen in actual MWIR and LWIR imagery; 

d. Radiometry Submodel:  Makes use of the MODTRAN radiation propagation 

model for exoatmospheric irradiance, emitted and scattered radiances, and 

path transmission predictions at varying resolutions.  This submodel utilizes 

bidirectional reflectance data, accounts for specular and diffuse background 

contributions, as well as emission and path length dependent extinction for 

thermally transmissive objects; and 

e. Sensor Submodel:  This submodel is able to account for detailed descriptions 

of the type of sensor being modeled, as well as its spectral characteristics, and 

thus directs the computations made for each pixel in the aforementioned 
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submodels.  The user is able to design several types of imaging focal planes, 

including line, pushbroom, and whiskbroom scanner geometries.  This ties all 

other submodel outputs together in that it completes the computation by 

convolving the radiometric output with the sensor’s modeled spectral 

response.  For example, DIRSIG imagery with the use of a line scanner 

geometry is able to replicate the geometric distortions characteristic of the 

sensor type, such as the tangent effects seen in Figure 8. 

 

 
Figure 8: Illustration of geometric distortion in DIRSIG imagery through the use of the 

sensor submodel. 
 

This subsection has merely served as an introduction to the modular design of DIRSIG, 

including details of the five main submodels.  There is an immense amount of theory behind 

the generation of DIRSIG scenes, and the reader is encouraged to refer to the latest version 

of the DIRSIG Users’ Manual for supplemental information [Brown, 2001].  Nonetheless, 

the information presented above is sufficient to understand the basic process of DIRSIG 

scene generation at a rudimentary level.  The important aspects to be covered here are those 

relating to the current methodology involved in characterizing texture in DIRSIG imagery, 
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which is detailed in the proceeding section.  An example of the relative appearance of real 

and DIRSIG imagery is shown in Figure 9.   

 
Figure 9: Example of appearance of DIRSIG imagery compared to corresponding truth 

image. 
 

 

3.3  Texture Characterization Models To Be Tested  

 This section will describe in great detail each of the four texture characterization 

models to be tested in this research.  The models presented here are as follows: 

 a. Single-Bandpass (SBP) Z-Score Selection Model; 

 b. Multiple-Bandpass (MBP) Z-Score Selection Model; 

 c. Texture Synthesis Models and; 

 d. Fraction Map (FM) Texture Model. 

 

3.3.1  Single-Bandpass (SBP) Z_Score Selection Model 

 Before describing the algorithm used to apply texture to DIRSIG scenes, a brief 

discussion about some of the preceding steps in the scene building and rendering process are 

in order here.  As mentioned above, objects to be placed in DIRSIG scenes are usually 

created using a graphics software package called Rhinoceros [Becker, 1999], after which the 

objects’ facets are attributed in a locally produced program named Bulldozer.  The baseline 

process described in the above section on DIRSIG’s modular design generates bland images 
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in that brightness variation within a material would only be introduced by solar irradiance 

variations due to slope, shadowing effects, and other BRDF-induced variations.  An example 

of a DIRSIG image before and after traditional texture application is shown in Figure 10.   

 

  
Figure 10: Sample DIRSIG image before (left) and after (right) texture characterization. 

 

 The spatial variability in the spectral character both within an object and at the 

boundaries between objects is a fundamentally important feature used for most 

multi/hyperspectral exploitation algorithms.  In order for DIRSIG to be used to support the 

development and evaluation of these algorithms, it must adequately represent the spatial-

spectral structure within and at the transition between material types.  In order to do so, a 

two-tiered tool for incorporation of texture, material transition, and aggregate mixtures of 

materials has been developed [Schott et al, 1995, Schott & Brown, 1998].  The first tier 

accounts for material type variations within a facet or group of facets, and the second tier 

considers variations within a material type associated with reflectance/emissivity/ 

transmissivity variations. 

 The initial steps of the first tier involves the generation of a material map made up of 

an image material identification look-up table (LUT).  This material map is usually generated 
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with the terrain classifier method that produces the optimal separability between material 

types.  For the images rendered in this research, it was found that the best material classes 

distinction was achieved using the Gaussian Maximum Likelihood (GML) classifier.  During 

this stage, only one spectral reflectance curve is chosen for a given material class in the 

synthetic image, since it is the second tier of the model will later apply texture to each pixel 

spectrally.  Before that, the transition regions between material types are modeled more 

closely.  The user assigns to a group of facets a high level object identification, after which 

the material map LUT is projected onto these high level facets such that any point of a given 

facet that is “hit” by a ray can also be assigned to a lower level material type, such as grass, 

soil, or asphalt.  This is done by determining which material type is projected onto that point 

from the high level material map associated with that object.  This effectively produces 

transition regions that can possess various spatial mixtures of materials such as asphalt, 

gravel, soil, and vegetation.  This turns out to be a convenient method of generating spatial 

mixtures of materials without having to reconstruct them on a pixel-by-pixel basis.  This first 

tier is illustrated in the material map portion of Figure 11. 
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Figure 11: Illustration of tiered approach to texture characterization in DIRSIG. 

 

 The second tier of the model includes the use of a texture map.  This is a vital aspect 

of texture characterization since it introduces the realistic-looking variability within material 

types by introducing both spatial and spectral structure.  For each classified region 

representing a material class in the material map, a texture map is applied.  The texture map 

or “texture image” is essentially an image of how the brightness varies for a material type in 

one spectral band.  It can either be extracted from real data or from some form of texture 

model.  The use of real data is more common for DIRSIG applications, and this data can be 

either extracted directly from the real image counterpart to the scene being constructed, 

from an alternate scene with similar material class content, or from several sample images of 

material types to be rendered in the scene being constructed.  These single-bandpass texture 
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maps are used in conjunction with ground truth spectral reflectance curves in order to apply 

spatial and spectral structure on a per-pixel basis.  The importance of accurate and robust 

spectral reflectance measurements cannot be overstated, since the spectra heavily depend on 

the atmospheric conditions and even the time of day that the measurements are taken.  If it 

is not practical to have ground truth data collected at the exact site of the scene at the same 

time of day that the scene was imaged, then application of these spectral reflectance curves 

can potentially cause discrepancies between textures observed in real and synthetic images.  

One way to safeguard against such effects is to ensure that the true variability in the target 

reflectance is captured in the measurements, otherwise undesirable quantization and 

“blotchy” textures can result.  This phenomenon will be demonstrated in Section 5. 

 This second tier of the model is the heart of the approach, as it aims to preserve the 

spatial/spectral correlation of materials in the synthetic image by using a texture image from 

a single bandpass (hence the name of the model) to drive the selection of a reflectance curve 

from a large family of curves, usually obtained via field measurement data as described 

above, or from actual imagery of the specific land cover class.  The method applies texture 

to each pixel spectrally, and the curve selected using the Single- Bandpass (SBP) Z-score algorithm 

approach uses the selected spectral reflectance curve for that pixel across all bandpasses. 

 The ultimate goal of this texture characterization model is to somehow link the gray 

value in the sample texture image to a given spectral curve from a large database of possible 

curves.  The mechanism used to do so with this approach utilizes the statistical relationship 

between the variance of the pixels in the texture image and the variance of the reflectance 

curves in the texture image bandpass, and the sequence is repeated for each value in the first-

tier material map.  The reflectance curves in the database are ranked so as to match the z-

score of the selected reflectance curve in the texture image bandpass with the z-score of the 

texture image itself using the following algorithm: 

 First, the mean spectral reflectance of all of the curves for the specific land cover 

class is computed: 
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Each of the N curves is then ranked using a z-score measure as follows: 
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During the scene generation process, for a given pixel in the texture image, the z-score is 

also computed using the mean and standard deviation of the entire texture image (see Figure 

12): 
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Figure 12: Mean and standard deviation are computed from sample texture images in 

DIRSIG.  The z-score for the pixel at position (i,j) is then determined from the texture 
image frequency distribution. 

 

The process of using the single-bandpass z-score ranking method is illustrated in Figure 13. 

 
Figure 13: Single-Bandpass (SBP) Z-Score ranking method for texture characterization. 
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 As alluded to earlier, a practical issue arises in that a sufficiently large family of 

reflectance curves is often not available for this technique, which may result in an unrealistic 

looking, overly-quantized and non-continuous appearance to the synthetic image, especially 

at transition regions.  In answer to this, Schott et al. [1995] detail a method to produce an 

arbitrary number of spectral curves from a smaller set of curves that contain the desired 

multivariate statistics for the given land cover class.  This technique, which has now evolved 

into a utility within DIRSIG called “expand emissivity file”, essentially consists of the 

generation of uniformly distributed random samples in a spectrally non-correlated space 

through the use of eigenvalues of the variables in this space, to define the standard deviation 

for each sample set vector.  These vectors are then back-transformed into a spectrally 

correlated space where they exhibit the same spectral characteristics as the basis set of 

vectors (curves).  For further details on this technique, see [Schott et al., 1995].   

 An example of a similar application occurred in the modeling of transition regions 

for the DIRSIG Megascene, which is a current synthetic image effort that will be described 

in more detail in Section 4.  Figure 14 shows some interim results obtained by accounting for 

the lack of a sufficient number of reflectance curves to represent true variability by using a 

similar technique as that described above.  Figure 14(a) shows the original truth image, while 

Figure 14(b) shows the original basis set of curves and the corresponding preliminary result 

of texture characterization.  By expanding the set of curves to account for transition regions 

and thus for more variability, one can obtain much more realistic-looking results, even in the 

preliminary stages of texture characterization as shown here (Figure 14(c)). 
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Figure 14a: Original CitiPix truth image. 

 

 
Figure 14b: Preliminary texture characterization without the use of transition curves. 
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Figure 14c: Preliminary texture characterization with an expanded database of transition 

curves. 
 

 One obvious drawback of the SBP Z-Score Selection technique is that it uses only 

the bandpass of the texture image to match the spectral reflectance curves for the synthetic 

texture.  This means that the curve with the closest z-score in the specified bandpass is used 

to describe the entire reflectance spectrum for that pixel, over the entire range of 

wavelengths in the scene.  Clearly, problems will arise in the case that the chosen reflectance 

curve to represent that pixel departs significantly from the reflectance for the pixel in other 

non-correlated bandpasses.  This SBP Z-Score texture characterization model will be the 

first model to be tested in this work.  The next subsection will review some of the previous 

work that has been done in assessing this method, which led to the logical extension of it by 

employing multiple bandpasses to drive the selection of the spectral reflectance curve for 

each pixel. 



 40

 3.3.2  Multiple-Bandpass (MBP) Z-Score Selection Model 

  3.3.2.1  Theory 

 The concept behind the MBP Z-Score texture model is largely based on the SBP 

model discussed above.  As its name suggests, the difference between the models lies in its 

mechanism in choosing spectral reflectance curves for a given pixel in the DIRSIG image.  

This model is designed to allow the user to select multiple (and ideally uncorrelated) 

bandpasses so that the spectral character of the pixel can be represented with more fidelity in 

all spectral bands.  This obviously possesses a theoretical advantage over the SBP model, 

since it will be less likely that a reflectance curve will be chosen that exhibits significantly 

different global behavior than that in the bandpasses from which the curve has been 

selected.  Figure 15 illustrates how a composite weighted z-score is calculated using texture 

images in three bandpasses.  Ideally, the additional bandpasses used should be selected such 

that they are not well-correlated with the original single bandpass used in the SBP model. 

 

 
Figure 15: The MBP Texture Model uses multiple texture image bandpasses in order to 
calculate a composite weighted z-score for each curve (column list, right) and compares 

these scores to each of the texture image pixel composite z-scores.  The curve with the z-
score value closest to that of each pixel in the texture image is selected to characterize the 

spectral behavior of that pixel for the entire spectral extent of the image. 
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 This model can be implemented in DIRSIG by making some relatively simple 

changes in the input DIRSIG configuration files for each scene to be rendered.  A simple 

illustrative example follows, which will demonstrate how the algorithm works: 

Consider the case of using three bandpasses to drive the selection of each pixel’s reflectance 

curve.  This means that there are three input monochrome texture images (named 

Tex1.pgm, Tex2.pgm, and Tex3.pgm) to be used for this process, in corresponding bands 

B1, B2, and B3, as illustrated in Figure 16.  

 
Figure 16: Three texture images are used as input texture maps with the MBP model. 

As with the SBP model, the z-scores are then computed for each of the texture images: 
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For the sake of this example, say that these values are zt1 = 5, zt2 = 6, and zt3 = 8.  Although 

not a realistic situation, consider the case that we have three spectral reflectance curves to 

choose from for a given pixel, as illustrated in Figure 17. 

 

Tex1.pgm Tex2.pgm Tex3.pgm 
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Figure 17: Three sample reflectance curves to choose from in MBP model.  Z-Scores are 

calculated from the mean and standard deviation of all 3 curves in each specified bandpass in 
the same manner as with the SBP model. 

 
For each specified bandpass, the z-scores are calculated using the mean and standard 

deviation of all 3 curves in the given bandpass.  As with the SBP case, these z-scores will be 

compared against the z-score values computed above for each of the texture images.  In this 

example, assume that in bandpass B1 we have found that the z-scores for each of the 3 

curves are equal, i.e., z11 = 8, z21 = 8, and z31 = 8.  In B2, we have z12 = 9, z22 = 7, and z32 = 

7, while for B3 it is found that z13 = 6, z23 = 7, and z33 = 8.  The deciding factor for choosing 

the optimal curve in the MBP model is the error metric, which computes the absolute 

difference between the z-score values for the texture image and reflectance curves in each 

bandpass.  For B1, we find that: 

 
=11ε |8 – 5| = 3 
=21ε |8 – 5| = 3 

=31ε |8 – 5| = 3 

B1 B2 B3 

R 

λ

3

2

1
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This means that if we were using just one bandpass to select the reflectance curve, then we 

can theoretically choose any curve of the three, since the error metrics are equal.  When we 

look at B2 as well, we obtain: 

=12ε |8 – 5| + |9 – 6| = 6 

=22ε |8 – 5| + |7 – 6| = 4 

=32ε |8 – 5| + |7 – 6| = 4 

At this point then, using only B1 and B2, either curve 2 or 3 should be chosen.  If we add 

the third bandpass B3, then we find: 

=13ε |8 – 5| + |9 – 6| + |8 – 6| = 8  

=23ε |8 – 5| + |7 – 6| + |7 – 8| = 5  

=33ε |8 – 5| + |7 – 6| + |8 – 8| = 4 

Thus the MBP model will choose curve 3 for the pixel under consideration in this example.  

Note the improved accuracy of curve selection due to the use of multiple bandpasses.  For 

example, in the SBP case, if only B1 was used, then curves 1 or 2 could also have been 

chosen, which clearly do not exhibit the same spectral character as curve 3 in B3.  In this 

example, more accuracy was attainable by using additional texture bandpasses, and this 

model can theoretically be extended to any number of bandpasses.  However, if one were to 

go to the extreme of using all bandpasses of the input real image (or alternate texture image), 

then it is possible to over-constrain the problem, especially in hyperspectral imagery.  The 

algorithm would likely become confused, and many z-score values will be equal.  This would 

deem the extra effort of using potentially hundreds of spectral bandpasses unprofitable.  

However, the theoretical advantage offered by the MBP model over the SBP model is 

undeniable, and the results presented in Section 5 will further illustrate this improvement. 

 

  3.3.2.2  Previous Results  

 Burtner (2001) incorporated a modified algorithm that uses more than a single 

bandpass in the selection of the reflectance curve for a given pixel in the synthetic image.  
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This research focused on the effect of using both two and three bandpasses, and compared 

the results with the traditional SBP method introduced above.  This work also involved 

increasing the number of spectral reflectance curves using the “expand emissivity file” utility 

in DIRSIG.  This study was only conducted for small samples of grass texture from two 

different types of imagery: a Modular Imaging Spectrometer Instrument (MISI) image and a 

Hyperspectral Digital Imagery Collection Experiment (HYDICE) image.  The analysis of the 

generated spatial and spectral texture was largely qualitative in nature.  It was concluded that 

the use of additional reflectance curves slightly improved the results of the synthetic image in 

most cases, and that the fidelity of the synthetic image seemed to improve with the addition 

of the second bandpass, while adding a third bandpass was inconsistent in that it did not 

always significantly improve the results over that obtained with using two bandpasses.  The 

extent of quantitative analysis performed in this research involved the use of the Principal 

Components Analysis (PCA) utility available in ENVI.  Of course, this is a rudimentary 

measure of fidelity in that it only measures the amount of information contained in the 

synthetic image as compared with the real image, since the PCA fundamental assumption is 

that information content equates with variability.  It is not surprising that Burtner found that 

there was a significant gap between the real and synthetic data, since there was only a finite 

sample of reflectance curves in the database, and because grass is a highly variable material 

that would require extensive measurements to capture its true inherent variability.  This 

research indicated the requirement for a robust, quantitative measure for texture modeling 

performance analysis, and that other material types and transition regions need to be studied 

further in terms of their spatial and spectral fidelity, possibly with the use of different texture 

characterization models. 

 Kennedy (2002) used a somewhat more quantitative method in assessing both the 

SBP and MBP texture models.  The quality of the synthetic images was measured using a 

Composite RMS Error Metric (CREM) that provided a single-valued average performance 

measure of the model in question.  The metric used for the SBP model simply computes the 

difference in pixel values between the original texture image and the synthetic image: 
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where nxm is the size in pixels of the subimage under study, x1 is the pixel value for the 

texture image, and x2 is the corresponding pixel value in the synthetic image.  Similarly, the 

composite RMS error metric computes the average number of digital counts that each pixel 

in the synthetic image varies from the corresponding pixel in the original image, in the 

following manner: 
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where y1, y2, z1, and z2 are accordingly similar pixel values in the second and third texture 

bands. 

 Kennedy expanded on Burtner’s results by testing the traditional SBP method, as 

well as both the two- and three-bandpass models on sample materials of grass, dirt, asphalt, 

and gravel.  The results show that texture characterization using multiple bands with an 

expanded database of spectral curves does show improved texture in SIG images.  However, 

the results were material-specific.  For example, the number of spectral curves in the 

database required for adequate representation of materials such as asphalt and gravel was 

considerably less than that required for grass, since grass tends to have more inherent 

variability and a more complex spectral shape and thus a larger dynamic range.  As such, the 

addition of a third texture band did not significantly improve results for the asphalt and 

gravel material types, while it was found that the RMS error metric declined more 

significantly when the third band was added for grass, indicating better results as long as the 

number of spectral curves in the database for grass was accordingly larger.  This requirement 

of having a larger number of reflectance curves is owing to the fact that, when rendering in 

multiple bands, one is often faced with the problem of undersampling, especially if the 

material type exhibits a wide dynamic range.  In particular, it was found that if N curves are 

required for SBP rendering, then in order to capture the variability and to add significant, 
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independent information for MBP rendering (using P bands), the number of required 

spectral reflectance curves would be NP.    

 This augmented MBP texture characterization technique will be the second method 

to be tested in this research.  Also, the CREM was the inspiration for the first of the four 

texture performance metrics used in this research, the Mean Filter (MF) spatial metric.  

Neither Burtner nor Kennedy focused on measures of spatial and spectral structure and 

correlation when assessing the quality of DIRSIG synthetic textures, nor did either of them 

extend their analyses out to 2,500 nm.  In this research, the combination of simple and 

complex spatial and spectral performance metrics will be used to investigate the behavior of 

the SBP and MBP models out to such spectral extents, and at different spatial and spectral 

resolutions in a much more quantitative and thorough manner.  More details on this aspect 

are presented in Section 4. 

 

3.3.3  Texture Synthesis Models 

 As mentioned previously, most of the work to be found in the texture synthesis 

literature is concerned with monochrome or RGB texture synthesis techniques.  Since the 

multi/hyperspectral texture synthesis models to be tested in this work are extensions of 

these simpler models, a brief literature review on the basic concepts and previous work with 

various types of texture synthesis models will be presented here.  The mathematical 

framework for each of the numerous models is too involved to be discussed in detail in this 

section; therefore the emphasis will be on the Simoncelli & Portilla (S/P) technique and the 

Image Quilting method of texture synthesis, which will be two of the synthesis methods 

under investigation in this research.  A third ad-hoc reincarnation of these methods termed 

the Spectral Expansion texture synthesis model will also be discussed and tested in this 

work.  There are also concluding remarks in this section regarding the sparse typical methods 

of performance evaluation that have traditionally been used for most texture synthesis 

models, and the resulting requirement for sound, quantitative measures of model 

performance. 
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  3.3.3.1  Literature Review 

 Texture synthesis is often described as a realization of a random process defined 

over an ensemble of all possible texture images.  Although each realization is indeed unique, 

the ultimate goal is to have the synthetic texture appear as if it were generated from the same 

underlying process as the counterpart real texture.  In general, most texture synthesis models 

aim to model texture as a stationary random process, since the spatial correlation in textures 

is typically local in nature; that is, the assumption is that all of the relevant spatial 

information for a given texture is contained locally.  This is an advantageous property that 

most monochrome texture synthesis models employ in order to create much larger regions 

of texture from sample textures of small size, which leads to the popular application of 

extrapolating exemplar textures to cover much larger spatial extents, based on the statistics 

of the monochrome sample texture.   

 An additional complexity is introduced when modeling color and 

multi/hyperspectral textures, since both the spatial and spectral components’ correlation 

must be captured simultaneously.  As mentioned, monochrome texture is adequately 

assumed to be stationary and ergodic (where sample averages approach ensemble averages 

for large sample sizes) in nature, which allows for the use of a limited amount of spatial 

texture to be used to reliably estimate a model from which an infinite spatial extent of 

texture can be generated (see Figure 18).  Unfortunately, spectral correlation cannot be 

modeled as a stationary random process, since each spectral band in a multispectral texture 

image contains global information that must be preserved by the model.  Correlation across 

bands is not relative, and thus each spectral band pair may well have a distinct dependency.  

Also, since the spectra of an image have a finite extent, there are no repeating dependencies 

from which to generate an infinite amount of information through a causal model (see 

Figure 19).  It is clear then, that simply extending monochrome techniques would introduce 

an enormous computational burden, and thus it was found that a technique was required 
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that could exploit the power of monochrome texture synthesis by extending the information 

in a single band over the entire spectral image cube. 

 

 

  

 

 

 

 

 

 

 

 

Figure 18: Because the outlined areas exhibit similar spatial correlation that tends to repeat 
within the image, it is intuitively clear that spatial texture can be modeled as a stationary 

ergodic process. 
 

 
Figure 19: These two pairs of spectral bands demonstrate that spectral correlation cannot be 

modeled as a stationary ergodic process. 
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 There are many fundamentally different models that have been used throughout the 

texture synthesis literature that have achieved varying measures of success depending on the 

type of texture being modeled.  What follows is a brief account of some of the most popular 

methods that have emerged over the past twenty years and some of the strengths and 

weaknesses of these models, leading up to the methods that have been chosen for testing as 

possible texture characterization models in DIRSIG.  Although there are many specialized 

and somewhat obscure methods existing in the computer vision and graphics literature, such 

as those based on syntactic grammars [Lu & Fu, 1978], reaction-diffusion and partial 

differential equations [Witkin & Kass, 1991], and fractal-based models [Cross & Jain, 1983], 

the emphasis here will be more on the statistical models of texture synthesis. 

 Julesz (1962) pioneered the statistical characterization of textures by proposing that 

the nth order statistics (for some unspecified n) of texture pixels, when considered as 

samples of a stationary source, could suffice to partition textures into classes that are 

indistinguishable to human observers.  Since then, many models have extensively utilized 

first- and second-order statistics of pixels and/or coefficients in a fixed linear basis to 

describe and synthesize textures [Cross & Jain, 1983; Hassner & Sklansky, 1980].  Adaptive 

linear representations have also been used, which essentially adjust the basis set of vectors in 

a Gabor wavelet function representation according to the image statistics.  This can be 

performed either by tuning the appropriate 2-D Gabor filters to the dominant frequencies of 

the image [Dunn et al., 1994; Teuner et al., 1995], or in a more flexible approach employing 

adaptive filter bandwidths [Portilla et al., 1996].  It was unanimously found that mere 

second-order statistical approaches failed to capture many significant structures that occur in 

many textures. 

 Several directions for texture synthesis models then ensued, however most models 

had mutual agreement with respect to some of the formal assumptions made in order to 

formulate their respective models.  In particular, several successful models rely upon Markov 

Random Field (MRF) theory as part of the synthesis framework, and although the 

mathematical details of MRF theory are quite involved and too lengthy to reproduce here, 
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MRFs provide an illustrative theoretical view of the great complexities of statistical texture 

modeling (the reader is directed to Tyrrell [2002] for a more detailed discussion on Markov 

chains and the basics of MRF theory as it pertains to texture synthesis).  The parameters of a 

MRF are conditional probability estimates for an event based on those surrounding it, which 

means that there is no causal restriction on the nature of influence between events.  This 

makes the problem potentially overwhelming when one considers the following scenario:  

Consider a set of pixels on a 2-D grid, where the occurrence of a given pixel across the grid 

is not statistically independent from every other pixel in the grid (Figure 20).  In this case, 

the neighbors of a central pixel must provide information as to its value, and thus influences 

from pixels in all directions must be considered.  Therefore, there exists a mutual and 

simultaneous influence between an event (eg. pixel intensity level) and those surrounding it 

spatially, making it impossible to determine causality. 

 

 

 

 

 

 

 

 

Figure 20: MRFs possess dependencies from all directions simultaneously; MRF model 
parameters are conditional PDFs of xi given the occurrence of its neighbors. 

 

 To address this dilemma, many algorithms have surfaced for the purpose of 

sampling a MRF, most of which involve combinatorial solutions over the space of all n2 x n2! 

ways of determining causality over an n x n field.  Needless to say, many of these predictive 

models are immensely complex and require unpalatably long convergence times unless a 

sound and efficient resampling technique is utilized.  These methods range from pixel-by-

pixel resampling and moving average filter techniques to multiresolution steerable pyramid 
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resampling techniques [De Bonet & Viola, 1998; Heeger & Bergen, 1995].  A variant of this 

latter technique will be described in more detail in the next section, since it is the one used in 

Tyrrell’s S/P synthesis model. 

 A more recent direction that has been taken that has achieved some of the best 

results in the literature, are models using image wavelet subbands. The advantage of this 

method of multiresolution image decomposition is that these subbands have been observed 

to possess non-Gaussian PDFs with long tails, and sharp peaks at zero due to image texture 

that consists of smooth areas interspersed with occasional edges or other features.  Heeger 

and Bergen (1995) extended on the results of other work where texture was represented by 

the marginal statistics of the responses of a set of filters.  This was performed by using an 

over-complete (i.e., not orthogonal) fixed linear basis to synthesize textures by iteratively 

alternating between matching subband and pixel histograms, a method similar to projection 

onto convex sets (POCS).  While this method was effective in capturing the random features 

of several natural textures and the dominant scales and orientations, it failed to represent 

extended structural elements such as straight or curved contours and edges, as well as other 

highly regular patterns.  Another sampling technique introduced by Zhu et al. [1997] used 

Gibbs sampling to match marginal statistics with those estimated from wavelet subbands of 

the sample texture image.  These filters were chosen adaptively so as to consistently 

minimize entropy, and their results, while able to reproduce a wide variety of textures, were 

computationally expensive.  It was soon thereafter found that the set of marginal statistics of 

a fixed finite linear basis alone were often unable to capture long-range structures and 

pseudo-periodic patterns, while second-order textures tended not to be well-represented.  

An example of such a case where images with identical marginal statistics in a wavelet 

decomposition representation do not contain similar textural patterns is shown in Figure 21. 
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Figure 21: Differing textures with identical marginal statistics. 

 For this reason, recent works by Simoncelli and Portilla have proposed the additional 

use of joint statistics of wavelet coefficients, with particular emphasis on the joint histograms 

of pairs of wavelet coefficient magnitudes at adjacent spatial locations, orientations, and 

scales of an orthonormal wavelet basis.  This method proved to be effective in capturing 

structural patterns in texture, since it was able to reproduce the observed phenomenon in 

real images where features tend to produce large coefficients in local spatial neighborhoods.  

One of the keys to the success of the S/P model is that it differs from most other models in 

that while both spatial locality and stationarity are assumed, Gaussian behavior is not 

assumed, and is therefore less restrictive.  For example, this method works well on textures 

such as the classic Brodatz texture of the herringbone (Figure 21, left) which contains a set 

of locally oriented patterns arranged spatially.  One of the most recent variants of the S/P 

model is one that is capable of characterizing both structural and random aspects of textures 

in terms of a set of statistical measurements on a complex analytic wavelet representation.  

This is done by synthesizing images subject to four specific constraints via iterative 

projection onto solution sets.  The statistical constraints enforced in the S/P technique are: 

 a. The local spatial correlation of coefficients within each subband; 

 b. The local spatial correlation of coefficient magnitudes; 
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 c. The cross-correlation between coefficient magnitudes at adjacent scales 

 and all orientations; and 

 d. The first four moments of the pixel histogram. 

 More details of this synthesis-by-analysis technique are presented in the next 

subsection as it pertains to Tyrrell’s multi/hyperspectral extension of the S/P model.  The 

relatively new technique of image quilting is also discussed thereafter, followed by a 

discussion of the Spectral Expansion texture synthesis model that was derived from the S/P 

model by Tyrrell.  The Spectral Expansion model offers the most flexibility of all texture 

models presented here in terms of its potential as an incorporated texture model in the 

DIRSIG environment.  As such, the three models presented in the following sections (S/P, 

Quilting, and Spectral Expansion) were coalesced into one nominal “Texture Synthesis 

model” instead of being tested separately.  More details on how the Texture Synthesis model 

has been incorporated into DIRSIG will be presented in Section 4.2.  The above section has 

introduced the great complexity involved in the field of texture synthesis, with an 

accompanying review of recent works and the results that were obtained.  The reader is 

directed to the references cited above for more details on any specific texture synthesis 

algorithm.    
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3.3.3.2  Tyrrell’s Multi/Hyperspectral Texture Synthesis Models 

  3.3.3.2.1  The S/P Model   

 As mentioned above, the S/P method is a synthesis-by-analysis technique that 

iteratively enforces a set of statistical constraints over the output of a complex analytic filter 

bank by extracting multiresolution scale and space information from a sample monochrome 

texture.  Figure 22 shows an example of such a complex steerable filter bank.  The filters are 

typically oriented versions of a common function that form a complex Hilbert Transform 

pair.  Figures 23 and 24 show the real and imaginary parts of these filters at four 

orientations. 

 
Figure 22: Example of a complex steerable filter bank. 

 

 
Figure 23: Real part of above complex steerable filters at four orientations. 
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Figure 24: Imaginary part of above complex steerable filters at four orientations. 

The algorithm begins with a white noise image, and iteratively coerces it to converge 

into the form of the desired output synthesized texture through the above statistical 

constraints.  This method proceeds in an iterative, coarse-to-fine fashion over a variant of 

the steerable pyramid.  This resampling technique has the added efficiency that a compact 

multiresolution representation is used to analyze the sample texture, by using a set of four 

oriented complex analytic filters at each level of the pyramid so that local phase information 

can be used to detect the polarity of edges and boundary transitions.  The overall purpose of 

the steerable pyramid is to capture locally oriented structure at each scale within the 

decomposition, thereby extracting most meaningful features from the input texture image.  

An example of a steerable pyramid decomposition on the Brodatz presscloth texture image 

is shown in Figure 25.   
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Figure 25: Steerable pyramid decomposition of Brodatz presscloth texture image. 

This steerable pyramid technique contains both a synthesis side and an analysis side in order 

to identify similar neighborhoods, and ultimately to copy information from the analysis side 

to synthesize the desired texture (Figure 26). 

 

 

 

   

 

 

 

 
Figure 26: The hierarchical structure of the steerable pyramid used to identify similar 

neighborhoods.  Information from the analysis side (right) is copied in a coarse-to-fine 
fashion onto the synthesis side (left). 

 

 The input white noise image is initially split into high- and lowpass bands, as shown 

in Figure 27.  The lowpass band is then further split into a lower-frequency band and a set of 

oriented subbands.  The recursive reconstruction of a pyramid is achieved by inserting a 

copy of the shaded region of Figure 27 at the location of the lowpass branch, indicated by 
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the solid circle.  This consists of an additional lowpass operation, downsampling by a factor 

of two in both directions, and then repeating the process in a recursive fashion. 

 

 

 

 

 

 

 

Figure 27: System diagram for the steerable pyramid. 

 This merely outlines the basic structure of the S/P algorithm in its traditional form 

for monochrome texture synthesis.  For more details, see both papers by Simoncelli and 

Portilla listed in Section 8.  A summarizing diagram of this algorithm is shown in Figure 28. 

 
Figure 28: Diagram of S/P texture synthesis algorithm.  This illustrates the order of 

constraint enforcement used with this technique. 
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 Tyrrell extended the S/P model in order to generate multi/ hyperspectral synthetic 

textures.  This method works by first synthesizing texture in a single band, and then using a 

Markov Random Field (MRF) ideology to select spectral curves conditioned on a local 

context neighborhood from that band.  The key is to choose the single dominant band such 

that the spatial information is maximized over the entire image cube.  This is achieved using 

the Independent Components Analysis (ICA) transform, which is essentially the same as the 

familiar Principal Components Analysis (PCA) transform, except that it allows for spatial 

and spectral domains to be processed separately and makes use of higher-order statistics 

[Manduchi & Portilla, 1999; Liang, Simoncelli, & Lei, 2000; Tyrrell, 2002].  This is closely 

related to the statistical principles of the blind source separation problem [Cardoso, 1998] 

where independent sources are assumed to be mixed by a linear transform such as Y = MX, 

and the aim is to determine the matrix M via statistical estimation methods.  Ultimately, M is 

inverted and used to minimize the mutual information between sources by rendering them 

statistically independent.  For more on this very interesting technique, consult the above-

cited references. 

 Once the dominant band is determined, a modified version of the S/P texture 

synthesis technique synthesizes a new principal band, after which a non-parametric search is 

used to find similar neighborhoods between real “source” images and the synthetic images.  

Lastly, the remaining spectral information is copied from these neighborhoods by means of 

random sampling.  Before proceeding, some more details on the multiresolution resampling 

technique for generating spectral information is in order.  A multiresolution approach is 

convenient in that it provides a natural representation of textural features, since textures 

often consist of varying scales.  Also, this method relieves the user of having to somehow 

choose an appropriately sized spatial neighborhood for different texture types.  This offers 

the advantage of inherently increasing the probability of the synthesized texture to generalize 

well over a wide range of texture types.  Tyrrell utilized a Laplacian pyramid multiresolution 

decomposition in order to define the local context.  This model is a simple band-passed 

decomposition of an image that uses a collection of scaled difference of Gaussian (DOG) 



 59

filters.  Another advantage of Tyrell’s S/P model is that all spectral information can be 

generated in parallel, leading to a significant reduction in run time even for a large number of 

spectral bands.  The current version of Tyrrell’s S/P technique requires very few user inputs, 

and usually converges within five iterations of the code. 

 A final important note on Tyrrell’s S/P texture synthesis model is that the output of 

the model produces the exact spectral extent and spectral resolution as the input texture 

image.  Therefore, when rendering DIRSIG scenes using this texture model, we cannot 

obtain a spectral resolution that is finer than the input spectral resolution of the real image.  

This is a limitation that is encountered for both the S/P and the Quilting models of texture 

synthesis, whereas this is not a factor for the other three texture models to be tested. 

  3.3.3.2.2  The Image Quilting Model 

 The second method in Tyrrell’s texture synthesis model uses the technique of Image 

Quilting.  This is a relatively new and simple graphics based approach that literally “quilts” 

together regions of texture from a sample texture image.  This method has been presented 

both in the context of texture synthesis and texture transfer, where an object is rendered 

with a texture taken from a different object [Efros & Freeman, 2001].  This latter approach 

is more applicable to computer graphics, and thus will not be investigated here.  Tyrrell 

chose this method as an alternative to the S/P model since it handles high spectral 

dimensionality well, and because it is a relatively fast and simple technique that nonetheless 

demonstrates very good texture synthesis results.  This method draws upon the fact that, in 

the case of pixel-by-pixel resampling, it is very likely that a given pixel’s immediate neighbors 

are the best candidates for the next synthesis step.  Quilting therefore saves time by using a 

compact set of neighbors carried over at each synthesis step, known as a “quilting region” of 

which the user can specify the size.  Each new region is selected from the sample image 

based on border overlap at neighboring sites, where similar context neighborhoods between 

the sample and synthetic images must be found by efficient resampling techniques.  This 

resampling must also account for apparent discontinuities between blocks, since the initial 

placement of quilting regions will likely not match exactly over their boundaries.  As for the 
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spectral information, it can be carried along as each texture block is quilted instead of merely 

retaining single pixel values.  This is another factor that makes quilting much faster, since 

spatial and spectral information can be determined simultaneously.   

 There are many resampling methods that have been used for quilting applications, 

such as the pyramidal operations described above.  However, much simpler methods have 

been used which obtain roughly the same results.  Tyrrell has adopted two different 

resampling methods into his model.  The first method is called “alpha blending” (AB), which 

is a simple technique of literally blending the boundaries of each quilting block together.  

The main drawback of this approach is that this blending process has the potential to 

introduce anomalous spectral curves.  The other resampling method used by Tyrrell is the 

minimum boundary error cut, or simply the “minimum-cut” (MC) technique.  This is a more 

detailed procedure whereby the optimal boundary between blocks is more carefully chosen 

by expressing the boundary error as a cost function.  This cost function is defined as: 

                                                                jijiji BSC ,,, −=                                               (18) 

where C is the cost, S is the synthesis region, and B is the current block region.  The 

minimum-cut technique is analogous to the familiar single source-shortest path problem in 

which the distance from a single start node to each node in a graph structure is determined.  

Tyrrell has adopted a multi/hyperspectral variant of an algorithm that solves this problem 

called Dijkstra’s algorithm, which is presented in detail in Tyrrell [2002].  Note that for both 

of these methods, the blending or cutting is propagated over all spectral bands.    

  3.3.3.2.3  Preliminary Results 

 Some preliminary results have been obtained with both the S/P and Quilting 

techniques using Brodatz sample textures.  Note that these results were obtained by running 

Tyrrell’s raw S/P and Quilting codes on false textures, before the incorporation of Tyrrell’s 

Texture Synthesis model into DIRSIG.  The examples shown below extend 128x128-pixel 

ASCII Portable Gray Map (PGM) and Portable Pixel Map (PPM) sample textures into 

256x256-pixel synthetic textures.  Note how the quilting boundaries are visible in some 
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cases, especially in Figure 32.  The default quilting region size of 16x16 pixels was used for 

these examples. 

   
Figure 29: (left to right): Sample image (patches), AB quilting, MC quilting. 

   
Figure 30: (left to right): Sample image (presscloth), AB quilting, MC quilting. 
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Figure 31: (left to right): Sample image (trees), AB quilting, MC quilting. 

   
Figure 32: (left to right): Sample image (reptile), AB quilting, MC quilting. 

 

 

 
Figure 33: Results from Tyrrell’s S/P model for the same sample textures as Figures 29-32. 
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It is clear from these examples that the S/P model is able to handle natural textures such as 

the trees and patches much better, while the presscloth and reptile textures, which contain 

larger repeating structural textures, are not reproduced as well as in the quilting model.  

Therefore, a rather surprising preliminary result from Tyrrell’s synthesis models has been 

obtained in that, despite the simplicity of the quilting technique, it seems to achieve more 

visually accurate texture synthesis results over a broad range of textures than the more 

sophisticated S/P approach. However, these models will be tested in a much more 

quantitative manner in this work for natural textures occurring in remotely sensed images, so 

it is not wise to prematurely conclude that quilting will produce better radiometric and 

statistical results.  Further, given the preliminary discussion on the texture synthesis models 

that has been presented thus far, one might surmise that an immediate advantage of using a 

texture synthesis model as a texture characterization tool in DIRSIG, is that the 

aforementioned practical issues involved with obtaining and using large databases of 

sufficient material spectral reflectance curves (as for the SBP and MBP models) can be 

avoided and/or augmented by generating synthetic texture directly from sample texture 

images through the techniques explained above.  However, if one opts to create synthetic 

texture directly from input texture samples while foregoing the use of ground truth 

reflectance curve databases, then one requires real hyperspectral imagery (HSI) data at the 

same (or better) spectral resolution and coverage as the output image to be rendered in 

DIRSIG.  Therefore, it would be ideal to be able to use a less restrictive version of the 

texture synthesis models described above such that more flexibility is offered when 

constructing DIRSIG scenes.  For instance, a model that is capable of reading in ground 

truth spectral reflectance curves of material types present in the scene to be rendered as 

supplemental data to a few primary input texture image samples (that do not have to span 

the entire spectral range of the output DIRSIG image) would be more practical in its 

DIRSIG-implemented form.  This suggestion was made to Tyrrell, and was the motivation 

for the Spectral Expansion texture synthesis model that is presented in the following section. 
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  3.3.3.2.4  Spectral Expansion Texture Synthesis Model 

 This latest incarnation of Tyrrell’s texture synthesis models is derived from the S/P 

model ideology.  The Spectral Expansion model has the capability of taking in either a single 

or a few user-specified spectral bands from the input real texture image.  This “principal 

band (or bands)” is then used in order to create a primary synthesis band of synthetic texture 

using the S/P model described earlier.  However, the method for synthesizing the remaining 

spectral bands is quite different in this case.  Instead of using a complex spectral resampling 

technique, this model can accept spectral reflectance curves (derived either directly from the 

input real image or from ground truth measurements), and construct an output synthetic 

texture image cube by enforcing the spectral covariance statistics of the reflectance curves.  

Therefore, the output will be at the spectral resolution of the input spectra (or at the 

resolution of the input image if the entire image is used as the input spectra).  It is interesting 

to note that, due to the nature of the model, the spectral covariance statistics of the output 

synthetic texture images are guaranteed to be correct, as long as the spectral reflectance 

curves used by the model are accurate and reliable.  The details on how this texture synthesis 

model has been incorporated into DIRSIG are presented in Section 4.2. 

 

 3.3.3.3  Texture Synthesis Model Performance Evaluation 

 The problem of quantifying how well a texture model reproduces texture is very 

complex, and thus most of the literature only judges the quality of the synthesized texture 

based on perceptual closeness.  As stated earlier, this merely equates to the two images 

having the same first- and (arguably) second-order statistics if the human observer is unable 

to pre-attentively distinguish between the two.  But it has been repeatedly demonstrated that 

two images can possess the exact same first and second order statistics, as well as other 

marginal statistics, and still have largely different texture features and patterns.  In short, 

there has been no work focusing on the mathematical and radiometric correctness of 

synthetic textures in relation to their truth image counterparts, and there is definitely a need 
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for a robust, quantitative method to do so.  This is not even to mention whether spectral 

fidelity has been preserved; in fact, there is no way to rigorously test both spatial and spectral 

aspects of synthetic textures without implementing quantitative performance metrics to 

compare with corresponding real imagery.  This necessity is being addressed in this research 

for texture synthesis of remotely sensed images using the above synthesis techniques and 

others, through the use of a set of spatial and spectral textural feature statistics and similarity 

metrics to be described in detail in Section 4. 

 

3.3.4 Fraction Map (FM) Texture Characterization Model 

The fourth and final texture characterization model to be tested in this research uses 

a drastically different approach to creating spatial and spectral variability.  It is derived from 

the concept of unmixing hyperspectral imagery (HSI) through the use of end member 

selection tools to drive the production of fractional abundance maps for each end member 

in the particular scene.  There are a few well-known algorithms that will perform this task, 

such as the Pixel Purity Index (PPI) algorithm [Boardman et al., 1995], N-Finder [Winter, 

1999], and the Maximum Distance Method (MDM) [Lee, 2002], as well as other simple 

image-derived methods.   

 The chosen end-member selection tool for this research was image-derived by 

defining regions of interest (ROIs) within the ENVI processing environment. This was 

performed for both the real HYDICE ARM imagery and the CitiPix imagery, despite the 

fact that the latter is only an RGB image.  For each scene, a decision was made regarding the 

number of principal end-members to keep for the texturing process.  This was based on the 

achievement of “clean”, distinct fractional abundance maps when using the Linear Spectral 

Unmixing (LSU) tool in ENVI.  Once the principal end-members had been chosen, the final 

fractional abundance maps of each of the end-members were constructed.  Note that these 

steps are specific to the imagery being rendered here, and that any end-member selection 

tool and unmixing routine can be used to generate the fraction maps when using this texture 

model (more details of the implementation of this model are presented in Section 4.2).  
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Theoretically, a linear combination of the principal end-members in accordance with their 

respective fractional abundance maps will provide a near-complete representation of the 

original image.  This concept is illustrated in Figure 34.   

 
Figure 34: Extraction of end-member fractional abundance maps from original HSI texture 

image. 
 

Consider the simple case of only three end-members, with corresponding fraction maps F1, 

F2, and F3.  In this case, the three end-member spectra are considered as basis vectors 

representing the original image, called B1, B2, and B3.  We can then express a linear 

combination of these basis vectors, plus a residual error to be the original image R: 

                                                            eFBR ii += ∑
=

3

1i
                                                   (19) 

where the residual error accounts for the fact that only the principal end-members have been 

chosen.  This error is usually expressed as an RMS error fraction plane in most unmixing 

programs.   

 DIRSIG has been modified to have the capability to produce as many end-members 

as specified in the input fraction maps per pixel in the DIRSIG output image.  Therefore, for 

each of the images to be rendered in DIRSIG, end-member selection and fraction map 

production in reflectance space must be completed.  The input into the construction of 

Original HSI Cube of 
Texture Image  F1 

F2 

F3

End-Member Fractional 
Abundance Maps 
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fraction maps can be either the real counterpart image which is to be constructed in 

DIRSIG, or if one wishes to expand the spectral coverage in the DIRSIG image over that in 

the input image, then the sensor platform (in the DIRSIG configuration file) can be 

modified to produce output imagery at user specified spectral bandwidth and extent.  This is 

accomplished by first creating fraction maps using the input imagery that is available.  Then, 

each fraction plane is assigned a nominal reflectance spectrum that is representative of the 

spectral character of the material type.  In order to extend spectral coverage, the ground 

truth reflectance curves must exceed the coverage of the original input image.  Lastly, the 

sensor’s spectral response must be adjusted so that one can obtain the desired spectral 

extents in the output imagery.  This model differs from the SBP and MBP models in that the 

spatial and spectral variability is not derived from variability within the ground truth data for 

each material type.  Rather, variability is introduced by literally re-mixing the entire set of 

fraction maps with the nominal reflectance spectrum coupled to each respective end 

member fraction plane.  This model does not use the two-tier system of material and texture 

maps; the spatial structure is introduced by assigning each pixel with a fraction of each end 

member that has been calculated in the unmixing process, while spectral structure is 

provided by the spectrum assigned to each end member.  Figure 35 shows an example of the 

case of three principal end members (and thus three fraction maps).  For each pixel in the 

output DIRSIG image, fractions of each end member are assigned according to the fractions 

present in the multi-band fraction map image.  This can be envisioned as the superposition 

of the fractional abundance planes being applied on a pixel-by-pixel basis to the output 

DIRSIG image.  This concept is consistent with equation (19), in which a linear combination 

of the end member fraction maps produces a close approximation to the original image, 

within residual error factor e. 
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Figure 35: FM Texture Characterization Model.  On a pixel-by-pixel basis, the fraction maps 

corresponding to each end member are re-mixed in order to create spatial and spectral 
variability in the resultant DIRSIG image. 

 
 The above figure illustrates how each pixel in the output DIRSIG image is a linear 

combination of each of the constructed end member fraction maps, and the weighting of 

each end member is determined by the fractions in each plane.  It is worthy of mention at 

this point that in the DIRSIG version of the FM model, different mixing models and texture 

maps can be used for each material map region.  In fact, the user has the option of choosing 

which texture characterization model to use on a per material class basis. 

 This concludes the background theory and literature review that is necessary to be 

presented for this research.  The following chapters will discuss the experimental design and 

methodology (in Chapter 4), after which the results and analysis of the performance of each 

of the four texture models is presented in Chapter 5. 

 

 

 

Fraction Maps DIRSIG Image 

For pixel #1, superposition of B1F1, 
B2F2, and B3F3 

For pixel #1 of DIRSIG image, mixture of 
B1F1 + B2F2 + B3F3 creates texture 
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4.  Experimental Design and Methodology 

4.1 Experimental Design Overview 

 The following flowchart provides a summarized view of the experimental design to 

be followed in this research: 

 
Figure 36: Experimental Design Summary. 
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4.2 Implementation of Texture Models 

 This section details the practical issues of implementation and/or incorporation of 

the texture modeling algorithms (as necessary) into the DIRSIG environment.  Each model 

required differing degrees of achieving compatibility with DIRSIG, since some models have 

been used in the past in similar forms, while others have never been attempted for use 

within DIRSIG.  Details regarding the modifications that have been made to existing 

DIRSIG texture models are also presented. 

 4.2.1  SBP and MBP Models 

 Section 3.3.1 presented the SBP model as the default texture characterization model 

that has been used for the majority of past DIRSIG rendering efforts.  Therefore, there was 

not a requirement for the SBP model to be “incorporated” per se, since it already existed 

within its data structure.  However, two improvements were eventually made over the 

baseline model in order to overcome apparent shortcomings of the model that were 

discovered when rendering the HYDICE ARM DIRSIG imagery.  These slight 

modifications are discussed in further detail in Chapter 5, but they are worthwhile to 

mention here, since these steps have affected the incorporation process for both the SBP 

and MBP models.  The first new capability of the model is useful when the ground truth 

reflectance curves do not adequately represent the true spatial variability of materials present 

in the scene to be rendered.  A utility was written in order to create image-derived ground 

truth reflectance curves into the DIRSIG-compatible emissivity file format.  These new 

curves can be used to create more realistic spatial (and spectral) structure, since it effectively 

extracts data present in the original real scene, and enforces it into the statistics of the 

synthetic scene.  The results of using such data will be illustrated in Chapter 5.  Of course, 

this is only of limited utility since one would need to have real imagery of the same spectral 

extent as the output DIRSIG image; however, it does not necessarily have to be at the same 

spectral resolution, since DIRSIG has the capability to interpolate between wavelength values.  

The second improvement is more significant and fundamental.  It became customary over 

the past several years to extract a spectral subset of the corresponding real imagery to be 
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rendered in DIRSIG and use a single band (or multiple bands in the case of the MBP model) 

as the texture map.  The problem with this approach is more apparent when dealing with a 

scene that has a multimodal distribution.  Recall that the SBP and MBP Z-Score Selection 

algorithms are based on comparing z-scores for the texture maps and reflectance curves for 

each material class present in the first-tier material map.  Since this is performed on a per-

material-class basis, then the texture images should ideally be unimodal, or at least exhibit the 

same type of distribution as the family of reflectance curves for each material type, otherwise 

the mean and standard deviations that are calculated will skew the z-score computations for 

the texture map as compared with that of the material reflectance curves.  This concept is 

illustrated in Figure 37. 

 

Figure 37:  The histogram (right) resulting from using a single-band image as the DIRSIG 
texture map (left).  Bi- or multi-modal distributions can skew the z-score statistics that are 

integral to the SBP and MBP texture characterization models. 
 

 In order to remedy this, the concept of using “masked” texture images was initiated.  

In this case, one can be more certain that we are comparing “apples with apples” for the z-

score comparison step of the algorithm.  So for example, if the first-tier material map 

contains 8 material classes (see Figure 38), then the DIRSIG configuration file for the scene 

to be rendered will have to be modified to read in 8 separate texture maps, each representing 

a material class from the material map.  These masked texture maps can be constructed by 

applying precise masks to the single-bandpass texture image, which means that instead of 
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having just one texture map for the SBP model, there would be 8 texture maps (from the 

single bandpass) listed in the texture map section of the configuration file in this case.  For 

the MBP model, in the case that one uses three texture image bandpass regions and there are 

8 material classes present in the material map, then a series of 24 masked texture maps 

would have to be used. 

 
Figure 38: Sample Gaussian Maximum Likelihood (GML)-derived material map image for 

the HYDICE ARM data. 
 

 The option to ignore a user-specified digital count (DC) range has been implemented 

into DIRSIG so that the masked texture image (such as the one shown in Figure 39) will 

only have nonzero DC values read by DIRSIG.  Therefore, by ignoring the DC = 0 values, 

the statistics will not be skewed by the masked out regions of the texture image, and thus the 

mean and standard deviation for each texture image will be based solely on the material type 

of interest. 
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Figure 39: Example of a “masked” texture map for the plowed field region of the HYDICE 

ARM image.  Using this coupled with the “ignore DC range” parameter in the DIRSIG 
configuration file will permit unimodal distributions and more accurate statistical 

computations.  
 

 In terms of incorporation of the MBP model, it requires only some slight 

modifications to the DIRSIG configuration file over that of the SBP model.  The texture 

map section requires a list of the texture images and their corresponding bandpass regions to 

be used when comparing z-scores of the texture maps and reflectance curves for each 

material class.  As discussed in Section 3.3.2, this model has been attempted in the past 

works by Burtner (2001) and Kennedy (2002), so implementation efforts were relatively 

simple for the MBP model.  The resulting DIRSIG images for both the CitiPix and 

HYDICE ARM imagery are presented in Sections 5.1 and 5.2 respectively. 

 4.2.2  Texture Synthesis Models 

 As presented in Section 3.3.3, Tyrrell constructed C++ code initially for creating 

texture synthesis models using the S/P technique and the simpler image quilting technique.  

Although the results were impressive based on pre-attentive visual analysis, there was a 

requirement to obtain a more flexible version of these models so that the restrictive necessity 

of having HSI data at (or finer than) the desired spectral resolution of the output DIRSIG 

image could be alleviated.  The reason for wanting to avoid this situation is because we often 
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construct SIG images so that we can easily alter spectral properties such as coverage and 

resolution, and not be confined to the limits of counterpart real data that we use for 

rendering synthetic scenes.  After all, if we could only synthesize out to the extent to which 

we have real image data, then we may as well simply use the real data itself.  The revised 

model came in the form of the Spectral Expansion Texture Synthesis Model that was 

introduced in Section 3.3.3.2.4. 

 The original plan was to test the S/P and Quilting models separately, but due to the 

concerns explained above, the S/P model was replaced by the Spectral Expansion model, 

since it uses the same basic synthesis step, and they differ only in the flexibility offered by 

the latter model for creating expanded spectral coverage to generate the spectral bands of 

the synthetic texture cube.  The Quilting model was also used to generate texture for certain 

regions of both the CitiPix and HYDICE ARM DIRSIG imagery, since it is able to 

synthesize textures given smaller input texture image sizes.  Thus, both the Spectral 

Expansion and Quilting models are tested under the umbrella of the “Texture Synthesis” 

model in this research (note that, however, the Spectral Expansion model was used for most 

texturing since the utility for long-term use of the Quilting model in DIRSIG is minimal).  

Chapter 5 will describe in more detail which regions of the Texture Synthesis-derived 

DIRSIG imagery were textured with either Quilting or Spectral Expansion methods. 

 As mentioned above, there are limitations for all of the texture synthesis models in 

terms of the required size of the input texture image required to generate the output 

synthetic texture images.  The S/P and Spectral Expansion models require square input 

samples of at least 64 x 64 pixels, in increments of powers of 2 (e.g., 128 x 128, 256 x 256, 

512 x 512, etc. only), while the Quilting model requires a minimum size of 32 x 32 pixels, 

with the same dyadic requirement.  Of course, one must keep in mind that the synthesized 

textures tend to exhibit better visual and statistical fidelity when larger input samples are 

used, since more information about spatial structure can be obtained from a larger spatial 

sample, and the statistical measures used to synthesize textures are based on a more accurate 

representative sample from the real counterpart image.   
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 In order to characterize texture in DIRSIG using the Texture Synthesis models, real 

texture samples were extracted carefully from both the CitiPix and HYDICE ARM imagery.  

In some cases, it was possible to obtain samples of size 64 x 64 pixels and larger.  For these 

samples, synthetic textures could be generated immediately using the Spectral Expansion 

model.  For reasons that will be discussed shortly, it was essential to have these texture 

samples in reflectance units, since DIRSIG was to read in the synthetic texture cubes in 

“reflectance map” mode.  Thus, all pre-processing such as calibration of the original imagery 

had to be completed before these steps were taken (more pre-processing steps are presented 

in Section 4.4).  In cases for which obtaining samples of 64 x 64 pixels directly from the real 

imagery was not possible, one of two courses of action were taken.  First, for the regions to 

be tested using the Quilting model, it was ensured that the sample size was no smaller than 

32 x 32 pixels.  If this was the case, then Quilting was used to generate synthetic texture for 

that material type.  If the sample was not large enough for Quilting, then the largest possible 

sample for the material type was taken (such as for the road and trees in the HYDICE ARM 

imagery).  A utility was then used to “mirror” the texture samples so that the texture samples 

could be “grown out” to larger spatial sizes, as specified by the user.  These regions were 

expanded to the minimum size of 64 x 64 pixels so that the Spectral Expansion model could 

be employed to create texture images for these materials.  The reason that they were not 

expanded further is because the mirroring process tended to introduce repetitive artifact 

patterns that were not present in the original image, and so in order to minimize this effect, 

the smallest acceptable output size was used.  An example of such a case where these 

artifacts appeared is shown in Figure 40. 

 
Figure 40: The result of growing out an 8 x 8 region of road to 64 x 64 pixels. 
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The above example illustrates the worst case of this “artifacting” encountered in this work.  

Since the road in the HYDICE ARM image is very narrow, the smallest possible sample size 

was 8 x 8 pixels.  Unfortunately, very small portions of the bordering fields were also 

captured in this sample, which explains the repetitive darker patterns in the above figure.  

However, this was the best result obtained, even using smaller input sizes for the mirroring 

process.  The results of this anomaly are evident in section 5.2.3, where the results for the 

HYDICE ARM DIRSIG imagery using the Texture Synthesis model is presented. 

The number of synthetic texture cubes to produce for both the CitiPix and 

HYDICE ARM imagery was determined by the number of material classes present in the 

GML-generated material map for each image.  For example, the HYDICE ARM material 

map (Figure 38) has 8 material classes:  

 

 a. Plowed field; 

 b. Uncut Pasture; 

 c. Wheat; 

 d. Cut Pasture; 

 e. Trailers/Buildings; 

 f. Road;  

 g. Trees; and 

 h. Calibration Panels.   

 

For each of these classes (except for the calibration panels, which were textured using the 

SBP model so that calibration would be more precise), the best possible input texture sample 

was extracted from the real image, such that the spatial structure and variability could be 

captured in the output synthetic image.  The calibration panels were much too small to 

obtain adequate synthetic texture versions, and since calibration to reflectance units is critical 
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for this work, they were textured using the SBP model for all HYDICE ARM DIRSIG 

images. 

For the CitiPix image, 8 material classes were used (see Figure 41).  They are: 

a. Green Grass; 

b. Brown Grass; 

c. Dirt; 

d. Trees; 

e. Asphalt; 

f. Bright Rooftop; 

g. Dark Rooftop; and 

h. Baseball Dirt. 

 
Figure 41: GML-derived material map for CitiPix data. 

The reason for including material classes that do not make up significant portions of the 

image, such as baseball dirt and rooftops, is because they were used for the bright and dark 

points in the Empirical Line Method (ELM) calibration to reflectance units (more of this is 

presented in Section 4.4).  Since there were no calibration panels present in the CitiPix image 

to be rendered, in-scene material samples had to be used for ELM calibration.  In the same 

manner as with the HYDICE ARM image, input texture image samples were extracted 

directly from the CitiPix image in order to create output synthetic textures in RGB-space.  
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Again, details regarding which of the texture synthesis models were used for which material 

type are presented in Chapter 5. 

 As mentioned previously, DIRSIG was able to accept the synthetic reflectance cubes 

for both the CitiPix and HYDICE ARM imagery as long as the “maps” section of the 

DIRSIG configuration file was set to work in “reflectance map” mode instead of the more 

common “texture map” mode that is used for the SBP and MBP models (incidentally, 

DIRSIG works in “fraction map” mode for the FM model to be discussed in the next 

section).  By working in “reflectance map” mode, the expanded synthetic texture cubes are 

projected onto the material map via a look-up-table (LUT).  This LUT is inserted into the 

configuration file so that the synthetic reflectance cubes can be paired up with their 

respective material types present in the material map.  The reflectance map algorithm then 

works essentially as a “cookie-cutting” mechanism by inserting each of the synthetic texture 

reflectance maps into the output DIRSIG image, in accordance with the material map indices 

assigned to each reflectance map in the LUT.  This is illustrated in Figure 42. 
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 Figure 42 shows the simple case of 3 material classes in the material map.  The three 

indices in the material map correspond to the material types Grass 1, Asphalt, and Grass 2 as 

per the LUT in the figure.  Each synthetic texture cube is then projected onto the material 

map in order to texture the DIRSIG image.  Only the portions of the synthetic texture 

reflectance cubes that overlap with its corresponding material index are retained, which 

effectively creates texture within and between material types.  The spectral information is 

carried along in each synthetic texture cube that was created using either the Spectral 

Expansion or Image Quilting texture models.  The reflectance maps of synthetic textures in 

this research were constructed such that they exceeded the spatial size of the output 

DIRSIG image, and the insert point for each of the reflectance maps was carefully chosen so 

that the best-looking regions of texture would be used for each of the material types, and so 

that no gaps would occur at transition regions between material classes.  The resulting 

DIRSIG images for the CitiPix and HYDICE ARM imagery are presented in Sections 5.1 

and 5.2 respectively. 

 4.2.3  FM Model 

 The basic theory of the FM texture model was presented in Section 3.3.4, where 

Figure 35 illustrates an intuitive synopsis of how the model works.  For both the CitiPix and 

HYDICE ARM imagery, fractional abundance maps of end members had to be constructed.  

For the HYDICE ARM image, 7 fraction maps were produced for the following end 

members: 

 a. Cut Pasture; 

 b. Plowed Field; 

 c. Road; 

 d. Trailers/Buildings; 

 e. Trees; 

 f. Uncut Pasture; and 

 g. Wheat. 
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These end members were defined by defining ENVI Regions of Interest (ROIs) over large 

representative samples of each end member material type in the real image.  Then, the Linear 

Spectral Unmixing (LSU) algorithm was used to create fraction maps.  The decision to use 

this set of 7 end members and fraction planes was based on the achievement of clean, noise-

free, optimally-separated fractional abundance maps with different combinations of spectral 

end members.  Examples of three of the fraction maps are shown in Figure 43.   

 
Figure 43: Sample HYDICE ARM fractional abundance maps.  Top left: “Buildings” plane; 

top right: “cut pasture” plane; bottom: “uncut pasture” plane. 
 

These fraction maps were used by the DIRSIG configuration file by changing the “maps” 

section to “fraction map” mode.  Each fraction map is linked to an average spectrum 

representing each respective end member in order to ensure that both spatial and spectral re-

mixing occur in the output DIRSIG image.  These averaged spectra were derived from 
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regions containing each of the end members within the reflectance-calibrated real HYDICE 

ARM image.  Thus the texture applied to each pixel using the FM model is literally a re-

mixing of all seven fraction maps according to the fractional abundance contained in each 

fraction plane.  The results for the HYDICE ARM DIRSIG imagery are presented in 

Section 5.2. 

 Since the CitiPix image only contains three spectral bands over the visible region of 

the electro-magnetic spectrum (in R, G, and B channels), it is not considered to be a 

hyperspectral image (HSI).  Further, spectral unmixing is not always successful for images 

with so few spectral bands since the process of extracting endmembers can be difficult over 

well-correlated bands.  As such, construction of fractional abundance maps is typically 

reserved for HSI data.  Despite these potential difficulties, fraction maps were nonetheless 

produced for the CitiPix imagery as well.  In this case, the best results for fraction maps 

resulted when using these four end members: 

 a. Green, healthy grass; 

 b. Brown, stressed grass; 

 c. Asphalt; and 

 d. Trees. 

The four fractional abundance maps for the CitiPix image using this set of endmembers are 

shown in Figure 44.  The same general methodology as for the HYDICE ARM image was 

followed in that average spectra were assigned to each fraction plane and re-mixed to create 

spatial and spectral texture.  The results of the FM model for the CitiPix image are presented 

in Section 5.1. 
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Figure 44: The four fractional abundance maps used for the CitiPix data.  Top left: 

“asphalt/track” plane; top right: “green grass” plane; bottom left: “brown grass” plane; 
bottom right: “trees” plane. 

 

4.3  Imagery To Be Rendered 

 The four performance metrics will be used to test the four texture characterization 

models on various homogeneous and transition texture test regions of two sets of imagery.  

Most texture synthesis models are tested at varying resolutions, as discussed in Section 3.3.  

This is because some models have been found to perform better at certain spatial resolutions 

than others.  In maintaining this approach, the texture models will be tested at differing 

spatial and spectral resolutions in order to determine if performance depends somehow on 

either of these factors.  As mentioned previously, the first data set to be used in this research 

is a subset of the Kodak CitiPix imagery over northern Rochester, New York, while the 
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second is from HYDICE ARM imagery captured over agricultural regions in Lamont, 

Oklahoma.   

 

 4.3.1  CitiPix Imagery 

 The Kodak CitiPix data to be used in this research is a small subset of a much larger 

image collection effort over the northern Rochester area.  The imagery has been captured 

using an airborne framing array camera using Kodak film.  The images have been digitized 

into Red, Green, and Blue spectral channels that extend from 400 – 700 nm.  The imagery to 

be used in this work was taken on June 1, 2001 at an altitude of 3.2918 km.  The nominal 

GSD of this imagery is 0.15 m.  A larger view of the area to be used in this work is shown 

below in Figure 45.   

 
Figure 45: Portion of Kodak CitiPix RGB image over northern Rochester, NY. 

 

The central region of the above image, containing two of the fields and the surrounding area, 

was used in this research as the real CitiPix image to be rendered in DIRSIG.  It spans 437 x 
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437 pixels, and it was degraded to a GSD of 0.45 m, since it was intended to test the texture 

models’ performance at a finer resolution of roughly 0.5 m, and a more coarse resolution of 

greater than 1 m (which is the case for the HYDICE ARM imagery).  The CitiPix region to 

be used hereafter is shown in Figure 46. 

 
Figure 46: Red Channel of CitiPix image to be used for DIRSIG rendering and texturing 

using all four texture characterization models in this research. 
 

This image was chosen since it is an ideal candidate for testing of both homogeneous and 

transition region textures.  There are elements of many common textures present in this 

image including healthy grass, stressed grass, asphalt, trees, rooftops, and many more.  As for 

transitions, there are within-material class transitions such as the lines on the field, the 

transitions between worn and healthy grass, between the field and the running track, and 

between the asphalt parking lot and the field.  This imagery was used in conjunction with 

ground truth spectral reflectance data that was gathered by the Digital Imaging and Remote 

Sensing (DIRS) group at RIT in June 2001 and June 2002.  The results of DIRSIG rendering 

of this scene is presented in Section 5.1, and the 19 texture regions selected for testing the 

texture models with this imagery are described in detail in Section 4.5.3.  
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 4.3.2  HYDICE ARM Imagery 

 The second set of imagery to be used for this work consists of data with a much 

larger spectral extent and a different spatial resolution.  There are several runs of HYDICE 

ARM data that were captured in June of 1997, under varying atmospheric conditions.  In the 

past, Run 29 has been used for many studies due to the lack of cloud cover, and the fact that 

it has calibration panels visible in the image.  A subset of Run 29 was used for this work, and 

it is shown in Figure 47. 

 
Figure 47: Band 20 of HYDICE ARM imagery to be used for DIRSIG rendering and 

texturing using all four texture characterization models in this research. 
 

This subset is 320 x 320 pixels in size, with a GSD of 1.7375 m.  The data was collected 

using the airborne HYDICE imaging wedge spectrometer flown at an altitude of 3.475 km, 

which has spectral coverage between 400 – 2,500 nm in 210 spectral bands.  This image was 

chosen for this research due to its simplicity.  For example, there are several open regions of 

cut and uncut pasture, wheat, trees, and plowed field regions that exhibit interesting spatial 

structure.  There are also ideal transition regions to be tested, such as those between cut and 

uncut pasture, roads and pastures, pastures and plowed fields, wheat and roads, and several 



 87

more possibilities.  It is also favorable to have the calibration panels present within the image 

for pre-processing considerations, and for ensuring an accurate ELM calibration to 

reflectance units for both the real and DIRSIG imagery.  This imagery was used in 

conjunction with ground truth collection data obtained by MTL during overflight [MTL, 

1997]. The results of DIRSIG rendering of this scene is presented in Section 5.2, and the 15 

texture regions selected for testing the texture models with this imagery are described in 

detail in Section 4.5.3.  

  

4.4  Pre-Processing Considerations 

 There are a few practical considerations that must be addressed before the 

application of the texture metrics to be used for the comparative performance analysis of the 

texture characterization models in this study.  First, the metrics to be used all assume that the 

real and synthetic images are at the exact same scales and resolutions, both spatially and 

spectrally.  This is because all four of the metrics are effectively testing on a pixel-to-pixel 

basis.  It is important that corresponding pixels are being compared, or else the results of the 

metrics will be skewed.  For example, the spatial Mean Filter metric literally computes the 

difference between real and synthetic mean texture filter values, while the GLCM and SCM 

metrics measure spatial and spectral correlation between specified neighboring pixels.  The 

same applies for the SCR metric, for which the center pixel of the region to be studied is 

considered as the “signal.”  Therefore, in order to be comparing “apples with apples”, it is 

very important to have the corresponding real and DIRSIG images registered and with the 

same pixel sizes.  The spectral resolution and bandwidth must also be equal between the real 

and DIRSIG images for these metrics to be meaningful for similar reasons.  Further, to 

ensure that the texture models are tested at varying resolutions, imagery at differing spatial 

and spectral resolutions have been chosen for use in this study, as detailed in the previous 

section. 

 Although the CitiPix and HYDICE ARM DIRSIG scenes that have been 

constructed simulate the exact same atmospheric and imaging platform parameters as those 
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in effect at the time of image acquisition, lingering scaling and brightness effects may exist 

between the corresponding real and synthetic images causing an effective gap between pixel 

values, even though the spatial structure may appear to be very close to the real image.  In 

order to address this concern, a careful calibration process was necessary in order to ensure 

that: (a) both images are in the same domain of reflectance units, and (b) that the worst of 

the atmospheric effects are removed.  Theoretically, this will avoid the problem of brightness 

and scaling effects causing the metrics to give misleadingly poor or false values.  For 

example, consider the following brightness profiles for the real and DIRSIG images, 

respectively: 

 
Figure 48: Structurally identical profiles that would be erroneously labeled as dissimilar due 

to brightness and scaling effects. 
 

In this case, the metrics will likely indicate that the values are quite different for the given 

pixel, pixel pair, or pixel neighborhood in question.  However, it is obvious that the 

structures of each of the profiles are identical, and that any dissimilarity detected by the 

metrics is owing to scaling or brightness effects.  In order to be consistent, the Empirical 

Line Method (ELM) of image calibration was used to bring all sets of imagery into the 

reflectance domain.  This alleviates concerns of comparing “apples with oranges”, since 

DIRSIG images are nominally produced in the radiance domain, while the real imagery used 

in this study are in raw digital counts (DC).  The use of the ELM will require at least two 

targets (one dark and one bright) of known reflectance value present in both the real and 

DIRSIG images.  A straight line is then fit to the data, thereby scaling both image data sets 

into the reflectance domain.  As discussed in Section 4.3, this was a rather straight-forward 
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process for the HYDICE ARM imagery since the calibration panels were present in the 

image being rendered.  Of course, reliable and accurate ground truth measurements are 

essential for the ELM calibration to be successful.  The company responsible for ground 

truth collection for the HYDICE ARM imagery is MTL Systems, Incorporated, and they 

have provided this data in a very thorough report [MTL Systems, Inc., 1997].  This made the 

calibration process simpler, and thus produced very good results for ELM calibration using 

the 6-step grayscale calibration panels of 2, 4, 8, 16, 32, and 64% nominal reflectance values.  

For the CitiPix data, calibration was performed using in-scene materials for which ground 

truth data was available.  The dark rooftops above the fields and the bright rooftops to the 

right of the fields, the baseball dirt, and the asphalt were used as calibration sources, due to 

their invariant nature.  An inspection of the calibration factors plot and a visual analysis of 

scene materials between the real and synthetic imagery indicated a very good calibration 

result for both HYDICE and CitiPix data.  Mean, variance, and standard deviation values 

were computed on a per-material class basis for all real and synthetic image pairs, and the 

values were within 2 reflectance units for all models, with some models being much closer 

than others.  This will be discussed further in Chapter 5. 

 One further note on pre-processing requirements involves the HYDICE ARM data 

only.  There were several noisy spectral bands in this image that were placed on a “bad bands 

list (BBL)” for all subsequent ENVI processing steps.  This was necessary in order to 

perform a more accurate ELM calibration, and to construct noise-free fractional abundance 

maps.  When all 210 spectral bands were used in the creation of the fraction planes, there 

would always be at least one plane that consisted mainly of noisy pixels.  With the number of 

bands reduced to 142, the results were much better in terms of end member separability and 

minimal noise content, and some of these results have already been shown in Figure 43.  

Once all pre-processing tasks were completed and all 8 DIRSIG images were constructed 

(representing all 4 texture models on both the CitiPix and HYDICE ARM data), the texture 

model performance metrics were ready to be applied.  To summarize once more, each of the 

metrics requires that the real and DIRSIG imagery are in the reflectance domain, and that 
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the corresponding real and DIRSIG imagery are exactly registered at the exact same scales.  

The following section describes in detail how the four performance metrics were 

implemented and applied to both the real and DIRSIG imagery in order to assess how well 

spatial and spectral texture has been characterized by each of the models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49: ELM calibration methodology utilized for CitiPix and HYDICE ARM real and 
synthetic image data. 

 

4.5  Texture Model Performance Metrics 

4.5.1  Spatial Domain  

 The fundamental hypothesis behind much of the proposed analyses to be conducted 

in this research is founded upon the results of the GLCM method in quantifying and 

differentiating image textures.  As presented in Section 3.1.2.1, the consistently excellent 

results obtained by the GLCM approach to texture measurement, and the flexibility offered 

by the ability to adjust key parameters based on different textural patterns made this method 

the obvious choice of a quantitative measurement tool in the spatial domain.  The conjecture 

is that, if the GLCM-derived statistics are able to discriminate between textural features such 
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that the best results are obtained in image segmentation, classification, and target detection 

applications, then the same method must be sufficient to measure the similarity of texture 

features between real and synthetic textures in a quantifiable manner.  This is a sound 

argument since much of what DIRSIG synthetic images aim for in terms of fidelity is to be 

able to support the development and testing of algorithms for such applications, which 

represent the cornerstone of most remote sensing tasks.  Therefore, if the texture 

measurements for the purpose of performance evaluation of different texture 

characterization models can achieve the level required for the accurate completion of these 

tasks that are based on textural features, then it follows that the GLCM approach forms an 

adequate spatial measurement of textural fidelity in DIRSIG synthetic images.  The 

proposed GLCM testing methodology is described in more detail in Section 4.5.1.2. 

 Since this detailed GLCM analysis involves a potentially large set of input and output 

parameters, and because this analysis will be done on a band-by-band basis, the GLCM 

metric results were not always immediately obvious and thus large volumes of output data 

had to be sifted in order to produce the desired spatial texture metrics.  Therefore, a simpler 

measure of spatial texture will also be performed.  The method chosen for this analysis is the 

Mean Filter (MF) spatial metric, which was derived from the concept of the Composite RMS 

Error Metric (CREM) that was introduced in Section 3.3.2 when reviewing previous 

assessments of the SBP and MBP texture models [Kennedy, 2002], with the improvement 

being that spatial structure is accounted for using the MF spatial metric, while the CREM 

simply took the RMS error between pixel values summed over the entire image window.  

For both the CitiPix and HYDICE ARM real and synthetic data, texture regions to be tested 

were carefully selected in order to capture both homogeneous and transition region textures.  

In total, there were 15 regions used for the HYDICE ARM imagery, and 19 regions used for 

the CitiPix imagery when applying the texture model performance metrics.  These regions 

are described in much more detail in Section 4.5.3. 
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 4.5.1.1  Mean Filter (MF) Spatial Metric 

 It was originally planned to use the CREM as a simpler spatial metric, since it offered 

the advantage of producing a single numeric value as its output to assess the overall spatial 

fidelity of the synthetic texture over the test region under investigation.  The intent was to 

run this metric on all texture regions on a band by band basis, over a subset of representative 

spectral bands for HYDICE ARM data, and for all three bands of the CitiPix data.  

However, since this metric only takes the sum of the squared differences between each 

corresponding pixel in the real and DIRSIG imagery, there is no indication of spatial 

correlation and structure using this metric.  Instead of producing one single output over the 

entire texture region, it was desired to produce separate outputs for neighborhoods of pixels 

so that the real and synthetic structural patterns were compared instead of single pixels.  This 

was the initial motivation for using the MF spatial metric instead of the CREM.  To further 

substantiate this decision, it is believed that this metric will not be as biased towards the SBP, 

MBP, and FM texture models.  This is because each of these 3 models applies texture on a 

pixel-by-pixel basis, while the Texture Synthesis model creates texture by projecting synthetic 

texture reflectance map cubes onto the material map, which is not a pixel-by-pixel rendering 

process.  Since the CREM only compares single pixels of real and DIRSIG imagery, and not 

groups of pixels at a time, the CREM would tend to produce misleadingly excellent results 

for the SBP, MBP, and FM models, while indicating poorer performance of the Texture 

Synthesis model.  Thus the output produced by using the MF spatial metric was deemed to 

be more useful in discriminating texture model performance in the spatial domain. 

 Figure 50 illustrates a sample output of the MF spatial metric.  The concept is to 

compare each of the selected texture test regions by passing a 3 x 3 mean filter through both 

the real and synthetic corresponding regions.  The action of this filter is to compute the 

mean value of the 9 pixels that the 3 x 3 processing window is covering, and apply this value 

to the center pixel under the window.  Therefore, the interim output of the MF metric is an 

image array that contains information about each 3 x 3 neighborhood as the filter passes 

through the test region.  This retains local spatial structure information that was sacrificed 
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with the CREM, which merely compared individual pixels and produced a single output 

value.  The output of the MF metric on the corresponding real and synthetic test region pairs 

were then compared by taking the difference image between the two.  This absolute 

difference image was analyzed in order to determine how close (on average) each 9 pixel 

neighborhood was between the real and DIRSIG test regions.  In addition to examining the 

absolute difference image for each of the texture test regions, a variance-thresholded difference 

image was also used in this analysis.  The “acceptable variance” threshold was determined by 

extracting 2 to 3 additional texture test regions from the real CitiPix and HYDICE ARM 

imagery that adequately represent the variability observed for each homogeneous and 

transition region in its immediate vicinity.  The variance of the multiple real image samples 

was then calculated in order to construct a variance threshold image.  Finally, the absolute 

difference image between the real and DIRSIG texture regions was thresholded by the 

variance image for each texture test region in order to determine the number of outliers and 

where they were located.  Figure 50 shows an example of MF metric outputs for the plowed 

field texture test region from a single band of the HYDICE ARM data.  This illustrative 

example shows the MF metric result for the real image (left) and the DIRSIG image using 

the MBP texture model (right).   

 
Figure 50: Sample MF metric outputs for band 20 of real HYDICE ARM image plowed 

field region (left) and for DIRSIG image using MBP texture model for same region (right).  
Notice the apparent similarity in these texture signatures. 

 

The results of the application of the MF spatial metric to CitiPix and HYDICE ARM data 

are presented in Sections 5.3 and 5.4 respectively. 
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 4.5.1.2  GLCM Spatial Metric  

 The GLCM Spatial Texture Metric has been applied to the 19 CitiPix and 15 

HYDICE ARM texture test regions of both real and synthetic imagery (representing all four 

texture models) in order to compare a selection of the GLCM-derived statistical features as 

listed in Section 3.1.2.1.  Since, as mentioned previously, optimal combinations of typically 3 

to 4 of these features has been proven to adequately discriminate between texture features to 

the level desired for most remote sensing applications, then the conjecture is that the same 

set of features will suffice for determining if real textures are effectively captured in DIRSIG 

-rendered imagery.  These GLCM-derived statistical measures will in combination provide 

information as to whether the tested texture regions are significantly different in terms of 

spatial texture between the real and synthetic image, for each texture model.  It was found 

that, in order to capture the properties of spatial textures in each of the texture test regions, 

three nominal GLCM features could be used.  The features of Homogeneity, Contrast, and 

Correlation were found to be the most complete basis set that minimized redundancy, while 

effectively avoiding virtually unmanageable dimensions of data reported by the GLCM 

metric (see Section 3.1.2.1 for more details on GLCM texture features). 

 Due to the parametric nature of the GLCM, it is clear that the generated spatial 

GLCM metric for a given image region will depend on the input parameters chosen to 

compute the matrix.  Therefore, different distance and angle parameters (or ( yx ∆∆ , ) 

parameters) have been used for different types of texture features so as to optimally capture 

the structure of the texture.  This optimization has either been done by eye, based on 

apparent dominant scales and orientations of the particular texture being measured, or by the 

application of edge detection filters to identify the optimal direction vector (d,α ) to use for 

the GLCM computation.  Most results in the literature also contend that typically the use of 

d =1 or d = 2 is sufficient to capture the desired fine textural features for most aerial and 

satellite imagery [Clausi & Zhao, 2002].  It was thus decided that the nearest neighbors (i.e., 

d = 1) would be used to generate the GLCM texture features only, since it provides a more 

detailed analysis of spatial structure and correlation over the texture test regions.   
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 An additional practical consideration is that the three main parameters (distance, 

angle, and window size) must be set consistently between the real and synthetic texture 

region under study so that the measurements provide the same meaning.  By comparing the 

results of each of the GLCM-derived features within each band, one can surmise what 

aspect of the texture is or is not being captured in the synthetic version.  Since the features 

represent slightly different theoretical and physical/visual meanings, it is sometimes possible 

to deduce where and how the synthetic texture may be lacking based on mismatch of the 

GLCM metric statistical features.  This will be performed for all four texture models on 

various texture types and transition regions, and the analysis will in part be based on the 

“meanings” assigned to each of the main GLCM-derived statistical features presented by 

Baraldi & Parmiggiani (1995).  For example, energy (f1) measures textural uniformity, while 

entropy (f9), contrast (f2) and variance (f4) tend to measure disorder, heterogeneity, and 

general differences between sets of contiguous pixels.  Meanwhile, correlation (f3) is a 

measure of gray value linear-dependencies in the image region, where high values (i.e., close 

to unity) imply a linear relationship between the gray levels of pixel pairs.   

 While most GLCM analysis in the literature tends to quantize the number of gray 

levels so as to reduce the dimensionality of the matrix, this has not been performed in this 

work.  Clearly, quantization of gray levels should be avoided for a study of this nature, since 

it has the potential to defeat the purpose of measuring small-scale textures within small 

windows.  The typical reason for this quantization in most applications is because the 

GLCM analysis is performed image wide, and therefore each GLCM feature must be 

computed over the entire image, for all spectral bands.  Since the windows to be used in this 

study will usually only contain a subset of the possible dynamic range and the GLCM 

features are only calculated over a certain region of an image, this quantization is deemed to 

be unnecessary for both homogeneous and transition region textures.  As detailed in Section 

4.5.3, the texture test regions to be used in this research range from 8 x 8 to 35 x 35 pixels in 

size.  Further, the GLCMs were found to be well-populated in all of the test regions.  Since 
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the concern of sparse GLCMs is often the primary motivation for quantization practices, we 

need not be concerned with this aspect in this work.   

 The ENVI GLCM tool was used to compute the basic GLCM features for each of 

the texture regions to be studied, which were then relayed to an IDL routine that compared 

corresponding real and synthetic GLCM texture features by using the same ideology as with 

the MF spatial metric.  That is, both the absolute difference image and a variance-

thresholded difference image were analyzed, based on repeated measurements of similar 

texture regions from the real imagery.  The output of this GLCM utility is a collection of 

texture images, one for each GLCM feature selected for computation.  As mentioned earlier, 

three Haralick GLCM features were nominally used: Homogeneity, Contrast, and 

Correlation.  These computations were carried out on all of the corresponding texture 

regions for the real and DIRSIG images for all 4 texture models, for all spectral bands of the 

CitiPix data, and a selection of spectral bands of the HYDICE ARM data that comprises a 

representative sample of the spectral behavior over all wavelengths.  The absolute difference 

images between the Homogeneity, Contrast, and Correlation output texture images were 

then taken in order to determine where the textures in the real and DIRSIG images differ 

most.  The variance-threshold image (which characterizes acceptable variance of GLCM 

features computed for each texture region) was then applied to this difference image in order 

to determine where outliers (if any) are located and the magnitude of their deviation. 

 This threshold value is adaptive in nature, since the acceptable variance level will 

depend on the specific material and type of texture being measured.  For example, there is 

more inherent variability in grass textures than for concrete and asphalt, so the threshold 

values present in the variance image will accordingly be higher for a grass texture image 

region.  The same thresholding process will be carried out with the use of the SCM metric, 

which will be described in Section 4.5.2.2. 

 Figure 51 shows a very simple sample computation of a GLCM in ENVI, in which 

there are only 4 possible gray levels occurring in the processing window.  Note how the 

computational form of calculating GLCM features differs slightly from the theoretical 
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definition and the example presented in Section 3.1.2.1.  ENVI uses a base and a shift 

window as prescribed by the user’s choice of direction vector parameters, which in this case 

is a horizontal shift to the right.  Further, the GLCM is calculated within a processing 

window of user-specified size.  In order to measure the scale of textures desired within the 

texture test regions in this research, the minimum size of 3 x 3 pixels is the best choice (and 

thus this parameter was used throughout). 

 

 

 

 

 

 

 

 

 

 

Figure 51: Sample ENVI GLCM Computation with parameters 0,1 =∆=∆ yx . 

 

The resulting GLCM is also shown above, which is essentially a probability distribution 

function of all possible co-occurring pixel values in the image window.  The ENVI GLCM 

computational method compares corresponding pixels in the base and shift windows (i.e., 

pixel (1,1) of the base window is compared with pixel (1,1) of the shift window, and so on).  

The left vertical column on the perimeter of the GLCM is the “list” of all possible gray level 

values in the base window, while the horizontal top row is the same list for the shift window.  

The order of the entries is important, since (for example) the (3,5) entry is not the same as 

the (5,3) entry in the above GLCM.  The method for filling in the values of the GLCM is as 

follows: if a 3 occurs in the shift window where a 3 occurs in the base window, then the 

number of times that this occurs is filled in for the (3,3) entry of the GLCM.  Since no values 
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of 3 occur in the shift where a value of 3 occurred in the base window in the above example, 

the (3,3) entry is zero (0).  However, for the case of the number of times that a value of 3 

occurs in the shift window where a value of 4 occurred in the base window (i.e., the (4,3) 

entry of the GLCM), we see that this occurs twice, and so this entry in the GLCM is 2.   

 The texture features for each successive GLCM calculated over the texture test 

region are then calculated.  Figure 52 shows sample GLCM texture features calculated from 

a 25 x 25 pixel plowed field region of the HYDICE ARM imagery in one spectral band.  The 

left feature is the Contrast feature and the right feature is the Correlation feature. 

 
Figure 52: Sample GLCM Metric texture features.  (Left): Contrast feature; (Right): 

Correlation feature. 
 

Each texture test region to be investigated has its own “texture signature” based on its 

spatial structure.  The corresponding regions for all 4 texture models and all selected texture 

features have been tested.  Note that instead of testing all spectral bands of the HYDICE 

ARM imagery, a careful selection of spectral bands was used in the analysis.  In particular, 

bands 20, 32, 65, 95, 115, 157, 184, and 195 were chosen from the 142 possible spectral 

bands, since this subset was deemed representative of the spectral behavior of the image.  

Supplemental visual analyses will also be performed for each individual band for all texture 

models.  The results of the GLCM Metric for the CitiPix and HYDICE ARM DIRSIG 

imagery are presented in Section 5.3 and 5.4 respectively. 
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4.5.2  Spectral Domain 

 Spatial measurements are not the only aspect involved with this validation and 

comparative performance analysis study.  While the band-by-band GLCM analysis is able to 

determine how well each band performs in a spatial sense, these results cannot be simply 

computed separately and then combined for analysis due to the complex nature of spectral 

correlation between bands.  Therefore, a set of spectral fidelity measures must also be 

invoked.  In the same manner as with spatial performance measurements, spectral 

performance analysis will use both a simpler approach and a more detailed test method.   

 The first method involves a general measure of spectral clutter and overall 

complexity.  This metric will be used to determine how well the overall background clutter 

statistics in the real and synthetic image compare, since this clutter is precisely what produces 

spatial and spectral texture.  The method to be used draws from a common measure found 

in the hyperspectral target and anomaly detection literature called the Signal-to-Clutter Ratio 

(SCR).  As with the spatial MF metric, this method similarly generates a simpler measure in 

the form of a single value indicating overall model performance when compared with the 

SCR value measured from the real image texture.  More details of this texture model 

performance metric are presented in Section 4.5.2.1. 

 The fourth and last proposed performance measure is an entirely new concept 

derived from the spatial GLCM concept.  Hauta-Kasari et. al. (1996, 1999) originally 

introduced the Generalized Spectral Co-Occurrence Matrix (GSCM) for multispectral 

texture analysis, segmentation, and classification applications.  The motivation for this work 

was owing to the fact that spectral texture analysis in only RGB space was too restrictive in 

that spectral signatures were often very similar in all three bands (a phenomenon known as 

metamerism), and thus little additional information for determining texture features over 

monochrome methods was being obtained.  Recognizing this, a method was invoked to 

extend GLCM analysis to accept vector-valued pixels, stacked matrices, or scalar values 

representing a quantized spectral domain so that the GSCM would contain information 

about both the spatial and spectral domains, over a much wider region of the 
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electromagnetic spectrum.  The ideology behind this algorithm was a partial influence for the 

Spectral Co-Occurrence Matrix (SCM) metric that has been used in this research in order to 

assess the spectral fidelity of the synthetic textures compared with the real texture images.  

 The SCM metric follows the exact same operation as the GLCM metric, but instead 

measures spatial co-occurrence across user-specified (and typically uncorrelated) spectral 

bands.  This metric provides a close approximation to a simultaneous spatial and spectral 

measure of texture content in an image.  Thanks to the assistance of Research Systems 

Incorporated (RSI - the developers of ENVI), we have coordinated an implemented form of 

this SCM tool into the ENVI processing environment.  More specific details on these 

methods will be presented in Section 4.5.2.2. 

 Although it would have been ideal to devise a single test method encompassing 

simultaneous spatial and spectral performance measurement, such an idyllic metric has never 

been achieved.  This is an extremely complex problem which would be a very interesting 

area of future research.  Therefore, this set of four performance measurements will be used 

in combination in order to quantify how well each of the four texture models characterize 

texture in the DIRSIG environment. 

 

 4.5.2.1  Signal-to-Clutter Ratio (SCR) Metric 

 Researchers in the field of target and anomaly detection in hyperspectral imagery 

(HSI) commonly employ a measure of the SCR as a threshold for reliable detection of signal 

patterns in Gaussian clutter [Stocker, Reed, & Yu, 1990; Manolakis et al., 2000].  This same 

measure will be used as a rudimentary assessment of the similarity of spectral clutter content 

and complexity within the selected counterpart real and synthetic texture regions in this 

research.  The SCR metric will provide the means to determine if the overall clutter statistics 

are correct in the synthetic texture in relation to the real image for a given texture type 

sample.  The advantage of this comparison is that the SCR metric generates a single 

numerical value that will serve as a preliminary measure of how well the overall spectral 

structure is characterized in the synthetic rendition of the image, before delving into much 
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more detailed spectral analysis involved with the SCM metric.  Lastly, many HSI algorithms 

exploit the measure of SCR in several contexts, so it is essential that this metric is correct for 

synthesized texture regions if DIRSIG is to support the testing and development of these 

algorithms. 

 In its traditional form, the SCR is defined as follows: 

                                                         [ ] 2/1bMb 1T −=SCR                                                 (20) 

where M is the spectral interference (background plus noise) covariance matrix, and b is the 

spectral signature of the “target”, which in this case will be the central pixel of the region 

being examined.  In the case of L spectral bands, b is a column vector of dimension (1xL), 

while M is given by: 
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where the matrix XT represents the set of N de-meaned pixels in the image window under 

study, and therefore has dimension (LxN), i.e.,  

                                              [ ])(...)3()2()1( NxxxxXT =                                         (22) 

since each entry x(n) is itself a column vector representing the de-meaned spectral signature 

for a given pixel n.  This metric will be used for each of the texture regions to be 

investigated, for all four texture models.  In order to determine the acceptable variance for 

each of the texture test regions to be studied, the SCR metric will be applied to the same 

repeated samples from real CitiPix and HYDICE ARM imagery as was used for the MF and 

GLCM metrics.  Incidentally, this same method of characterizing acceptable variance levels 

was also followed for the SCM metric. 

 

 4.5.2.2  Spectral Co-Occurrence Matrix (SCM) Metric 

 As mentioned earlier, the concept of a GSCM has been proposed by Hauta-Kasari et 

al. in order to improve texture segmentation results for multispectral imagery.  This 

algorithm generates a co-occurrence matrix that describes the spatial dependency of a 

quantized spectral domain.  This concept of using both spatial and spectral information 
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simultaneously was the motivation for the SCM Metric that is to be used as the fourth 

synthetic texture fidelity measure in this work.  The reason for not adopting the GSCM as a 

metric is because there were concerns with the ordering of the quantized spectral domain, 

and there was no guarantee that the Self-Organized Mapping (SOM) method of quantization 

would be carried out in the same manner in the real and synthetic corresponding imagery, 

since the synthetic imagery likely would not contain all of the exact same spectra as the real 

image.  The reader is directed to the two references listed for Hauta-Kasari et al. in Section 8 

for further details regarding the concerns of uniqueness in ordering of the quantization and 

labeling of the spectral domain that is involved in their algorithm.   

In order to avoid ordering and quantization problems, a simpler approach was then 

conceptualized, which has never been used before in the literature on co-occurrence 

matrices for classification and feature extraction models.  Referring back to the GLCM 

computation example in Figure 51 in Section 4.5.1.2, consider the exact same process with 

the shift window in a certain user-specified spectral band.  In this case, the resulting co-

occurrence matrix contains both spatial and spectral information, since the SCM allows for 

the specification of an additional parameter termed the “comparison band.”  In the ENVI-

implemented form of this algorithm, the user can choose a base spectral band, and a 

comparison spectral band which is used as the shift window.  The parameters of direction 

vector orientation and processing window are also still available to the user for the SCM.  

The result is a matrix containing cross-band spatial and spectral co-occurrence information.  

The usual Haralick texture features can be computed from the SCM just as they are for the 

GLCM utility. 

For the HYDICE ARM data, four band pairs were chosen on which the SCM metric 

would be performed: 

a. Bands 22 and 32 (95% correlated); 

b. Bands 30 and 162 (5% correlated); 

c. Bands 30 and 193 (-10% correlated); and 

d. Bands 65 and 185(-40% correlated). 
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This choice of band pairs was used in order to determine if the spectral correlation in the 

DIRSIG imagery was preserved compared with the corresponding real imagery.  This 

sampling of band pairs is considered to be representative, since it encompasses well-

correlated, ill-correlated, negatively ill-correlated, and negatively “well”-correlated spectral 

structure.  The same testing methodology was used for the SCM as for the GLCM metric.  

That is, the same texture test regions as tested for the other 3 metrics were used, and the 

absolute and variance-thresholded difference images were investigated for the Homogeneity, 

Contrast, and Correlation features.  The comparative performance analysis process is thus 

parallel with that of the GLCM metric, so there is no need for repetition here.  An example 

of the SCM metric output features is presented in Figure 53. 

 

 
Figure 53(a): Sample SCM metric features for real HYDICE ARM image plowed field 
region.  Top: Contrast feature for band pair 30-162 (left) and band pair 65-185 (right).  
Bottom: Correlation feature for band pair 30-162 (left) and band pair 65-185 (right). 
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Figure 53(b): Sample SCM metric features for DIRSIG HYDICE ARM image using MBP 
texture model on plowed field region.  Top: Contrast feature for band pair 30-162 (left) and 
band pair 65-185 (right).  Bottom: Correlation feature for band pair 30-162 (left) and band 

pair 65-185 (right). 
 

The results from the SCM metric on the CitiPix and HYDICE ARM imagery are presented 

in Section 5.3 and 5.4 respectively. 

 

 4.5.3  Detailed Methodology 

 This section has been included so that the reader is familiar with the texture test 

regions that have been selected for the comparative performance analysis of the SBP, MBP, 

Texture Synthesis, and FM texture characterization models.  It will also list how many 

repeated samples were taken from real imagery in order to construct the variance threshold 

image for each test region. 

 

  4.5.3.1  CitiPix Texture Test Regions 

 In order to systematically analyze the results of the synthetic imagery produced using 

each of the 4 texture models, 19 texture test regions were chosen from the 437 x 437 pixel 

CitiPix image.  The regions were subdivided into “homogeneous” and “transition” regions, 
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where the former represents textural features within a single material class, and the latter 

refers to transitions between 2 or more different material classes.  The four performance 

metrics were applied to each of these regions for all of the real and DIRSIG imagery for 

consistency purposes.  The following table details the size and location of each of the 

nominal texture test regions that were used for the CitiPix imagery, as well as the number of 

repeated measurements that were obtained from the real CitiPix image in order to generate 

the acceptable variance image.   

 

REGION NAME SIZE 

(PIXELS)

NUMBER OF 

MEASUREMENTS 

1. Asphalt 25 x 25 4 

2. Left Field Healthy Grass 25 x 25 4 

3. Left Field Stressed Grass 25 x 25 3 

4. Right Field Healthy Grass 25 x 25 4 

5. Upper Endzone 25 x 25 3 

6. Lower Endzone 15 x 15 3 

7. Running Track 15 x 15 4 

8. Trees 15 x 15 4 

9. Perimeter Grass 25 x 25 4 

10. Building 15 x 15 4 

11. Right Field-Stressed-Track 35 x 35 3 

12. Left Field-Stressed-Track 35 x 35 4 

13. Field-Track 25 x 25 4 

14. Stressed-Healthy Strip, Right 

Field 

25 x 25 4 

15. Field-Yard Line, Left Field  25 x 25 4 

16. Endzone-Track 25 x 25 3 
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17. Field-Asphalt 25 x 25 4 

18. Field-Endzone 15 x 15 3 

19. Grass-Baseball Dirt 15 x 15 3 

Table 1: Texture Test Regions for CitiPix Data. 

The first ten entries listed in Table 1 are homogeneous regions, while the last 9 are transition 

regions.  Also, the number of measurements listed in the rightmost column includes both 

the nominal region that was used for comparison using the performance metrics, as well as 

samples from the immediate vicinity of the nominal region.  As discussed in the previous 

sections, the repeated samples were obtained in order to construct a variance threshold 

image to be applied to the absolute difference images generated through the application of 

the performance metrics.  These regions are illustrated in Figure 54.  The results and analysis 

of the absolute and variance thresholded metrics for all 19 CitiPix texture test regions are 

presented in Section 5.3. 

 

 
Figure 54: CitiPix texture test regions corresponding to Table 1. 

  4.5.3.2  HYDICE ARM Texture Test Regions 

 A completely analogous methodology was followed for the 320 x 320 pixel 

HYDICE ARM image.  Table 2 lists the 15 nominal test regions that were analyzed, where 

the first 9 are homogeneous textures, and the last 6 are transition regions. 
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REGION NAME SIZE 

(PIXELS)

NUMBER OF 

MEASUREMENTS 

1. Upper Plowed Field 25 x 25 4 

2. Upper Wheat 25 x 25 4 

3. Lower Wheat 25 x 25 4 

4. Lower Plowed 25 x 25 4 

5. Uncut Pasture (outside of calibration site) 25 x 25 4 

6. Cut Pasture (within calibration site) 15 x 15 3 

7. Parking Lot (beside trailers) 25 x 25 4 

8. Trees 8 x 8 4 

9. Trailers 10 x 10 4 

10. Cut-Uncut Pasture 15 x 15 3 

11. Uncut Pasture-Dirt 15 x 15 3 

12. Uncut Pasture-Road 15 x 15 3 

13. Uncut Pasture-Plowed Field 15 x 15 3 

14. Wheat-Road-Uncut Pasture 25 x 25 3 

15. Wheat-Road-Plowed Field 25 x 25 3 

Table 2: Texture Test Regions for HYDICE ARM data. 

As with the CitiPix data, these 15 nominal test regions and the repeated measurements on 

the real HYDICE imagery were used for application of the MF, GLCM, SCR, and SCM 

performance metrics, for all four texture model DIRSIG images.  The above regions are 

illustrated in Figure 55.  The results of these metrics are presented in Section 5.4. 
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Figure 55: HYDICE ARM texture test regions corresponding to Table 2. 

 

A synopsis of the application of performance metrics in this work is presented in Figure 

56.   

 

 

Real Synthetic 

1.  Variance 
Threshold 

Image  
2. (a) Absolute 

Difference 
Image 

2. (b) Variance-
Thresholded Difference 

Image

•For 19 CitiPix, 15 HYDICE Texture Regions 
•For MF, GLCM, SCM Metrics 

•All 3 CitiPix Bands (R-B for SCM) 
•HYDICE Bands 20, 32, 65, 95, 115, 157, 184, 195 for 

MF, GLCM  
•HYDICE Selected 4 Band Pairs for SCM Metric 

 
Figure 56: Performance metric methodology. 
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5.  Results and Analysis 

 This chapter will present all of the results obtained from using the SBP, MBP, 

Texture Synthesis, and FM texture characterization models to render the CitiPix and 

HYDICE ARM DIRSIG scenes.  Sections 5.1 and 5.2 show numerous samples of output 

DIRSIG imagery that has been obtained using each of the texture models, as well as some 

interim results that required modifications to configuration files for improvement.  

Preliminary remarks regarding the qualitative physical appearance of the resultant imagery 

will also be provided.  Sections 5.3 and 5.4 discuss the quantitative results obtained for each 

model after the application of the MF, GLCM, SCR, and SCM performance metrics.  A 

thorough comparative performance analysis then follows based on the results of these 

metrics in section 5.5.  An additional section detailing supplementary results has also been 

included to discuss other DIRSIG imagery that has been rendered for interest sake, and 

which has not been tested through the use of the four performance metrics. The results 

from the incorporation of a texture characterization model created by Spectral Sciences 

Incorporated (SSI) are also presented in section 5.6. 

 

5.1  CitiPix Imagery Results 

 Since the CitiPix data only covers the visible region of the electromagnetic spectrum 

in Red, Green, and Blue channels, all three spectral bands of the output imagery results will 

be presented here.  For comparison purposes, the real CitiPix imagery is shown below. 
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Figure 57: Real CitiPix imagery.  Top left: R channel; Top right: G channel; Bottom: B 

channel. 
 

The DIRSIG imagery results to be shown in the following sections follow the same order of 

R, G, and B channels. 

 

5.1.1  SBP Model 

 The DIRSIG imagery obtained using the SBP Z-Score Selection texture 

characterization model is shown below.  In this case, the Red spectral band has been used as 

the single bandpass texture image from which z-scores were computed and compared with 

ground truth reflectance curves for material types present in the scene. 
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Figure 58: DIRSIG imagery (R, G, and B channels) using the SBP texture model. 

 

 A preliminary visual analysis of this synthetic imagery suggests that the spatial fidelity 

captured in the DIRSIG image is quite good.  Since we are only dealing with three highly 

correlated spectral bands, it is not surprising that the DIRSIG imagery also maintains 

spectral structure (as much as the eye can make such a conclusion).  The only apparent 

difference between the real and synthetic imagery is that the latter appears to be darker in the 

field regions, and it contains much more overall contrast and dynamic range.  This would 

initially perhaps imply the presence of a scaling or brightness effect issue, but it actually owes 

to the fact that DIRSIG is able to produce an infinite dynamic range (in units of radiance) in 

its output imagery, and thus the difference lies only in the way in which the images are 

displayed, not in the actual pixel values.  The effects of this are very mild, which has been 

further evidenced by a comparison of each corresponding spectral band after the ELM 

calibration process.  By linking displays in ENVI, pixel reflectance values of the real and 

synthetic images were carefully compared.  It was found that most pixel values were 

extremely close, and were on average within 0.5 reflectance units (where the reflectance units 

run from 0 – 100 nominally).  The realistic-looking variability within material classes and the 

smooth transitions between material types in the SBP DIRSIG image has been attained 

largely because of the availability of very thorough and accurate ground truth reflectance 

curves.  In some cases, DIRSIG emissivity files for different material types were merged into 
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one, and then the utility “expand_emissivity_file” was run in order to produce additional 

curves that would allow for non-abrupt transition regions.  We call this process the 

generation of “transition curves”, and it has been shown to be a very useful and practical 

technique for the rendering of locally generated scenes such as the DIRSIG Megascene 

[Ientilucci & Brown, 2003].   This visual analysis will be augmented by a much more detailed 

quantitative analysis using the MF, GLCM, and SCM performance metrics in Section 5.3 

(note: the SCR metric is only used for the HYDICE ARM imagery). 

5.1.2  MBP Model 

 The DIRSIG imagery obtained using the MBP Z-Score Selection texture 

characterization model is shown below.  In this case, all three (Red, Green, and Blue) 

spectral bands were used as separate texture images in the application of this model.   

 

 
Figure 59: DIRSIG imagery (R, G, and B channels) using the MBP texture model. 



 113

 

 By using a series of three texture image bandpasses, the curve selection for image 

texture application equally weights the Red, Green, and Blue regions of the spectrum.  

Since these three spectral bands are highly correlated, it is not surprising that the result 

does not differ greatly from the SBP model result, at least in terms of a preliminary visual 

analysis.  By linking ENVI displays of the real CitiPix, the SBP, and the MBP results, it 

was difficult to locate any significant differences between the results of the MBP and the 

SBP DIRSIG imagery.  The spatial and spectral structures are nearly identical in both 

images, as are the image-wide and local mean and variance statistics.  Interestingly, it 

was also found that, although the pixel values of the SBP and MBP images were very 

close, the SBP image tended to be closer to the values of the real CitiPix image.  This 

may at first seem disconcerting, since the MBP model is supposed to select spectral 

curves based on a wider sampling of the spectral domain.  But once again, one must 

recall that we are only dealing with three well-correlated spectral bands, and that by using 

all three bands for z-score computations, it is possible to over-constrain the curve 

selection process, thereby causing the SBP model which has only used one spectral 

bandpass, to contain pixel values that are closer to that of the real counterpart image.  The 

results of the rendering of the HYDICE ARM image will demonstrate the advantage of 

the MBP texture model much more clearly than for the CitiPix imagery, since the 

multiple bandpasses used for the algorithm will be derived from non-correlated spectral 

band regions (see Section 5.2).  It is important to note that this apparent similarity 

between the SBP and MBP results that would cause most observers to deem them 

visually indistinguishable is further proof that a qualitative visual analysis must be 

augmented with quantitative measures that exceed the discriminative powers of the eye if 

one wishes to robustly measure the fidelity of synthetic imagery.  The MF, GLCM, and 

SCM performance metric results of the CitiPix DIRSIG image using the MBP texture 

model are presented in Section 5.3. 
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5.1.3  Texture Synthesis Model 

 The DIRSIG imagery obtained using the Texture Synthesis texture characterization 

model is shown below.  Three-band synthetic texture cubes were created for each material 

contained in the material map derived from the real CitiPix image, and applied using the 

DIRSIG “reflectance map” mode.  All material class regions were synthesized using the 

Spectral Expansion model except for the dark rooftops, which were rendered using the 

Image Quilting model since only small samples were available from the real image, and it was 

important to avoid anomalies from mirroring processes since the dark rooftops were used 

for the ELM calibration process. 

  

 
Figure 60: DIRSIG imagery (R, G, and B channels) using the Texture Synthesis model. 
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The GML-derived material map in Figure 41 was used in order to obtain this result.  Eight 

synthetic texture reflectance cubes were generated using the Texture Synthesis model, and 

then projected onto the material map to produce both within- and between-material 

variability in the output DIRSIG image (as described in Figure 42 in Section 4.2.2).  This 

model had more difficulty in capturing the exact spatial structure of the fields, since by the 

very nature of the Texture Synthesis model it is not able to recreate structural transitions 

within a given material class unless they are present in the input texture sample image (and 

even then, they would likely be repeated in random directions in the output synthetic texture 

image).  Unlike the SBP and MBP models, texture is not applied on a pixel-by-pixel basis 

through the use of a texture map.  Instead, local spatial variability is driven solely from the 

input sample from which the texture cube is synthesized, and thus rendering fine structures 

at the same size and orientation as in the real image within material classes would be virtually 

impossible to produce with this model.  However, for more homogeneous material types 

such as the asphalt region on the left, the running track, and the building on the right, the 

appearance of the synthetic texture looks equally acceptable as that of the SBP and MBP 

models.  In fact, even the fidelity of the tree canopy textures is impressive.  Although tree 

leaves are not homogeneous by any means, it is the stochastic nature of these textures that 

allows the Texture Synthesis model to capture this variability quite well. 

 The transition regions between material classes are ultimately driven by the result of 

the material map.  The overall structure present in the real counterpart image is captured in 

the Texture Synthesis model DIRSIG image, albeit not quite as well as with the SBP and 

MBP models.  The transition regions are somewhat more abrupt, since the input sample 

textures were usually not derived from blended regions, but rather from carefully chosen 

regions that demonstrate the inherent variability of each material class present in the material 

map.  These sharp transitions can be seen between the healthy and stressed grass on the 

fields near the endzones, as well as between the track and the fields.  The transitions are 

generally as sharp as they are in the material map itself.  The Texture Synthesis model had 

the most difficulty with the lines on the left field and the strip of worn grass on the right 
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field.  This again was due to the aforementioned challenge of capturing local spatial structure 

within a given material class.  Most of this preliminary visual analysis has been regarding the 

spatial appearance of this imagery.  Further spatial and spectral analysis using the MF, 

GLCM, and SCM metrics is presented in Section 5.3. 

 

5.1.4  FM Model 

 The DIRSIG imagery obtained using the Fraction Map texture characterization 

model is shown below.  As detailed in Chapter 4, four end members were extracted from the 

real CitiPix image, from which four corresponding fractional abundance maps were 

constructed.  The fraction planes were then re-mixed in order to produce the following 

result. 

  

 
Figure 61: DIRSIG imagery (R, G, and B channels) using the FM texture model. 
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The FM model result for the DIRSIG CitiPix image is the most visually identical to the real 

CitiPix image of all four texture models being tested.  Even the dynamic range and overall 

contrast are much closer to that of the original image.  This is not surprising, since the 

method literally re-mixes all four of the fraction maps in order to create both spatial and 

spectral variability.  Although the spatial structure appears to be excellent for this image, the 

spectral content still remains to be tested, even though the spectral extent is small for this 

data.  Since each end member is assigned only one nominal spectral reflectance curve in 

order to create spectral structure in the image, it was expected that the spatial domain would 

be well-characterized with this model, while the spectral content had the potential to be 

lacking in realistic complexity.  This potential is not great for the CitiPix image, since one 

curve may be sufficient for such a narrow spectral extent; however this potential is larger for 

imagery with broad coverage, such as with the HYDICE ARM data.  The results of the MF, 

GLCM, and SCM performance metrics for the DIRSIG CitiPix image using the FM texture 

model are presented in Section 5.3. 

 

5.2  HYDICE ARM Imagery Results 

 Due to the large number of spectral bands and spectral extent of the HYDICE ARM 

imagery, only a representative subset of the spectral bands of the resultant DIRSIG imagery 

will be presented here.  For comparison purposes, the spectral bands of the real HYDICE 

ARM imagery to be compared with the DIRSIG results are shown below. 
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Figure 62: Real HYDICE ARM imagery.  From top left to bottom right: Bands 20, 32, 

65, 95, 115, 157, 184, and 195. 
 

Once again, the order of spectral bands presented for each of the four texture model 

results will be as above – from top left to bottom right: bands 20, 32, 65, 95, 115, 157, 

184, and 195. 

 

5.2.1  SBP Model 

 The results of using the SBP Z-Score Selection texture characterization model are 

shown below.  In this case, the single bandpass used for DIRSIG rendering is band #20, 

which has a central wavelength value (FWHM) of 0.4661 microns.  The results for 8 of the 

spectral bands are presented here in order to avoid tedium, to preserve space, and because 

these are the bands to which the performance metrics have been applied.  The bands shown 

here and their respective FWHM values are listed in Table 3. 
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Table 3: The 8 representative spectral bands to which the 4 performance metrics have been 
applied are listed above.  These are also the spectral bands that will be shown for each of the 

DIRSIG texture model results.  Note that the band center / FWHM values change with 
altitude for the HYDICE sensor due to its wedge spectrometer design. 

 

Before presenting the final results obtained with the SBP model, an interim result 

will be shown for demonstrative purposes.  As discussed in Chapters 3 and 4, the SBP and 

MBP models rely heavily on accurate and thorough ground truth data in order to generate 

realistic levels of spatial and spectral clutter.  Shown below is an example of the output of 

the MBP model using only the MTL-supplied ground truth data (the MBP result is shown 

here because it better illustrates the effect of ground truth data that does not capture 

sufficient spatial structure of material classes).  This result also used three single-band images 

as the texture maps (bands #20, #65, and #184) instead of masked texture maps. 

Spectral Band 

Number 

Band Centers (microns) 

20 0.4661 

32 0.5230 

65 0.8026 

95 1.2297 

115 1.5128 

157 2.0083 

184 2.2711 

195 2.3690 
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Figure 63: Illustrative example of the result of using ground truth data that does not 

adequately represent the spatial variability of materials present in the scene to be rendered.  
Note the quantized and blotchy appearance especially in the plowed field, uncut pasture, and 

wheat regions.  Left: Band 20; Right: Band 65. 
 

The reader will notice the quantized and speckled appearance of this image compared with 

the real HYDICE data.  This is because there was only between 6 and 8 ground truth 

measurements of each of the materials present in the scene, which themselves possessed a 

very tight distribution.  Therefore, even after running the “expand_emissivity_file” utility to 

generate transition curves, the result still showed a quantized appearance.  The following 

tables demonstrate the statistical gap between the MTL ground truth data and the real 

HYDICE ARM image for two sample materials (uncut pasture and wheat regions) in terms 

of mean reflectance and standard deviation.  The standard deviation values show that the 

true variability of these materials is not captured in the ground truth measurements. 

 

 GROUND TRUTH IMAGE-DERIVED 

Band Mean S.D. Mean S.D 

20 4.59 0.29 3.72 0.52 

32 7.19 0.30 6.34 0.54 

65 31.09 1.14 30.72 3.08 

95 40.62 0.99 35.29 2.11 
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115 24.93 1.43 18.00 3.25 

157 18.47 2.02 10.62 3.56 

184 20.04 1.23 12.58 2.74 

195 16.29 1.19 9.97 2.64 

Table 4(a): Mean and standard deviation values for uncut pasture material class derived from 
MTL ground truth measurements (left) and directly from the real HYDICE ARM imagery. 

 
 

 GROUND TRUTH IMAGE-DERIVED 

Band Mean S.D. Mean S.D 

20 4.49 0.25 4.56 0.46 

32 7.16 0.29 6.97 0.60 

65 24.04 0.35 22.23 3.19 

95 29.79 0.39 30.78 2.65 

115 18.48 0.39 22.35 1.84 

157 14.20 0.35 30.78 2.25 

184 14.24 0.44 22.35 2.02 

195 11.35 0.35 16.94 1.89 

Table 4(b): Mean and standard deviation values for wheat material class derived from MTL 
ground truth measurements (left) and directly from the real HYDICE ARM imagery. 

 

Since we do not intend to test the quality of ground truth data measurements in this 

work, it was decided to create image-derived ground truth reflectance spectra by defining 

regions of interest (ROIs) in ENVI, and transforming the pixel values into emissivity curves.  

Another improvement was made over the former result by utilizing masked texture maps for 

more accurate z-score computations within the SBP algorithm.  The results for the SBP 

model using image-derived “ground truth” and masked texture maps are shown below.  The 

imagery is much more continuous than the result shown above.  However, the shortcomings 

of using the SBP model for imagery with large spectral extent become more obvious for the 

later spectral bands. 
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Figure 64: DIRSIG HYDICE ARM imagery using SBP texture model (bands 20, 32, 65, 

95, 115, 157, 184, and 195). 
 

 The effect of using a single bandpass texture map for rendering an image with broad 

spectral coverage is evident in the above imagery.  The later spectral bands all tend toward 

random texture, while the band nearest that of the texture image (band 20, top left) has the 

overall best appearance.  This is because the curve selections that were appropriate in the 

band 20 region were not the correct choices for the non-correlated IR bands.  A more 

detailed discussion is best left until after the MBP model results are presented in the next 

section. 
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5.2.2  MBP Model 

 The results of using the MBP Z-Score Selection texture characterization model are 

shown below.  In this case, three bandpasses were used: bands 20 (0.4661  microns), 65 (see 

Table 3), and 185 (2.2802 microns).  Masked texture maps were used in order to optimize 

the z-score computations for each material class.  Also, the below images were rendered 

using image-derived “ground truth” spectra in order to avoid the undesirable quantization 

effects seen in Figure 63. 
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Figure 65: DIRSIG HYDICE ARM imagery using MBP texture model (bands 20, 32, 65, 

95, 115, 157, 184, and 195). 
 

There is an obvious improvement made using the MBP model over the SBP model.  None 

of the bands contain noisy structures in the MBP DIRSIG imagery.  This is because the 

composite weighted z-score that is used in the MBP algorithm considers the spectral 

behavior in multiple bandpasses, and therefore tends to more correctly choose spectral 

reflectance curves for all pixels in the output image.  A mere visual inspection of especially 

the later spectral bands of the SBP and MBP results reveals the powerful capabilities of the 

MBP model over the SBP model, and the quantitative analysis in Sections 5.3 and 5.4 will 

further demonstrate how much better the MBP model performs for imagery with larger 

spectral dimension.  Although not much difference is observed between the CitiPix SBP and 

MBP results, there is a dramatic improvement for that of the HYDICE ARM imagery, just 
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by employing two additional texture image bandpasses.  This is a very fundamental and 

important result that will be investigated further in the following sections.  One may also 

notice that the calibration panels do not appear exactly the same between the real and 

synthetic imagery.  This was advertently done, since only the 6-step grayscale panels (on the 

right) were used for the ELM reflectance calibration process, while the other 6 panels on the 

left were textured as 15% reflectance panels to avoid unnecessary tedium and potential 

difficulties within DIRSIG configuration files.  The HYDICE ARM MBP model DIRSIG 

imagery will be further analyzed using the four performance metrics in Section 5.4.  

   

5.2.3  Texture Synthesis Model 

 The results of using the Texture Synthesis texture characterization model are shown 

below.  As described in Chapter 4, 142-band synthetic texture reflectance cubes were 

constructed for each of the eight materials contained in the material map derived from the 

real HYDICE ARM image, and applied using the DIRSIG “reflectance map” mode.  All 

material class regions were synthesized using the Spectral Expansion model except for the 

trees and the road, which were rendered using the Image Quilting model. 
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Figure 66: DIRSIG HYDICE ARM imagery using Texture Synthesis model (bands 20, 

32, 65, 95, 115, 157, 184, and 195). 
 

 The reader will undoubtedly notice the poorer spatial fidelity of this imagery as 

compared with the MBP model results.  However, it is not as dismal as it may initially 
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appear.  For example, the local mean and standard deviation statistics for each material class 

region in the real and synthetic imagery matched to within 3 %.  Table 4 shows a sampling 

of image-wide mean and standard deviation statistics for four spectral bands extracted from 

the calibrated real and synthetic imagery.  The same trend of agreement of first-order 

statistics is observed. 

REAL HYDICE TEXTURE SYNTHESIS 

MODEL 

BAND 

Mean S.D. Mean S.D. 

20 4.84 3.22 4.69 3.69 

65 26.52 7.59 25.52 7.06 

115 23.93 9.43 23.47 9.47 

184 18.48 9.17 17.82 9.29 

Table 5: Sample mean and standard deviation statistics of corresponding HYDICE ARM 
and DIRSIG Texture Synthesis model imagery. 

 

One must also keep in mind that the very nature of the Texture Synthesis model guarantees 

that the spectral covariance statistics of the synthetic textures will agree with that of the real 

image textures.  This aspect will be tested in more detail in Section 5.4 with the SCR and 

SCM metrics.  For now however, a visual analysis will be sufficient.   

The uncut pasture region is very well-represented in the DIRSIG image.  There are 

elements of both healthy and stressed grass present in the region, but the exact spatial 

structure is not preserved, as with the case of the fields in the CitiPix DIRSIG Texture 

Synthesis model imagery.  The same phenomenon was observed for the wheat regions.  It 

was expected that the plowed field regions would be somewhat challenging for this model to 

capture due to its structural patterns and orientations.  One will notice that the plowed 

patterns are indeed present; however the orientation of the patterns was not replicated as in 

the real HYDICE ARM image.  One of the fundamental limitations of this model is evident 

especially in the lower road region.  Recall the discussion presented in Section 4.2.2 

regarding the necessity for at least 32 x 32 pixel input sample textures for the Quilting 
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model, and 64 x 64 pixel samples for the Spectral Expansion model.  Since the road is quite 

narrow, it was difficult to obtain a sample of sufficient size.  Therefore, the mirroring utility 

described in Section 4.2.2 had to be used in order to grow out this region.  This caused 

repetitive artifacts to appear, as shown in Figure 40.  These anomalies are visible in six of the 

above eight images in the form of repeating horizontal black bars within the lower portion 

of the road.  As with the CitiPix DIRSIG image rendered using the Texture Synthesis model, 

the transition regions are well represented in this imagery, since the GML-derived material 

map achieved quite good separability between material class regions.  Further analyses of this 

imagery in a more quantitative manner will be presented in Section 5.4. 

 

5.2.4  FM Model 

 The DIRSIG imagery obtained using the Fraction Map texture characterization 

model is shown below.  As detailed in Chapter 4, eight end members were extracted from 

the real HYDICE ARM image, from which eight corresponding fractional abundance maps 

were constructed.  The fraction planes were then re-mixed in order to produce the following 

result. 
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Figure 67: DIRSIG HYDICE ARM imagery using FM texture model (bands 20, 32, 65, 

95, 115, 157, 184, and 195). 
 

 Just as with the CitiPix FM model result, this model produces the most visually 

pleasing imagery of all four models.  In fact, the real and synthetic imagery are almost 
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indistinguishable if one compares Figure 64 with the real HYDICE ARM imagery at the 

beginning of Section 5.2.  When the displays of the real and FM model HYDICE images are 

linked in ENVI, the calibrated pixel values are extremely close, and when overlayed there is 

no apparent change other than that due to the difference in the reflectance panels as 

described earlier.  This re-mixing of fractional abundance planes has produced a very 

impressive result in the spatial domain.  Although it appears as though the spectral 

correlation has been preserved based on a band-by-band visual analysis, it will be interesting 

to see how well the performance metrics deem this model to be in both spatial and spectral 

domains in Section 5.4. 

 

5.3  CitiPix Metric Results 

 This section presents a detailed analysis of the results obtained from the application 

of the MF, GLCM, and SCM performance metrics for each of the 19 texture test regions of 

the CitiPix data set, for the Red, Green, and Blue channels.  The SCR metric was not 

performed for the CitiPix imagery since it is designed for applications where hyperspectral 

imagery (HSI) data is being used.  However, the SCM metric was applied across the 2 least 

correlated spectral bands, which are the Red and Blue bands.  Both the absolute difference 

image and the variance-thresholded ( )2σ  difference image were initially examined for each 

texture region using these metrics in order to determine the range of values observed in the 

absolute difference image, the average value of the difference image entries, as well as the 

number of outliers in the thresholded image.  Since it was found that the use of a 2-sigma 

threshold was much more intuitive and meaningful than sigma-squared, the following tables 

will present the values using the 2-sigma threshold as well as the average value for each of 

the absolute difference images.  The analysis also included how much the entries deviated 

from the variance image for each model result, and the locations and features within each 

texture region that differed most from the corresponding real texture region.  This was 

performed by directly comparing the variance-thresholded images for each of the features. 
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5.3.1  MF Metric 

 The MF Spatial Metric was applied to all three spectral bands of the DIRSIG 

imagery using the SBP, MBP, Texture Synthesis, and FM texture models in 19 texture test 

regions.  The metric was also applied to the same nominal regions of the original CitiPix 

data, as well as sample regions in the vicinity of each nominal region in order to construct a 

variance image for thresholding purposes.  The following synopsis tables present the 

relevant statistical data extracted from the absolute and thresholded MF output imagery.  For 

all of the tables presented in Section 5.3, the texture test regions have been designated with 

the same numbering convention as used in Table 1 of Section 4.5.3.1, where regions 1 – 10 

are homogeneous textures and regions 11 – 19 are transition region textures.  The format of 

the synopsis tables will be the same for all metrics, for both the CitiPix and HYDICE ARM 

imagery.  The first set of tables indicates the percentage of pixels that exceeded the 2-sigma 

variance threshold for the given region and texture model.  This can also be thought of as 

the number of non-zero entries in each of the variance thresholded images.  The second set 

of tables represents the average value of the pixels in the absolute difference image.  The 

range of values observed in the absolute difference image for each of the regions was also 

investigated as a tertiary check of model performance, but the results have not been 

presented here in order to conserve space since the values of outliers and averages are 

sufficiently demonstrative.  All values are in units of reflectance unless otherwise specified. 

 

R Channel – MF Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 0.55 2.16 2.25 0.15 

2 0.13 2.3 6.85 0.10 

3 0.35 2.35 3.5 0.29 

4 0.10 2.85 4.2 0.09 

5 0.95 2.2 3.65 0.10 

6 1.1 2.1 3.9 0.14 
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7 0.9 2.2 1.45 0.06 

8 0.3 3.5 6.6 0.20 

9 1.2 2.2 3.1 0.16 

10 1.25 2.1 1.55 0.07 

11 0.8 2.8 3.2 0.10 

12 0.7 2.95 3.65 0.095 

13 0.65 2.9 3.55 0.49 

14 0.1 2.6 6.5 0.08 

15 0.4 2.7 4.55 0.29 

16 0.69 3.7 8.95 0.10 

17 0.95 2.65 3.57 0.17 

18 0.4 2.4 3.97 0.34 

19 0.6 2.3 2.92 0.42 

AVERAGE: 0.64 2.58 4.10 0.18 
Table 6: R Channel – MF Metric – Average Value of Absolute Difference Image 

G Channel – MF Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 0.1 1.2 1.15 0.09 

2 0.78 0.84 3.65 0.55 

3 0.90 0.92 0.75 0.56 

4 0.99 1.05 1.3 0.89 

5 1.1 1.45 2.75 0.16 

6 0.90 1.42 3.5 0.164 

7 0.20 1.6 0.95 0.07 

8 1.3 1.34 4.4 0.81 

9 1.2 1.65 2.44 0.21 

10 0.70 2.25 1.66 0.08 

11 0.65 1.05 1.5 0.22 
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12 0.70 1.65 1.75 0.16 

13 0.8 0.87 1.35 0.56 

14 1.5 1.51 3.7 0.72 

15 1.5 1.53 2.3 0.65 

16 0.75 1.7 2.2 0.16 

17 0.8 1.6 1.98 0.18 

18 1.3 1.37 1.45 0.54 

19 1.1 1.35 1.46 0.44 

AVERAGE: 0.91 1.39 2.12 0.38 
Table 7: G Channel – MF Metric – Average Value of Absolute Difference Image 

B Channel – MF Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 0.14 0.33 0.31 0.04 

2 0.10 0.55 1.65 0.08 

3 0.10 0.52 0.71 0.06 

4 0.05 0.54 1.70 0.032 

5 0.50 0.61 1.25 0.15 

6 0.55 0.60 1.35 0.05 

7 0.10 0.42 0.3 0.04 

8 0.25 0.62 2.45 0.22 

9 0.5 0.52 0.95 0.13 

10 0.01 0.42 0.41 0.009 

11 0.35 0.44 1.15 0.18 

12 0.30 0.57 0.95 0.14 

13 0.10 0.52 0.85 0.07 

14 0.10 0.55 1.35 0.08 

15 0.50 0.52 1.56 0.28 

16 0.40 0.56 0.70 0.09 
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17 0.45 0.49 0.75 0.08 

18 0.10 0.59 1.48 0.065 

19 0.15 0.51 1.37 0.11 

AVERAGE: 0.25 0.52 1.12 0.10 
Table 8: B Channel – MF Metric – Average Value of Absolute Difference Image 

R Channel – MF Metric – % Outliers 
Region SBP MBP TS FM 

1 9 15 18 5 
2 8 14 22 6 
3 10 16 21 6 
4 9 18 24 5 
5 11 15 26 5 
6 12 18 22 6 
7 9 14 18 6 
8 8 13 23 5 
9 10 16 20 5 
10 12 18 18 5 
11 12 19 26 6 
12 9 13 28 7 
13 10 15 31 5 
14 12 17 28 5 
15 11 16 32 6 
16 12 16 24 6 
17 13 18 27 6 
18 10 17 25 5 
19 11 19 23 5 

AVERAGE: 10.42 16.16 24.0 5.52 
Table 9: R Channel – MF Metric – % Outliers 

G Channel – MF Metric – % Outliers 
Region SBP MBP TS FM 

1 9 14 19 5 
2 8 14 21 5 
3 8 14 24 5 
4 8 15 28 6 
5 10 17 26 6 
6 12 19 22 5 
7 12 18 18 7 
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8 11 17 26 6 
9 14 19 28 5 
10 10 16 19 5 
11 11 16 27 5 
12 12 15 27 6 
13 14 20 25 6 
14 11 17 28 7 
15 12 18 29 5 
16 10 16 28 5 
17 9 16 27 7 
18 12 19 26 6 
19 11 17 28 6 

AVERAGE: 10.74 16.68 25.05 5.68 
Table 10: G Channel – MF Metric – % Outliers 

B Channel – MF Metric – % Outliers 
Region SBP MBP TS FM 

1 8 13 17 6 
2 9 13 21 5 
3 9 15 20 5 
4 8 14 22 5 
5 10 16 20 6 
6 8 13 19 5 
7 11 17 18 7 
8 9 16 25 5 
9 10 16 23 5 
10 12 19 17 5 
11 11 19 24 6 
12 10 16 27 5 
13 10 17 28 5 
14 11 18 28 7 
15 9 15 26 5 
16 8 15 27 5 
17 8 15 29 7 
18 11 17 28 6 
19 12 18 29 5 

AVERAGE: 9.68 15.89 23.56 6.05 
Table 11: B Channel – MF Metric – % Outliers  

 The analysis using the spatial MF metric for each of the models demonstrates a few 

noticeable trends.  First, when the range of values and average value observed in the absolute 



 138

difference images is compared between texture models, the smallest values occur for the FM 

model for all texture regions.  This indicates that the DIRSIG imagery using the FM texture 

model contains the smallest deviation from the real image for each of the three spectral 

channels in terms of its spatial structure in each 3x3 neighborhood and between each 

adjoining neighborhood.  The next lowest values occur for the SBP model, which agrees 

with the visual analysis performed in the previous section.  This quantitatively proves that 

for the three-band case, using the MBP model tends to over-constrain the reflectance curve 

selection process within the z-score selection algorithm.  The differences between the 

performance of the SBP and MBP models in terms of the MF metric is quite small in many 

cases.  When comparing the average values of the absolute difference images and the 

percentage of outliers from the variance threshold for these two models, it is evident that the 

values are always lower for the SBP model.  There are cases in which the values for the MBP 

model are nearly the same as the SBP model, but there are no instances in which the MBP 

produces lower values than the SBP models.  In general, the MBP model has produced 

much better results for the MF metric than for the TS model.  The only exception to this is 

for more homogeneous material classes such as the running track (region #7), asphalt 

(region #1), and the building (region #10).  For these regions, the numerical results of the 

MF metric are sometimes very close between the MBP and TS models.  Otherwise, however, 

the remaining homogeneous and transition region textures indicate better performance by 

the MBP model.  This once again is in accordance with the visual results, since the TS model 

DIRSIG image appears to capture the spatial structure for the track, asphalt, and rooftop 

regions approximately as well as the SBP and MBP results.  There was no observed 

distinction between performances of the models for homogeneous and transition region 

textures, since the same trend was present regardless of texture region type.  Based on this 

metric alone, the preliminary performance ranking would be: 

 a. FM Model; 

 b. SBP Model; 

 c. MBP Model; and 



 139

 d. TS Model 

 The percentage of outliers indicated in the above tables was supplemented by the 

investigation of how much the pixel values deviated from the threshold image.  This was 

carried out by directly comparing the thresholded images for each feature and texture model.  

It was found that for all cases that the value of the deviation from the threshold was 

considerably lower for higher-ranked models than for the lower ranked models from the 

average and outlier analysis.  This confirms the rankings prescribed above.  A similar analysis 

using the more complex spatial GLCM metric is performed in the following section, and 

many of the observations cited above are equally valid for the rest of the texture 

performance metrics. 

 

5.3.2  GLCM Metric 

 A parallel analysis is now presented using the GLCM metric for the CitiPix DIRSIG 

imagery.  The GLCM features of Contrast and Correlation were examined for this metric, 

and each feature was treated slightly differently.  For the Contrast feature, synopsis tables are 

presented just as they were for the MF metric in Section 5.3.1.  Also, the two supplementary 

steps that proved useful in the previous section will be followed in order to further 

investigate the behavior near the variance threshold.  These are: 

a. Taking the difference of the threshold images between pairs of texture model 

results in order to determine the magnitude of deviation from the threshold value for 

each texture region; and 

b. Taking the difference of the absolute difference images between pairs of 

texture model results in order to determine if corresponding pixels are above or 

below each other. 

The results of the GLCM Correlation feature will also be presented, but only based 

on the percentage of outliers, followed by an analysis using steps (a) and (b) outlined above.  

The reason for this slightly different treatment of the Correlation feature is because the 

ranges and absolute values of pixels contained in these texture images is quite large, and thus 



 140

the difference image values are accordingly unpalatably large to list in summation tables.  A 

comparison of these numbers in a tabular format between models would not be 

demonstrative of model performance and thus is not useful.  As discussed earlier, the 

inclusion of the Homogeneity feature was considered to be unnecessary due to its 

redundancy with the Contrast feature already being analyzed, and due to the inverse 

relationship the features possess.  Theoretically, the Correlation feature should exhibit the 

same trends as that observed in the GLCM Contrast metric analysis, therefore serving as a 

“sanity check” for the results. 

R Channel – GLCM Con Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 0.52 2.92 4.69 0.08 

2 0.89 3.27 12.32 0.31 

3 1.1 5.24 14.92 0.605 

4 1.15 4.49 10.37 0.41 

5 0.69 3.66 21.93 0.12 

6 0.68 3.87 7.24 0.34 

7 0.82 3.05 3.95 0.058 

8 7.6 16.52 18.19 0.92 

9 0.63 2.95 4.29 0.094 

10 0.09 1.89 3.97 0.081 

11 0.64 3.21 22.37 0.37 

12 1.27 6.98 16.31 0.47 

13 1.19 4.86 7.36 0.19 

14 1.82 4.79 15.62 0.67 

15 1.58 3.91 16.1 1.38 

16 0.79 3.61 4.32 0.133 

17 1.48 3.12 10.43 0.248 

18 1.31 2.65 14.53 0.37 
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19 5.43 4.11 13.51 1.67 

AVERAGE: 1.56 4.48 11.71 0.45 
Table 12: R Channel – GLCM Contrast Metric – Average Value of Absolute 

Difference Image 
 

G Channel – GLCM Con Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 0.27 0.51 1.12 0.07 

2 0.38 1.12 5.41 0.142 

3 0.76 1.19 8.11 0.11 

4 0.93 0.937 4.26 0.18 

5 0.21 0.74 5.80 0.115 

6 0.13 0.96 2.97 0.123 

7 0.10 0.80 0.695 0.072 

8 6.21 5.41 10.1 1.02 

9 0.23 1.01 1.91 0.069 

10 0.10 0.127 1.01 0.06 

11 0.36 0.91 5.79 0.22 

12 1.34 1.79 3.73 0.31 

13 0.23 0.97 4.92 0.12 

14 0.10 1.32 6.25 0.047 

15 1.89 1.91 8.73 0.823 

16 0.14 1.02 2.21 0.126 

17 0.39 0.96 3.92 0.145 

18 0.72 0.92 3.954 0.107 

19 2.54 3.97 4.01 1.39 

AVERAGE: 0.90 1.40 4.47 0.28 
Table 13: G Channel – GLCM Contrast Metric – Average Value of Absolute 

Difference Image 
 
 



 142

B Channel – GLCM Con Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 0.07 0.075 0.085 0.045 

2 0.12 0.14 0.41 0.059 

3 0.10 0.117 0.97 0.06 

4 0.07 0.07 0.679 0.047 

5 0.08 0.09 0.71 0.04 

6 0.045 0.091 0.24 0.032 

7 0.08 0.099 0.12 0.073 

8 0.92 0.932 1.38 0.19 

9 0.05 0.07 0.11 0.04 

10 0.095 0.099 0.105 0.03 

11 0.089 0.096 0.83 0.048 

12 0.11 0.11 0.623 0.10 

13 0.105 0.151 0.412 0.076 

14 0.125 0.137 0.89 0.11 

15 0.195 0.20 1.21 0.105 

16 0.07 0.081 0.16 0.042 

17 0.41 0.27 0.31 0.114 

18 0.089 0.092 0.376 0.056 

19 0.25 0.24 0.746 0.289 

AVERAGE: 0.16 0.17 0.55 0.08 
Table 14: B Channel – GLCM Contrast Metric – Average Value of Absolute 

Difference Image 
 
 

R Channel – GLCM Con Metric – % Outliers 
Region SBP MBP TS FM 

1 9 19 36 6 
2 12 17 38 8 
3 15 19 34 8 
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4 14 21 37 5 
5 10 18 38 7 
6 11 21 39 7 
7 8 20 39 8 
8 9 17 36 9 
9 14 16 40 6 
10 12 18 36 5 
11 15 18 42 4 
12 12 20 44 7 
13 11 22 39 6 
14 9 17 37 8 
15 11 16 46 9 
16 10 18 35 6 
17 13 18 34 6 
18 12 19 39 7 
19 14 20 41 6 

AVERAGE: 11.63 18.63 38.42 6.73 
Table 15: R Channel – GLCM Contrast Metric – % Outliers 

 

G Channel – GLCM Con Metric – % Outliers 
Region SBP MBP TS FM 

1 9 16 34 5 
2 8 19 37 7 
3 13 16 34 6 
4 11 17 42 6 
5 9 19 44 9 
6 12 22 41 8 
7 15 20 35 6 
8 14 28 38 7 
9 13 17 36 5 
10 16 20 36 5 
11 11 21 42 7 
12 9 23 39 5 
13 7 21 43 9 
14 8 18 37 7 
15 8 19 43 9 
16 11 19 41 8 
17 10 21 38 7 
18 9 20 37 9 
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19 11 18 41 7 
AVERAGE: 10.26 19.68 38.84 6.95 

Table 16: G Channel – GLCM Contrast Metric – % Outliers 

 

B Channel – GLCM Con Metric – % Outliers 
Region SBP MBP TS FM 

1 10 19 34 5 
2 8 17 41 5 
3 11 17 40 6 
4 14 19 38 6 
5 12 18 41 8 
6 14 21 39 7 
7 10 23 35 9 
8 11 22 32 9 
9 9 20 42 8 
10 7 18 34 5 
11 10 16 40 6 
12 9 16 39 6 
13 12 18 37 8 
14 8 22 43 5 
15 10 23 38 9 
16 11 18 44 9 
17 9 19 42 8 
18 8 17 39 6 
19 11 20 42 8 

AVERAGE: 10.21 19.11 38.95 7.0 
Table 17: B Channel – GLCM Contrast Metric – % Outliers 

 

 The above GLCM Contrast metric tables show the same trends as the MF metric in 

terms of performance of each of the texture models.  However, there is more distinct 

separation between performance metric values for this metric, since it is more detailed in 

that it describes spatial structure in a more thorough and intelligent manner.  The average 

values of the absolute difference images for each of the texture regions always followed the 

ranking prescribed above using the MF metric.  That is, the values were always lowest (and 

thus better in terms of performance) for the FM model.  The second-best performance was 
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by the SBP model, which itself performed just as well or better than the MBP model for all 

regions, although the values were quite close in some cases.  Once again, the GLCM 

Contrast metric indicated that the TS model performed the poorest of the four models.  In 

order to fully verify that the same rank ordering should be maintained based on the GLCM 

Contrast metric, the variance-thresholded images had to be compared for each region and 

each model.  By following the same process of subtracting corresponding threshold images 

as outlined in Section 5.3.1, it was confirmed that the magnitudes of the deviation of higher 

ranked models were often negligibly small for many features.  In fact, if an additional 

threshold was set to eliminate pixel values of less than 0.1 for this new difference image, 

then the effective percentage of outliers for the FM model was drastically reduced (usually 

with maxima of approximately 2%), while that for the SBP and MBP models was 

approximately 5% to 8% respectively.  The comparison of the absolute difference images for 

each texture region also confirmed that this ranking was correct, since all corresponding 

pixel values of the metric images followed this trend (i.e., the FM model contained the 

lowest values in the difference image, followed by the SBP, MBP, and TS models).  The only 

exceptions to this were the same as that found with the MF metric; that is, the difference 

between the SBP and MBP models was sometimes negligibly small, and the TS models 

performed just as well as the MBP (and sometimes the SBP model as well) for the asphalt, 

track, and building rooftop test regions. 

 The results for each model using the GLCM Correlation feature are presented next.  

The mathematical formula for the GLCM Correlation feature tends to produce very large 

numbers.  Therefore, the variance threshold will be much larger for the Correlation feature 

than it was for the Contrast GLCM feature.  For this reason (as well as those stated above), 

the following synopsis tables will consist solely of the percentage of outliers for each region 

and each texture model. 
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R Channel – GLCM Cor Metric – % Outliers 
Region SBP MBP TS FM 

1 11 24 44 7 
2 15 22 48 7 
3 12 20 46 9 
4 10 19 46 10 
5 12 22 47 9 
6 10 26 45 7 
7 9 23 43 6 
8 10 25 44 6 
9 11 22 44 9 
10 14 20 42 7 
11 16 24 47 8 
12 13 26 48 7 
13 11 23 48 9 
14 10 26 49 7 
15 9 22 46 6 
16 9 19 50 6 
17 10 21 47 9 
18 13 20 46 8 
19 11 24 49 6 

AVERAGE: 11.37 22.53 46.26 7.53 
Table 18: R Channel – GLCM Correlation Metric – % Outliers 

G Channel – GLCM Cor Metric – % Outliers 
Region SBP MBP TS FM 

1 12 26 39 8 
2 10 25 41 8 
3 13 21 44 6 
4 13 26 42 8 
5 15 20 42 7 
6 12 27 40 8 
7 10 26 38 8 
8 10 22 41 6 
9 14 24 44 8 
10 11 23 38 9 
11 12 27 47 8 
12 10 29 47 9 
13 12 24 49 9 
14 14 28 45 7 
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15 14 27 48 6 
16 13 24 47 6 
17 10 28 49 5 
18 13 22 46 8 
19 12 23 48 8 

AVERAGE: 12.11 24.84 43.95 7.47 
Table 19: G Channel – GLCM Correlation Metric – % Outliers 

B Channel – GLCM Cor Metric – % Outliers 
Region SBP MBP TS FM 

1 13 25 38 7 
2 15 24 44 7 
3 10 28 42 9 
4 14 26 45 7 
5 16 24 41 7 
6 12 26 39 6 
7 17 29 37 6 
8 14 30 38 9 
9 12 22 42 7 
10 17 24 37 7 
11 14 22 44 9 
12 12 25 45 6 
13 11 26 48 8 
14 10 26 48 8 
15 14 28 49 6 
16 12 24 46 9 
17 15 25 50 5 
18 17 29 45 8 
19 11 23 48 9 

AVERAGE: 13.47 25.58 43.47 7.37 
Table 20: B Channel – GLCM Correlation Metric – % Outliers 

 

 The Correlation feature of the GLCM metric exhibits the same discriminative power 

as the Contrast feature based on the analysis of percentage of outliers from the threshold.  

Although the number of outliers is slightly higher for the Correlation feature than the 

Contrast feature, the same trend of performance ranking is seen as with the GLCM Contrast 

and MF metrics.  This metric also indicates much better performance for the asphalt, track, 
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and rooftop materials for the TS model, since the values for these regions (#1, #7, and #10) 

are closer to those of the three other models.  It was originally intended to present a 

sampling of output GLCM Contrast and Correlation features within this document.  

However, due to the extremely large number of texture test regions for both the CitiPix and 

HYDICE ARM imagery, and considering that a sampling of each real image, each texture 

model, each spectral band and corresponding feature would have to be shown, the image 

results have not been included here.  These metric images have been stored electronically 

and they can be accessed upon request to the author.  The synopsis tables and subsequent 

analysis are much more diagnostic and indicative of texture model performance than a visual 

analysis of the metric imagery, and thus their inclusion was deemed unnecessary. 

 

5.3.3  SCM Metric 

 Although the spatial-spectral SCM metric has been designed for use with imagery of 

larger spectral dimension, it can be applied nonetheless even on imagery consisting of only a 

few spectral bands, such as the CitiPix data.  In this case, the least correlated band pair (Red-

Blue) was used for the analysis.  The following table is a synopsis of the results observed for 

each texture region using all four texture models. 

 

R-B Channels – SCM Con Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 11.3 33.25 26.7 1.05 

2 0.74 11.95 42.67 0.21 

3 3.31 23.76 39.86 4.42 

4 1.54 17.68 31.29 2.97 

5 11.38 42.33 53.92 1.39 

6 9.41 34.06 54.31 1.1 

7 16.39 52.70 12.12 0.97 

8 11.23 23.95 24.69 4.53 
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9 12.74 43.17 48.29 1.61 

10 35.46 101.15 39.26 4.67 

11 10.76 42.6 56.41 3.20 

12 14.79 48.12 57.76 3.36 

13 10.92 43.31 56.59 5.05 

14 4.24 12.20 37.27 3.98 

15 2.02 15.40 25.54 1.97 

16 14.91 67.30 76.77 1.01 

17 19.87 52.91 26.98 3.83 

18 4.27 23.70 43.74 4.02 

19 19.79 37.98 68.79 10.92 

AVERAGE: 11.32 38.29 43.31 3.17 
Table 21: R-B Channels – SCM Contrast Metric – Average Value of Absolute Difference 

Image 
 

R-B Channels – SCM Con Metric – % Outliers 
Region SBP MBP TS FM 

1 11 19 42 6 
2 15 22 47 8 
3 14 24 49 5 
4 16 22 44 7 
5 13 21 47 9 
6 13 20 49 6 
7 15 25 41 8 
8 18 19 45 7 
9 13 16 46 9 
10 12 19 40 5 
11 11 22 49 8 
12 14 23 53 10 
13 18 19 51 9 
14 13 21 49 9 
15 16 20 48 7 
16 14 25 46 9 
17 17 23 49 8 
18 15 27 47 10 
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19 14 23 48 7 
AVERAGE: 17.89 21.58 51.89 7.74 

Table 22: R-B Channels – SCM Contrast Metric – % Outliers 

 This metric performs the exact same operation as the GLCM metric, except the base 

and shift processing windows are in different user-specified spectral bands.  The values are 

therefore indicative of both spatial and spectral fidelity, since spatial structure and spectral 

correlation across the Red and Blue channels are being measured.  It was not expected to 

obtain much new information with the SCM metric for the CitiPix data, since the spectral 

bands are very well correlated across the visible region.  It will however specify that the 

spatial-spectral structure is not well represented if the metric produces a large value for a 

given test region.  Observing the range and average values of the absolute difference image 

values once again indicates that the ranking used above should be maintained, since the 

lowest values belong to the FM model image, while the SBP, MBP, and TS models follow 

respectively.  An important note is that, since this metric emphasizes spectral structure as 

well as spatial structure, we see that there is a larger gap between metric values of the SBP 

and MBP models.  This owes to the same phenomenon of over-constraining the z-score 

selection algorithm within the MBP model, which in effect causes the SBP model to perform 

better than the MBP model, which may initially appear to be a counter-intuitive result since 

the concept of the MBP model was designed in order to improve spatial-spectral fidelity 

across the entire spectral dimension.  It will be interesting to see if this result is reversed for 

the metrics to be run on the HYDICE ARM imagery.   

 The comparison of absolute difference and thresholded images for each texture test 

region produced the same general result as obtained with the GLCM Contrast metric and 

thus suggested the same rank ordering of the models.  The only significant difference in the 

results between the GLCM and SCM Contrast metrics is that there was more separation 

between the SBP and MBP models using the SCM metric.  One will also notice that regions 

1, 7, and 10 (asphalt, track, and building rooftop) are sometimes characterized just as well as 

the MBP model due to the lack of within-material class transitions and/or large-scale 

structures that typically produce challenges for the TS model. 
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As discussed earlier, the FM texture model assigns only one spectral reflectance 

curve to each end member and then re-mixes the fractional abundance planes into a 

synthetic image.  For this reason, the spatial fidelity was expected to be quite good, while the 

spectral dimension had the potential to suffer.  This is not true for the CitiPix data, since the 

choice of an adequate spectral reflectance curve to fully characterize the end member is less 

crucial over such a well-correlated spectral bandpass.  As such, the reflectance curve to be 

coupled with each fractional abundance map becomes more sensitive to errors as the 

spectral dimension increases.  Therefore, the rendering of the HYDICE ARM image will 

present much more of a challenge to the FM model. 

The SCM Correlation metric results are presented below, which again only shows the 

percentage of outliers from the threshold image for each texture test region.   

 

R-B Channels – SCM Cor Metric – % Outliers 
Region SBP MBP TS FM 

1 14 25 44 8 
2 17 27 45 10 
3 15 28 49 7 
4 16 24 43 9 
5 16 22 41 10 
6 14 21 42 11 
7 18 23 47 8 
8 17 29 46 7 
9 19 26 47 9 
10 12 28 49 7 
11 14 25 48 6 
12 11 27 48 8 
13 16 21 44 10 
14 18 25 45 7 
15 10 28 48 6 
16 15 26 42 6 
17 18 29 41 8 
18 16 23 45 9 
19 19 29 46 10 

AVERAGE: 15.52 25.58 45.26 8.21 
Table 23: R-B Channels – SCM Correlation Metric – % Outliers 
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As anticipated, these results reinforce the ranking of the texture characterization 

models once more.  The TS model once again shows similarly good performance for the 

same three regions as indicated with the other metric results.  For all of the above metrics, 

the behavior for the tree test region (#8) has been somewhat more volatile than for the 

other regions.  This is because of the high level of inherent variability for the tree leaves in 

the scene.  This is the only transmissive material in the image, and extinction files have been 

included for the SBP, MBP, and FM models in order to characterize the shadows and 

brighter leaves within the tree canopies.  The TS model simply treated the trees as it would 

any other material, and thus does not exhibit transmissive properties.  Also, the abrupt 

transition regions in the TS image have been evident especially for the GLCM and SCM 

metrics. This is most noticeable in the Correlation tables, where the number of outliers for 

the transition region textures (regions #11 - #19) is much greater than for the other three 

models.  The final rankings of each model are presented in Section 5.5 so that the HYDICE 

ARM imagery results can also be accounted for when assessing overall performance.  

However, an interim summary table is presented below which provides the average of the 

averages tallied in each of the above tables.  That is, the average values of the % outliers and 

the average value of the absolute difference images have been averaged over all metrics and 

all three spectral bands and reported in Table 24.  The rankings for each measure are 

included beside the entries.  The final rankings for the CitiPix data is then: 1. FM model; 2. 

SBP model; 3. MBP model; and 4. TS model. 

 

Texture Model AVG % Outliers AVG Average Value 

SBP 12.12 (2) 2.25 (2) 

MBP 20.57 (3) 6.98 (3) 

TS 38.15 (4) 9.63 (4) 

FM 6.93 (1) 0.66 (1) 

Table 24: Averaged values of all metrics and spectral bands for CitiPix data based on 
percentage of outliers from threshold and average value of absolute difference images.  The 

rankings for each measure are included beside each entry. 
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5.4  HYDICE ARM Metric Results 

 This section presents a detailed analysis of the results obtained from the application 

of the MF, GLCM, SCR, and SCM performance metrics for each of the 15 texture test 

regions of the HYDICE ARM data set, for the eight representative spectral bands listed 

earlier (bands 20, 32, 65, 95, 115, 157, 184, and 195).  All four metrics have been applied to 

all 15 regions of the eight spectral bands for the output DIRSIG imagery from the four 

tested texture models.  The methodology for analyzing the metric results is completely 

analogous to that of the CitiPix data presented in Section 5.3.  The percentage of outliers 

from the variance threshold images and the average values of the absolute difference images 

for each texture region, as well as the average value of each of the absolute difference images 

will be presented in the following tables.  In parentheses, the ranking for each texture test 

region has also been included.  The last row of each table indicates the average value and 

ranking for the particular feature being investigated. 

5.4.1  MF Metric 

 The following tables provide a summary of the results obtained using the spatial MF 

metric on the rendered HYDICE ARM DIRSIG imagery for all four texture characterization 

models. 
Band 20 – MF Metric – Avg Value of Absolute Difference Image 

Region SBP MBP TS FM 
1 0.90 (3) 0.87 (2) 1.4 (4) 0.21 (1) 

2 0.43 (3) 0.19 (2) 0.51 (4) 0.16 (1) 

3 0.41 (3) 0.042 (1) 0.49 (4) 0.06 (2) 

4 0.37 (3) 0.17 (2) 0.46 (4) 0.11 (1) 

5 0.076 (1) 0.12 (3) 0.51 (4) 0.09 (2) 

6 0.67 (3) 0.42 (2) 0.70 (4) 0.08 (1) 

7 0.89 (3) 0.78 (2) 0.92 (4) 0.36 (1) 

8 0.29 (4) 0.14 (2) 0.26 (3) 0.12 (1) 

9 8.70 (2) 8.85 (3) 9.2 (4) 0.46 (1) 

10 0.42 (2) 0.48 (3) 1.1 (4) 0.11 (1) 

11 1.20 (3) 1.02 (2) 1.31 (4) 0.36 (1) 
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12 2.31 (3) 1.27 (2) 3.27 (4) 0.19 (1) 

13 0.66 (3) 0.305 (2) 1.1 (4) 0.22 (1) 

14 2.84 (3) 1.91 (2) 3.01 (4) 0.52 (1) 

15 1.21 (2) 1.46 (3) 3.6 (4) 1.02 (1) 

AVERAGE: 1.43 (2.73) 1.20 (2.2) 1.86 (3.93) 0.27 (1.13) 
 

Band 32 – MF Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 0.7 (3) 0.32 (2) 0.81 (4) 0.22 (1) 

2 1.2 (4) 0.51 (2) 1.19 (3) 0.21 (1) 

3 0.24 (3) 0.14 (2) 0.26 (4) 0.13 (1) 

4 0.62 (4) 0.23 (2) 0.47 (3) 0.18 (1) 

5 0.27 (2) 0.3 (3) 0.49 (4) 0.21 (1) 

6 1.08 (3) 0.48 (2) 1.12 (4) 0.28 (1) 

7 1.01 (3) 0.71 (2) 1.31 (4) 0.20 (1) 

8 0.72 (4) 0.37 (2) 0.38 (3) 0.15 (1) 

9 10.7 (4) 6.4 (2) 9.1 (3) 0.81 (1) 

10 0.9 (3) 0.86 (2) 1.02 (4) 0.20 (1) 

11 1.56 (3) 0.99 (2) 1.6 (4) 0.32 (1) 

12 2.23 (3) 1.31 (2) 3.46 (4) 0.29 (1) 

13 1.01 (3) 0.74 (2) 1.15 (4) 0.21 (1) 

14 3.64 (3) 1.65 (2) 3.71 (4) 0.42 (1) 

15 4.1 (3) 1.52 (2) 4.9 (4) 1.21 (1) 

AVERAGE: 2.0 (3.2) 1.10 (2.07) 2.06 (3.73) 0.34 (1) 
 

Band 65 – MF Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 5.46 (3) 4.31 (2) 5.6 (4) 0.51 (1) 

2 5.1 (4) 3.29 (2) 4.02 (3) 0.41 (1) 

3 1.84 (4) 1.1 (2) 1.767 (3) 0.46 (1) 

4 1.47 (4) 0.67 (2) 1.38 (3) 0.34 (1) 

5 4.12 (4) 1.47 (2) 3.87 (3) 0.26 (1) 

6 2.23 (4) 1.1 (2) 2.1 (3) 0.32 (1) 

7 6.72 (4) 2.01 (2) 3.89 (3) 0.61 (1) 



 155

8 2.79 (4) 2.37 (2) 2.64 (3) 0.32 (1) 

9 7.07 (4) 1.06 (2) 4.4 (3) 0.28 (1) 

10 10.13 (4) 2.98 (2) 5.82 (3) 0.46 (1) 

11 2.22 (3) 1.0 (2) 3.4 (4) 0.21 (1) 

12 6.89 (3) 2.11 (2) 9.1 (4) 0.33 (1) 

13 5.78 (4) 1.69 (2) 3.1 (3) 0.37 (1) 

14 5.28 (3) 3.1 (2) 9.6 (4) 1.2 (1) 

15 3.98 (3) 2.52 (2) 8.6 (4) 0.76 (1) 

AVERAGE: 4.74 (3.67) 2.05 (2) 4.62 (3.33) 0.46 (1) 
 

Band 95 – MF Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 5.83 (4) 3.72 (2) 5.79 (3) 0.37 (1) 

2 3.89 (4) 2.72 (2) 3.71 (3) 0.37 (1) 

3 1.91 (4) 1.41 (2) 1.9 (3) 0.26 (1) 

4 1.62 (4) 0.93 (2) 1.48 (3) 0.91 (1) 

5 2.35 (4) 0.72 (2) 1.67 (3) 0.14 (1) 

6 1.75 (3) 1.71 (2) 2.15 (4) 0.59 (1) 

7 2.35 (4) 1.63 (2) 2.29 (3) 0.92 (1) 

8 1.98 (4) 1.41 (2) 1.89 (3) 0.13 (1) 

9 7.2 (4) 1.22 (2) 4.2 (3) 0.56 (1) 

10 4.82 (4) 2.56 (2) 4.59 (3) 0.67 (1) 

11 3.38 (3) 3.03 (2) 3.39 (4) 0.66 (1) 

12 6.56 (3) 2.16 (2) 7.02 (4) 0.36 (1) 

13 3.42 (4) 2.02 (2) 3.14 (3) 0.39 (1) 

14 7.36 (3) 2.77 (2) 7.5 (4) 0.43 (1) 

15 4.91 (3) 1.98 (2) 5.13 (4) 1.1 (1) 

AVERAGE: 3.96 (3.67) 2.0 (2) 3.72 (3.33) 0.52 (1) 
 

Band 115 – MF Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 4.98 (4) 2.76 (2) 3.96 (3) 0.27 (1) 

2 1.43 (3) 0.27 (2) 2.9 (4) 0.24 (1) 

3 1.86 (4) 0.83 (2) 1.79 (3) 0.31 (1) 
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4 1.43 (3) 0.64 (2) 1.52 (4) 0.17 (1) 

5 1.48 (4) 1.26 (2) 1.46 (3) 0.29 (1) 

6 1.97 (4) 0.889 (2) 1.93 (3) 0.09 (1) 

7 9.26 (4) 6.4 (2) 9.03 (3) 0.69 (1) 

8 0.97 (3) 0.96 (2) 1.04 (4) 0.17 (1) 

9 6.13 (3) 4.01 (2) 6.84 (4) 0.53 (1) 

10 6.1 (4) 2.45 (2) 4.67 (3) 0.59 (1) 

11 9.4 (4) 4.74 (2) 8.7 (3) 0.22 (1) 

12 5.58 (3) 2.97 (2) 5.7 (4) 0.44 (1) 

13 3.53 (4) 2.11 (2) 3.3 (3) 0.20 (1) 

14 6.07 (3) 2.45 (2) 6.1 (4) 0.66 (1) 

15 3.47 (3) 2.04 (2) 3.9 (4) 0.28 (1) 

AVERAGE: 4.24 (3.53) 2.32 (2) 4.19 (3.47) 0.34 (1) 
 

Band 157 – MF Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 10.6 (4) 4.95 (2) 9.7 (3) 1.07 (1) 

2 2.29 (4) 1.02 (2) 2.21 (3) 0.98 (1) 

3 2.76 (4) 1.46 (2) 2.6 (3) 0.92 (1) 

4 2.09 (3) 0.9 (2) 2.3 (4) 0.87 (1) 

5 2.74 (3) 1.58 (2) 2.91 (4) 0.59 (1) 

6 4.47 (4) 1.24 (2) 3.93 (3) 1.14 (1) 

7 10.2 (3) 9.13 (2) 10.27 (4) 0.76 (1) 

8 1.15 (2) 1.18 (3) 1.19 (4) 0.52 (1) 

9 5.94 (2) 7.02 (3) 11.3 (4) 0.83 (1) 

10 8.8 (4) 2.97 (2) 6.44 (3) 1.12 (1) 

11 8.4 (4) 3.98 (2) 7.6 (3) 1.5 (1) 

12 7.03 (4) 3.12 (2) 6.91 (3) 0.61 (1) 

13 5.45 (4) 3.97 (2) 5.2 (3) 0.68 (1) 

14 7.43 (4) 5.31 (2) 6.98 (3) 1.64 (1) 

15 5.56 (3) 2.11 (2) 9.2 (4) 1.2 (1) 

AVERAGE: 5.66 (3.47) 3.33 (2.13) 5.92 (3.4) 0.96 (1) 
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Band 184 – MF Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 7.45 (4) 5.61 (2) 7.27 (3) 0.29 (1) 

2 1.77 (4) 0.21 (2) 1.54 (3) 0.2 (1) 

3 1.98 (4) 0.41 (2) 1.91 (3) 0.37 (1) 

4 2.1 (3) 1.72 (2) 2.7 (4) 0.98 (1) 

5 1.69 (4) 1.09 (2) 1.6 (3) 0.18 (1) 

6 2.4 (4) 1.04 (2) 2.1 (3) 0.76 (1) 

7 12.47 (4) 8.07 (2) 10.98 (3) 0.63 (1) 

8 1.23 (4) 1.12 (2) 1.21 (3) 0.14 (1) 

9 10.2 (2) 10.92 (3) 11.8 (4) 0.56 (1) 

10 4.73 (4) 2.33 (2) 4.3 (3) 0.81 (1) 

11 7.97 (4) 4.2 (2) 7.3 (3) 0.34 (1) 

12 3.92 (3) 1.56 (2) 4.2 (4) 0.43 (1) 

13 6.25 (4) 2.01 (2) 5.5 (3) 0.54 (1) 

14 8.6 (4) 4.4 (2) 8.4 (3) 1.61 (1) 

15 5.34 (3) 2.96 (2) 10.2 (4) 1.01 (1) 

AVERAGE: 5.21 (3.67) 3.18 (2.07) 5.40 (3.27) 0.59 (1) 
 

Band 195 – MF Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 8.92 (4) 5.93 (2) 8.2 (3) 0.31 (1) 

2 1.97 (4) 0.38 (2) 1.72 (3) 0.23 (1) 

3 2.86 (4) 1.21 (2) 2.41 (3) 0.54 (1) 

4 3.93 (3) 0.98 (2) 3.97 (4) 0.30 (1) 

5 1.99 (4) 1.42 (2) 1.89 (3) 0.16 (1) 

6 2.7 (4) 0.91 (2) 2.3 (3) 0.62 (1) 

7 10.85 (4) 7.26 (2) 9.67 (3) 0.18 (1) 

8 1.13 (3) 1.54 (4) 1.09 (2) 0.27 (1) 

9 9.7 (3) 9.1 (2) 12.2 (4) 1.49 (1) 

10 6.2 (4) 3.61 (2) 5.1 (3) 0.76 (1) 

11 7.79 (4) 3.26 (2) 6.93 (3) 0.17 (1) 

12 5.94 (4) 1.99 (2) 5.6 (3) 0.71 (1) 

13 6.99 (4) 3.57 (2) 6.1 (3) 0.42 (1) 
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14 7.14 (4) 3.73 (2) 6.89 (3) 2.31 (1) 

15 5.77 (3) 2.32 (2) 6.2 (4) 0.42 (1) 

AVERAGE: 5.59 (3.73) 3.15 (2.13) 5.35 (3.13) 0.59 (1) 
Table 25: Average value of absolute difference images for MF Metric. 

 
Band 20 – MF Metric – % Outliers 

Region SBP MBP TS FM 
1 16 (3) 9 (2) 29 (4) 5 (1) 

2 17 (3) 11 (2) 31 (4) 5 (1) 

3 17 (3) 10 (2) 36 (4) 7 (1) 

4 15 (3) 8 (2) 35 (4) 6 (1) 

5 19 (3) 9 (2) 36 (4) 7 (1) 

6 21 (3) 9 (2) 28 (4) 7 (1) 

7 23 (3) 10 (2) 35 (4) 8 (1) 

8 18 (3) 13 (2) 39 (4) 5 (1) 

9 19 (3) 12 (2) 29 (4) 5 (1) 

10 24 (3) 9 (2) 33 (4) 7 (1) 

11 23 (3) 11 (2) 31 (4) 5 (1) 

12 22 (3) 13 (2) 37 (4) 6 (1) 

13 20 (3) 12 (2) 39 (4) 8 (1) 

14 21 (3) 12 (2) 36 (4) 5 (1) 

15 17 (3) 9 (2) 38 (4) 5 (1) 

AVERAGE: 19.47 (3) 10.47 (2) 34.13 (4) 6.07 (1) 
 

Band 32 – MF Metric – % Outliers 
Region SBP MBP TS FM 

1 14 (3) 12 (2) 31 (4) 6 (1) 

2 18 (3) 11 (2) 33 (4) 5 (1) 

3 19 (3) 10 (2) 30 (4) 5 (1) 

4 17 (3) 13 (2) 29 (4) 7 (1) 

5 16 (3) 11 (2) 27 (4) 5 (1) 

6 19 (3) 9 (2) 32 (4) 6 (1) 

7 18 (3) 9 (2) 35 (4) 6 (1) 

8 22 (3) 11 (2) 34 (4) 5 (1) 

9 23 (3) 9 (2) 34 (4) 7 (1) 
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10 21 (3) 8 (2) 31 (4) 7 (1) 

11 20 (3) 10 (2) 30 (4) 6 (1) 

12 18 (3) 11 (2) 28 (4) 7 (1) 

13 21 (3) 10 (2) 29 (4) 5 (1) 

14 23 (3) 9 (2) 31 (4) 5 (1) 

15 19 (3) 11 (2) 34 (4) 5 (1) 

AVERAGE: 19.2 (3) 10.27 (2) 31.2 (4) 5.8 (1) 
 

Band 65 – MF Metric – % Outliers 
Region SBP MBP TS FM 

1 25 (3) 10 (2) 29 (4) 6 (1) 

2 27 (3) 11 (2) 35 (4) 5 (1) 

3 29 (3) 9 (2) 31 (4) 5 (1) 

4 24 (3) 9 (2) 33 (4) 5 (1) 

5 26 (3) 10 (2) 35 (4) 7 (1) 

6 25 (3) 13 (2) 27 (4) 8 (1) 

7 28 (3) 14 (2) 31 (4) 6 (1) 

8 31 (3) 12 (2) 33 (4) 6 (1) 

9 35 (4) 10 (2) 34 (3) 5 (1) 

10 36 (3) 11 (2) 38 (4) 5 (1) 

11 35 (3) 13 (2) 39 (4) 5 (1) 

12 34 (3) 11 (2) 35 (4) 5 (1) 

13 38 (4) 10 (2) 35 (3) 6 (1) 

14 39 (3) 9 (2) 39 (4) 6 (1) 

15 33 (3) 11 (2) 41 (4) 5 (1) 

AVERAGE: 31 (3.13) 10.87 (2) 34.33 (3.87) 5.67 (1) 
 

Band 95 – MF Metric – % Outliers 
Region SBP MBP TS FM 

1 29 (3) 12 (2) 30 (4) 5 (1) 

2 34 (3) 12 (2) 36 (4) 6 (1) 

3 33 (3) 11 (2) 35 (4) 6 (1) 

4 36 (4) 10 (2) 34 (3) 6 (1) 

5 34 (3) 12 (2) 38 (4) 7 (1) 
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6 32 (3) 9 (2) 39 (4) 6 (1) 

7 31 (3) 9 (2) 33 (4) 6 (1) 

8 29 (3) 10 (2) 36 (4) 5 (1) 

9 33 (4) 12 (2) 32 (3) 5 (1) 

10 39 (4) 12 (2) 36 (3) 6 (1) 

11 36 (4) 13 (2) 34 (3) 5 (1) 

12 38 (4) 13 (2) 37 (3) 5 (1) 

13 37 (3) 11 (2) 39 (4) 6 (1) 

14 39 (3) 10 (2) 41 (4) 6 (1) 

15 40 (4) 9 (2) 39 (3) 5 (1) 

AVERAGE: 34.67 (3.4) 11 (2) 35.93 (3.6) 5.67 (1) 
 

Band 115 – MF Metric – % Outliers 
Region SBP MBP TS FM 

1 29 (3) 12 (2) 34 (4) 6 (1) 

2 33 (4) 11 (2) 31 (3) 5 (1) 

3 36 (4) 9 (2) 32 (3) 5 (1) 

4 39 (4) 10 (2) 36 (3) 5 (1) 

5 41 (4) 10 (2) 38 (3) 5 (1) 

6 44 (4) 11 (2) 37 (3) 7 (1) 

7 43 (4) 13 (2) 39 (3) 5 (1) 

8 47 (4) 12 (2) 40 (3) 5 (1) 

9 48 (4) 12 (2) 44 (3) 7 (1) 

10 43 (4) 12 (2) 41 (3) 5 (1) 

11 41 (3) 11 (2) 41 (3) 6 (1) 

12 40 (4) 10 (2) 37 (3) 6 (1) 

13 44 (4) 9 (2) 38 (3) 5 (1) 

14 42 (4) 10 (2) 39 (3) 5 (1) 

15 46 (4) 9 (2) 39 (3) 6 (1) 

AVERAGE: 41.07 (3.87) 10.73 (2) 37.73 (3.07) 5.67 (1) 
 

Band 157 – MF Metric – % Outliers 
Region SBP MBP TS FM 

1 39 (4) 10 (2) 37 (3) 5 (1) 
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2 34 (3) 9 (2) 36 (4) 5 (1) 

3 36 (4) 9 (2) 33 (3) 5 (1) 

4 36 (4) 11 (2) 31 (3) 6 (1) 

5 38 (4) 10 (2) 31 (3) 6 (1) 

6 33 (4) 12 (2) 32 (3) 5 (1) 

7 39 (4) 12 (2) 32 (3) 5 (1) 

8 38 (4) 13 (2) 31 (3) 7 (1) 

9 41 (4) 10 (2) 35 (3) 7 (1) 

10 40 (4) 9 (2) 34 (3) 5 (1) 

11 42 (4) 9 (2) 33 (3) 5 (1) 

12 46 (4) 12 (2) 33 (3) 6 (1) 

13 44 (4) 10 (2) 38 (3) 5 (1) 

14 43 (4) 11 (2) 39 (3) 5 (1) 

 15 41 (4) 11 (2) 37 (3) 5 (1) 

AVERAGE: 39.33 (3.93) 10.53 (2) 34.13 (3.07) 5.47 (1) 
 

Band 184 – MF Metric – % Outliers 
Region SBP MBP TS FM 

1 38 (3) 11 (2) 39 (4) 6 (1) 

2 35 (4) 10 (2) 34 (3) 6 (1) 

3 39 (4) 10 (2) 34 (3) 5 (1) 

4 41 (4) 10 (2) 36 (3) 5 (1) 

5 45 (4) 13 (2) 37 (3) 5 (1) 

6 46 (4) 12 (2) 33 (3) 5 (1) 

7 41 (4) 11 (2) 39 (3) 7 (1) 

8 42 (4) 12 (2) 40 (3) 6 (1) 

9 39 (4) 9 (2) 37 (3) 7 (1) 

10 44 (4) 10 (2) 39 (3) 5 (1) 

11 42 (3) 10 (2) 42 (3) 5 (1) 

12 45 (4) 9 (2) 42 (3) 5 (1) 

13 42 (4) 12 (2) 40 (3) 5 (1) 

14 41 (4) 10 (2) 40 (3) 6 (1) 

15 47 (4) 11 (2) 44 (3) 5 (1) 

AVERAGE: 41.8 (3.87) 10.67 (2) 38.4 (3.07) 5.53 (1) 
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Band 195 – MF Metric – % Outliers 

Region SBP MBP TS FM 
1 41 (3) 11 (2) 41 (3) 7 (1) 

2 44 (4) 9 (2) 40 (3) 6 (1) 

3 46 (4) 9 (2) 43 (3) 5 (1) 

4 48 (4) 11 (2) 38 (3) 5 (1) 

5 48 (4) 10 (2) 37 (3) 5 (1) 

6 47 (4) 9 (2) 37 (3) 5 (1) 

7 49 (4) 12 (2) 39 (3) 5 (1) 

8 44 (4) 12 (2) 40 (3) 6 (1) 

9 46 (4) 11 (2) 42 (3) 6 (1) 

10 48 (4) 13 (2) 42 (3) 5 (1) 

11 49 (4) 11 (2) 43 (3) 7 (1) 

12 44 (4) 13 (2) 41 (3) 6 (1) 

13 45 (4) 12 (2) 38 (3) 5 (1) 

14 45 (4) 11 (2) 39 (3) 6 (1) 

15 49 (4) 9 (2) 44 (3) 5 (1) 

AVERAGE: 46.2 (3.93) 10.87 (2) 40.27 (3) 5.53 (1) 
Table 26: Percentage of outliers from variance threshold for MF metric. 

 

 The above synopsis tables exhibit some very noticeable trends.  The first and most 

obvious result is that the FM model contains the lowest values for the average value (and 

range of values) within the absolute difference images, thereby indicating the best overall 

performance.  This was verified by analyzing the corresponding absolute difference images 

for each region and model, and subtracting the FM model result from the results of the SBP, 

MBP, and TS models.  All pixel values in the TS and SBP models were larger than the FM 

model values, while the MBP model contained the closest values to that of the FM model.  

In general, the values of the MBP model images were all greater than or equal to the values 

of the FM model metric images, with the exception of eleven pixels (out of all fifteen 

regions) for which the MBP value was negligibly smaller than that of the corresponding FM 

model pixel, where the difference value was less than 10-5.   
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 The magnitude of the deviation from the threshold image for each region was also 

investigated for all texture model results.  This provided a confirmation of the results of the 

percentage of outliers from the threshold.  Both the average values of the absolute difference 

images and the percentage of outliers suggest the same ranking of texture models based on 

the MF metric alone.  

Although it was clear that the FM model contained values indicating the best overall 

performance, the results were not always as clear for the remaining models.  For example, 

the reader will notice that the absolute difference image average values for the MBP and SBP 

models do not show a completely consistent trend since the earlier bands (such as bands 20 

and 32) contain very similar values, while the performance tends to diverge for the remaining 

spectral bands.  In a few rare cases the average values and corresponding pixel values in the 

absolute difference images were slightly lower in the SBP than the MBP results, but in 

general the values of the MBP images were less than or equal to those of the SBP model.  

This is an intuitively expected result, since the single texture image bandpass used for 

texturing the SBP model scene was band 20, and thus the performance is quite good in 

bands 20 and 32 which are relatively well-correlated.  For bands 65, 95, 115, 157, 184, and 

195, there is a much more significant gap between the metric values for the MBP and SBP 

models, indicating superior performance by the MBP model.  This is due to the noisy later 

spectral bands of the SBP image (shown in Section 5.2) due to incorrect spectral reflectance 

curve selection for non-correlated spectral bands.   

 As for the TS model, it generally contained the largest numbers in the range and 

average of the absolute difference images.  Its MF metric image pixel values were all greater 

than that of the FM and MBP models, while they were sometimes comparable to that of the 

SBP model.  For the earlier bands (20 and 32), the SBP model contained mostly lower values 

than the TS model, while in the later spectral bands the performance metric values oscillated 

between the models.  It is therefore difficult to assign a clear relative ranking of the SBP and 

TS models using the MF metric alone for these later spectral bands.  However, by assigning 

a weight to the SBP model for its superior performance in the earlier region of the spectrum, 
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a preliminary ranking based on the MF metric can be assigned for reference purposes.  It is 

expected that the use of the other texture performance metrics will be able to further 

discriminate the performance of the models.  The tentative ranking based on the MF metric 

results is: 

 a. FM model; 

 b. MBP model; 

 c. SBP model; and 

 d. TS model. 

The following section will present the results of the more detailed spatial GLCM metric on 

the same texture test regions for all four texture models. 

 

5.4.2  GLCM Metric 

 The following tables provide a synopsis of the values obtained through the 

application of the GLCM Contrast metric on the rendered HYDICE ARM DIRSIG 

imagery: 
Band 20 – GLCM Con Metric – Avg Value of Absolute Difference Image 

Region SBP MBP TS FM 
1 0.72 (3) 1.1 (2) 1.98 (4) 0.66 (1) 

2 0.042 (3) 0.02 (1) 1.6 (4) 0.02 (1) 

3 0.05 (2) 0.06 (3) 0.32 (4) 0.035 (1) 

4 0.31 (3) 0.21 (2) 0.74 (4) 0.16 (1) 

5 0.063 (2) 0.07 (3) 0.15 (4) 0.03 (1) 

6 0.39 (4) 0.24 (2) 0.36 (3) 0.03 (1) 

7 0.61 (3) 0.22 (2) 3.1 (4) 0.05 (1) 

8 0.051 (3) 0.05 (2) 0.11 (4) 0.03 (1) 

9 21.92 (3) 6.2 (2) 102.7 (4) 4.2 (1) 

10 1.32 (3) 0.42 (2) 1.92 (4) 0.17 (1) 

11 1.9 (3) 1.1 (2) 2.36 (4) 0.39 (1) 

12 50.2 (3) 32.4 (2) 67.3 (4) 1.1 (1) 

13 0.47 (3) 0.31 (2) 1.98 (4) 0.20 (1) 

14 47.2 (3) 32.1 (2) 89.3 (4) 2.1 (1) 
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15 6.67 (3) 6.01 (2) 13.1 (4) 2.7 (1) 

AVERAGE: 8.79 (2.93) 5.37 (2.07) 19.13 (3.93) 0.79 (1) 
 

Band 32 – GLCM Con Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 1.64 (3) 1.62 (2) 2.07 (4) 1.34 (1) 

2 0.07 (3) 0.04 (2) 2.2 (4) 0.03 (1) 

3 0.21 (3) 0.08 (2) 1.1 (4) 0.05 (1) 

4 1.62 (4) 0.87 (2) 1.19 (3) 0.37 (1) 

5 0.10 (3) 0.09 (2) 0.98 (4) 0.02 (1) 

6 0.74 (4) 0.49 (2) 0.52 (3) 0.18 (1) 

7 0.92 (2) 0.95 (3) 1.57 (4) 0.04 (1) 

8 0.13 (2) 0.14 (3) 0.16 (4) 0.09 (1) 

9 29.6 (3) 8.9 (2) 99.6 (4) 7.1 (1) 

10 1.4 (3) 1.1 (2) 2.6 (4) 0.28 (1) 

11 1.89 (4) 0.83 (2) 1.79 (3) 0.13 (1) 

12 32.3 (3) 21.3 (2) 68.4 (4) 2.7 (1) 

13 0.52 (3) 0.29 (2) 1.76 (4) 0.18 (1) 

14 49.96 (3) 33.1 (2) 96.1 (4) 2.0 (1) 

15 13.1 (3) 5.92 (2) 14.7 (4) 3.2 (1) 

AVERAGE: 8.95 (3.07) 5.05 (2.13) 19.65 (3.8) 1.18 (1) 
 

Band 65 – GLCM Con Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 12.12 (4) 4.73 (2) 10.3 (3) 3.8 (1) 

2 4.74 (3) 3.23 (2) 9.6 (4) 0.8 (1) 

3 3.74 (3) 1.32 (2) 10.2 (4) 0.59 (1) 

4 3.91 (4) 2.12 (2) 3.49 (3) 0.19 (1) 

5 15.54 (4) 3.76 (2) 13.3 (3) 1.1 (1) 

6 2.26 (4) 1.84 (2) 2.2 (3) 0.76 (1) 

7 27.4 (3) 9.63 (2) 46.3 (4) 0.43 (1) 

8 103.4 (4) 7.1 (2) 13.1 (3) 2.6 (1) 

9 66.7 (3) 25.2 (2) 79.2 (4) 19.6 (1) 

10 5.51 (3) 3.92 (2) 9.82 (4) 1.67 (1) 
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11 24.8 (4) 5.16 (2) 19.7 (3) 2.01 (1) 

12 25.2 (3) 8.37 (2) 82.1 (4) 2.9 (1) 

13 15.7 (4) 8.1 (2) 14.3 (3) 2.2 (1) 

14 47.9 (3) 13.2 (2) 103.4 (4) 6.6 (1) 

15 56.3 (3) 27.9 (2) 65.6 (4) 6.1 (1) 

AVERAGE: 27.68 (3.47) 8.37 (2) 32.17 (3.53) 3.42 (1) 
 

Band 95 – GLCM Con Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 14.78 (3) 12.4 (2) 14.9 (4) 3.91 (1) 

2 3.13 (3) 1.64 (2) 7.7 (4) 0.32 (1) 

3 3.42 (3) 1.12 (2) 7.9 (4) 0.62 (1) 

4 4.12 (3) 1.6 (2) 6.5 (4) 1.32 (1) 

5 2.08 (3) 1.1 (2) 2.2 (4) 0.12 (1) 

6 3.02 (3) 2.04 (2) 3.04 (4) 0.93 (1) 

7 13.9 (3) 8.2 (2) 49.6 (4) 0.96 (1) 

8 52.3 (4) 5.28 (2) 6.3 (3) 1.78 (1) 

9 78.3 (3) 32.1 (2) 82.1 (4) 27.4 (1) 

10 6.44 (3) 3.42 (2) 7.1 (4) 1.98 (1) 

11 9.33 (4) 6.47 (2) 8.99 (3) 1.6 (1) 

12 27.7 (3) 7.08 (2) 77.3 (4) 3.2 (1) 

13 7.37 (4) 5.34 (2) 6.2 (3) 2.1 (1) 

14 33.7 (3) 12.1 (2) 64.8 (4) 9.2 (1) 

15 19.8 (3) 13.4 (2) 49.7 (4) 9.4 (1) 

AVERAGE: 18.63 (3.2) 7.55 (2) 26.29 (3.8) 4.32 (1) 
 

Band 115 – GLCM Con Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 29.8 (3) 20.4 (2) 69.6 (4) 1.36 (1) 

2 3.81 (3) 1.12 (2) 12.2 (4) 0.39 (1) 

3 6.18 (4) 0.68 (2) 6.1 (3) 0.30 (1) 

4 2.49 (3) 1.01 (2) 9.6 (4) 0.10 (1) 

5 3.39 (3) 1.37 (2) 4.4 (4) 0.19 (1) 

6 5.12 (4) 2.03 (2) 4.1 (3) 0.89 (1) 
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7 17.21 (3) 10.2 (2) 34.9 (4) 0.92 (1) 

8 2.97 (4) 0.98 (2) 2.4 (3) 0.32 (1) 

9 119.7 (2) 313.2 (4) 137.6 (3) 15.2 (1) 

10 17.19 (3) 11.1 (2) 32.3 (4) 1.93 (1) 

11 67.61 (3) 23.8 (2) 71.2 (4) 2.2 (1) 

12 78.8 (3) 36.4 (2) 103.2 (4) 4.6 (1) 

13 24.7 (3) 17.6 (2) 25.2 (4) 1.1 (1) 

14 98.3 (3) 42.7 (2) 107.6 (4) 14.1 (1) 

15 104.7 (3) 71.2 (2) 106.4 (4) 3.1 (1) 

AVERAGE: 38.80 (3.2) 36.92 (2.13) 48.45 (3.73) 3.11 (1) 
 

Band 157 – GLCM Con Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 58.1 (3) 40.2 (2) 98.7 (4) 6.7 (1) 

2 5.82 (3) 1.96 (2) 11.1 (4) 1.1 (1) 

3 10.13 (3) 1.2 (2) 13.3 (4) 0.76 (1) 

4 4.32 (3) 1.3 (2) 12.9 (4) 0.93 (1) 

5 3.79 (3) 2.21 (2) 6.7 (4) 0.47 (1) 

6 5.36 (2) 5.93 (3) 6.41 (4) 1.62 (1) 

7 26.1 (3) 11.3 (2) 41.3 (4) 1.01 (1) 

8 7.19 (4) 0.78 (2) 1.61 (3) 0.45 (1) 

9 132.4 (3) 78.1 (2) 266.7 (4) 30.1 (1) 

10 23.8 (3) 19.2 (2) 42.6 (4) 5.1 (1) 

11 106.4 (4) 48.2 (2) 97.4 (3) 3.8 (1) 

12 149.4 (3) 97.4 (2) 176.2 (4) 6.2 (1) 

13 57.4 (4) 29.5 (2) 55.4 (3) 3.2 (1) 

14 122.4 (3) 67.9 (2) 124.6 (4) 11.4 (1) 

15 182.7 (4) 102.3 (2) 143.4 (3) 11.7 (1) 

AVERAGE: 59.69 (3.2) 33.83 (2.07) 73.22 (3.73) 5.64 (1) 
  

Band 184 – GLCM Con Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 72.3 (3) 29.7 (2) 74.3 (4) 3.2 (1) 

2 3.92 (3) 0.6 (2) 5.97 (4) 0.37 (1) 
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3 6.2 (4) 1.4 (3) 1.39 (2) 0.12 (1) 

4 8.86 (3) 6.68 (2) 9.7 (4) 0.76 (1) 

5 2.76 (3) 1.23 (2) 5.9 (4) 0.27 (1) 

6 2.72 (4) 1.64 (2) 2.4 (3) 0.38 (1) 

7 19.1 (3) 12.1 (2) 47.2 (4) 1.54 (1) 

8 1.84 (4) 0.83 (2) 1.63 (3) 0.36 (1) 

9 140.8 (3) 39.1 (2) 247.1 (4) 22.7 (1) 

10 18.09 (3) 16.1 (2) 27.5 (4) 2.0 (1) 

11 76.67 (4) 37.9 (2) 69.8 (3) 1.79 (1) 

12 90.2 (3) 61.02 (2) 92.3 (4) 5.6 (1) 

13 54.5 (4) 13.2 (2) 50.3 (3) 2.3 (1) 

14 92.9 (3) 42.6 (2) 97.2 (4) 20.1 (1) 

15 74.6 (3) 53.7 (2) 79.2 (4) 7.2 (1) 

AVERAGE: 44.36 (3.33) 21.19 (2.07) 54.13 (3.6) 4.58 (1) 
 

Band 195 – GLCM Con Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 65.39 (4) 27.6 (3) 19.7 (2) 5.8 (1) 

2 2.98 (3) 0.89 (2) 5.9 (4) 0.41 (1) 

3 6.46 (3) 1.97 (2) 6.6 (4) 0.56 (1) 

4 10.23 (3) 7.2 (2) 11.6 (4) 1.73 (1) 

5 1.69 (3) 1.12 (2) 3.7 (4) 0.38 (1) 

6 3.12 (4) 2.01 (2) 2.6 (3) 0.91 (1) 

7 21.4 (3) 12.02 (2) 36.8 (4) 0.73 (1) 

8 1.45 (4) 0.99 (2) 1.32 (3) 0.76 (1) 

9 92.3 (3) 24.1 (2) 202.3 (4) 14.6 (1) 

10 24.5 (3) 10.4 (2) 32.4 (4) 0.84 (1) 

11 49.8 (4) 40.7 (2) 47.8 (3) 2.1 (1) 

12 77.1 (3) 32.6 (2) 81.2 (4) 9.2 (1) 

13 49.4 (4) 31.2 (2) 46.7 (3) 4.4 (1) 

14 141.2 (4) 47.8 (2) 131.3 (3) 7.2 (1) 

15 103.1 (4) 67.6 (2) 98.7 (3) 7.8 (1) 

AVERAGE: 43.34 (3.47) 20.55 (2.07) 48.57 (3.47) 3.83 (1) 
Table 27: Average values of absolute difference images for GLCM Contrast metric. 
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Band 20 – GLCM Con Metric – % Outliers 

Region SBP MBP TS FM 
1 19 (3) 11 (2) 26 (4) 6 (1) 

2 17 (3) 12 (2) 28 (4) 6 (1) 

3 22 (3) 10 (2) 29 (4) 5 (1) 

4 21 (3) 10 (2) 29 (4) 6 (1) 

5 24 (3)  10 (2) 33 (4) 6 (1) 

6 22 (3) 9( 2) 32 94) 5 (1) 

7 23 (3)  10 (2) 35 (4) 5 91) 

8 20 (3) 11 (2) 36 (4) 6 (1) 

9 22 (3) 14 (2) 32 (4) 7 (1) 

10 19 (3) 12 (2) 33 (4) 6 (1) 

11 24 (3) 13 (2) 36 (4) 5 (1) 

12 25(3)  11 (2) 37 (4) 5 (1) 

13 23(3)  14 (2) 32 (4) 6 (1) 

14 22(3)  11 (2) 34 (4) 7 (1) 

15 25 (3) 10 (2) 31 (4) 7 (1) 

AVERAGE: 21.87 (3) 11.2 (2)  32.2 (4) 5.87 (1) 
 

Band 32 – GLCM Con Metric – % Outliers 
Region SBP MBP TS FM 

1 19 (3) 11 (2) 27 (4) 6 (1) 

2 18 (3) 10 (2) 26 (4) 6 (1) 

3 20 (3) 10 (2) 29 (4) 7 (1) 

4 20 (3) 21 (2) 30 (4) 6 (1) 

5 19 (3) 9 (2) 31 (4) 6 (1) 

6 23 (3) 10 (2) 34 (4) 5 (1) 

7 25 (3) 12 (2) 27 (4) 5 (1) 

8 25 (3) 13 (2) 35 (4) 6 (1) 

9 23 (3) 13 (2) 38 (4) 7 (1) 

10 24 (3) 15 (2) 37 (4) 7 (1) 
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11 29 (3) 14 (2) 39 (4) 6 (1) 

12 28 (3) 11 (2) 33 (4) 8 (1) 

13 25 (3) 10 (2) 34 (4) 8 (1) 

14 27 (3) 12 (2) 38 (4) 6 (1) 

15 24 (3) 13 (2) 32 (4) 7 (1) 

AVERAGE: 23.27 (3) 11.6 (2) 32.67 (4) 6.4 (1) 
Band 65 – GLCM Con Metric – % Outliers 

Region SBP MBP TS FM 
1 31 (3) 11 (2) 33 (4) 7 (1) 

2 34 (4) 10 (2) 33 (3) 6 (1) 

3 36 (3) 10 92) 37 (4) 6 (1) 

4 37 (3) 13 (2) 39 (4) 7 (1) 

5 38 (3) 12 (2) 41 (4) 5 (1) 

6 38 (3) 13 (2) 39 (4) 7 (1) 

7 36 (3) 14 (2) 37 (4) 8 (1) 

8 39 (4) 11 (2) 37 (3) 6 (1) 

9 41 (4) 14 (2) 39 (3) 6 (1) 

10 43 (4) 9 (2) 41 (3) 7 (1) 

11 39 (3) 11 (2) 40 (4) 6 (1) 

12 38 (4) 13 (2) 37 (3) 8 (1) 

13 41 (4) 14 (2) 39 (3) 6 (1) 

14 44 (4) 12 (2) 42 (3) 6 (1) 

15 43 (4) 10 (2) 41 (3) 7 (!) 

AVERAGE: 38.53 (3.53) 11.8 (2) 38.33 (3.47) 6.53 (1) 
 

Band 95 – GLCM Con Metric – % Outliers 
Region SBP MBP TS FM 

1 39 (4) 12 (2) 38 (3) 6 (1) 

2 41 (4) 10 (2) 37 (3) 6 (1) 

3 45 (4) 13 (2) 36 (3) 7 (1) 

4 42 (4) 12 (2) 36 (3) 5 (1) 

5 42 (4) 11 (2) 35 (3) 7 (1) 

6 41 (4) 9 (2) 39 (3) 8 (1) 

7 47 (4) 10 (2) 40 (3) 8 (1) 
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8 48 (4) 10 (2) 42 (3) 6 (1) 

9 43 (4) 11 (2) 38 (3) 7 (!) 

10 46 (4) 9 (2) 38 (3) 7 (1) 

11 49 (4) 12 (2) 36 (3) 5 (1) 

12 44 (4) 14 (2) 39 (3) 6 (1) 

13 45 (4) 12 (2) 41 (3) 6 (1) 

14 41 (4) 14 (2) 30 (3) 7 (1) 

15 46 (4) 12 (2) 40 (3) 6 (1) 

AVERAGE: 43.93 (4) 11.4 (2) 37.67 (3) 6.47 (1) 
 

Band 115 – GLCM Con Metric – % Outliers 
Region SBP MBP TS FM 

1 39 (4) 14 (2) 38 (3) 6 (1) 

2 44 (4) 12 (2) 38 (3) 6 (1) 

3 48 (4) 10 (2) 37 (3) 6 (1) 

4 46 (4) 12 92) 40 (3) 7 (1) 

5 42 (4) 12 (2) 41 (3) 6 (1) 

6 44 (4) 14 (2) 38 (3) 5 (1) 

7 46 (4) 15 (2) 36 (3) 6 (1) 

8 46 (4) 11 (2) 34 (3) 8 91) 

9 48 (4) 13 (2) 39 (3) 6 (1) 

10 41 (4) 9 (2) 36 (3) 7 (1) 

11 39 (4) 10 (2) 38 (3) 5 (1) 

12 37 (3) 14 (2) 39 (4) 8 (!) 

13 41 (4) 10 (2) 35 93) 6 (1) 

14 46 (4) 12 (2) 33 (3) 6 (1) 

15 48 (4) 11 (2) 39 (3) 7 (1) 

AVERAGE: 43.67 (3.93) 11.93 (2) 37.4 (3.07) 6.33 (1) 
   

Band 157 – GLCM Con Metric – % Outliers 
Region SBP MBP TS FM 

1 47 (4) 10 (2) 41 (3) 6 (1) 

2 46 94) 13 (2) 39 (3) 6 (1) 

3 42 (4) 11 (2) 40 (3) 7 (1) 
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4 43 (4) 14 (2) 40 (3) 7 (1) 

5 41 (3)  12 (2) 41 (3) 6 (1) 

6 39 (4) 15 (2) 35 (3) 6 (1) 

7 45 (4) 10 (2) 36 (3) 5 (1) 

8 42 (4) 13 (2) 41 (3) 8 (1) 

9 38 (4) 9 (2) 36 (3) 7 (1) 

10 44 (4) 10 (2) 34 (3) 7 (1) 

11 49 (4) 12 (2) 34 (3) 6 (1) 

12 46 (4) 9 (2) 37 (3) 6 (1) 

13 48 (4) 13 (2) 40 (3) 8 (1) 

14 49 (4) 11 (2) 42 (3) 6 (10 

15 47 (4) 10 (2) 39 (3) 7 (1) 

AVERAGE: 44.4 (3.93) 11.47 (2) 38.33 (3) 6.53 (1) 
 

Band 184 – GLCM Con Metric – % Outliers 
Region SBP MBP TS FM 

1 49 (4) 11 (2) 41 (3) 7 (1) 

2 46 (4) 14 (2) 40 (3) 7 (1) 

3 44 (4) 15 92) 36 (3) 5 (1) 

4 49 (4) 13 (2) 36 (3) 7 (1) 

5 48 (4) 9 (2) 39 (3) 7 (1) 

6 46 (4) 10 (2) 38 (3) 6 (1) 

7 45 (4) 9 (2) 36 (3) 6 (1) 

8 49 (4) 9 (2) 36 (3) 8 (1) 

9 50 (4) 12 (2) 37 (3) 6 (1) 

10 45 (4) 15 (2) 40 (3) 5 (1) 

11 42 (4) 15 (2) 39 (3) 5 (1) 

12 47 (4) 13 (2) 38 (3) 8 (1) 

13 47 (4) 13 (2) 38 (3) 7 (1) 

14 49 (4) 10 (2) 36 (3) 7 (1) 

15 48 (4) 14 (2) 38 (3) 6 (1) 

AVERAGE: 46.93 (4) 12.13 (2) 37.87 (3) 6.47 (1) 
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Band 195 – GLCM Con Metric – % Outliers 

Region SBP MBP TS FM 
1 47 (4) 12 (2) 43(3) 6 (1) 

2 48 (4) 10 (2) 41 (3) 7 (1) 

3 44 (4) 9 (2) 38 (3) 7 (1) 

4 47 (4) 10 (2) 36 (3) 6 (1) 

5 42 (4) 14 (2) 36 (3) 8 (1) 

6 44 (4) 14 (2) 36 (3) 6 (1) 

7 45 (4) 12 (2) 39 (3) 7 (1) 

8 45 (4) 11 (2) 41 (3) 5 (1) 

9 50 (4) 15 (2) 45 (3) 7 (1) 

10 49 (4) 14 (2) 40 (3) 5 (1) 

11 45 (4) 10 (2) 38 93) 5 (1) 

12 47 (4) 13 (2) 38 (3) 8 91) 

13 48 (4) 9 (2) 36 (3) 8 (1) 

14 46 (4) 10 (2) 45 (3) 6 91) 

15 49 (4) 14 (2) 43 (3) 7 (1) 

AVERAGE: 46.4 (4) 12.47 (2) 39.67 (3) 6.53 (1) 
Table 28: Percentage of outliers from threshold for GLCM Contrast metric. 

 The same general trends are evident with the GLCM Contrast metric as for the MF 

metric.  Once again, the FM model contains the lowest percentage outliers from the 

threshold and the lowest average values within the absolute difference images.  The 

corresponding pixel values of the absolute difference images are all lower than those of the 

MBP, SBP, and TS models.  This result makes sense intuitively since the spatial appearance 

of the FM model result is the most visually identical to the real HYDICE ARM image, for all 

spectral bands.  It is therefore clear that the FM model out-performs all of the other models 

in the spatial domain, for all fifteen of the texture test regions, across all spectral regions.  

The MBP model results of the GLCM Contrast metric indicate the second best performance 

spatially.  Although the SBP model shows comparable performance for spectral bands 20 

and 32, the spatial structure begins to deteriorate for the later spectral bands of the SBP 
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image.  This is the same result as observed with the MF metric, but the divergence is much 

more emphasized using the more detailed GLCM metric.  Therefore, the MBP model 

performs much better overall, which is also not a surprising result since the MBP model 

attained the second best ranking through a visual analysis. 

 The oscillating behavior of the SBP and TS models is still present in the GLCM 

Contrast metric result.  Although there is a wider gap between the values with the GLCM 

metric than with the MF metric, there is no clear pattern within these results regarding 

relative performance for the later spectral bands.  This is evident even through a visual 

analysis of the resultant imagery; the earlier spectral bands of the SBP model appear 

comparable to the result of the MBP model, while the TS model appears to lack the spatial 

structure present in the real HYDICE imagery.  However, the spatial structure is similarly 

lacking in both the TS and SBP models from bands 65 onward.  The road region in the TS 

image tends to suffer spatially due to the artifacts discussed earlier, while that of the SBP 

model performs somewhat better.  The plowed region of the TS model does not capture the 

oriented structure of the plowed patterns, but nonetheless contains more patterns than the 

SBP model for the later spectral bands.  These results are reflected in the above average 

absolute difference image value tables for regions 1 and 4 (plowed fields) and for regions 12, 

14 and 15, which are transition regions including the road.  At this point it is suitable to 

maintain the ranking as presented in the previous section, since the analysis has only been 

based on spatial performance, and because the SBP model image does not contain as many 

spatial artifacts as the TS model image does.  Further, the earlier region of the spectrum is 

much better in terms of its spatial texture characterization in the SBP model image.  Since 

the results are very similar in terms of spatial content, the spectral texture analysis of the 

SCR and SCM metrics will prove to be crucial in distinguishing between the overall 

performance of the TS and SBP models.  First, the percentage of outliers for each of the 

models using the GLCM Correlation metric will also be presented as it was for the CitiPix 

data in the previous section. 
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Band 20 – GLCM Cor Metric – % Outliers 
Region SBP MBP TS FM 

1 28 (3) 15 (2) 35 94) 7 (1) 

2 29 (3) 16 (2) 36 (4) 8 (1) 

3 27 (3) 14 (2) 34 (4) 8 (1) 

4 26 (3) 17 (2) 36 (4) 7 (1) 

5 33 (3) 16 (2) 38 (4) 7 (1) 

6 32 (3) 14 (2) 39 (4) 8 (1) 

7 31 (3) 15 (2) 35 (4) 6 (1) 

8 30 (3) 15 (2) 36 (4) 8 (1) 

9 29 (3) 13 (2) 36 (4) 7 (1) 

10 28 (3) 17 (2) 38 (4) 7 (1) 

11 33 (3) 15 (2) 36 (4) 6 (1) 

12 32 (3) 14 (2) 36 (4) 8 (1) 

13 30 (3) 17 (2) 39 (4) 9 (1) 

14 29 (3) 15 92) 36 (4) 8 (1) 

15 31 (3) 14 (2) 35 (4) 8 (1) 

AVERAGE: 29.87 (3) 15.13 (2) 36.33 (4) 7.47 (1) 
 

Band 32 – GLCM Cor Metric – % Outliers 
Region SBP MBP TS FM 

1 29 (3) 16 (2) 36 (4) 7 (1) 

2 27 (3) 14 (2) 36 (4) 8 (1) 

3 30 (3) 13 (2) 38 (4) 8 (1) 

4 33 (3) 17 (2) 39 (4) 7 (1) 

5 29 (3) 15 (2) 41 (4) 9 (1) 

6 31 (3) 15 (2) 36 (4) 6 (1) 

7 33 (3) 11 (2) 39 (4) 7 (1) 

8 28 (3) 10 (2) 37 (4) 7 (1) 

9 30 (3) 14 (2) 39 (4) 8 (1) 

10 31 (3) 12 (2) 41 (4) 5 (1) 

11 34 (3) 16 (2) 39 (4) 8 (1) 

12 33 (3) 17 (2) 42 (4) 6 (1) 

13 29 (3) 13 (2) 39 (4) 7 (1) 
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14 32 (3) 15 (2) 40 (4) 9 (1) 

15 35 (3) 16 (2) 37 (4) 7 (1) 

AVERAGE: 30.93 (3) 14.27 (2) 38.6 (4) 7.27 (1) 
 

Band 65 – GLCM Cor Metric – % Outliers 
Region SBP MBP TS FM 

1 37 (3) 15 (2) 40 (4) 7 (1) 

2 34 (3) 14 (2) 37 (4) 7 (1) 

3 31 (3) 18 (2) 36 (4) 8 (1) 

4 39 (4) 15 (2) 36 (3) 6 (1) 

5 31 (3) 14 (2) 35 (4) 8 (1) 

6 29 (3) 16 (2) 38 (4) 8 (1) 

7 39 (4) 15 (2) 38 (3) 9 (1) 

8 34 (3) 13 (2) 36 (4) 7 (1) 

9 36 (3) 16 (2) 41 (4) 8 (1) 

10 38 (4) 12 (2) 38 (3) 6 (1) 

11 30 (3) 15 (2) 34 (4) 8 (1) 

12 29 (3) 13 (2) 37 (4) 6 (1) 

13 38 (4) 16 (2) 34 (3) 7 (1) 

14 31 (3) 15 (2) 38 (4) 7 (1) 

15 33 (3) 15 (2) 34 (4) 8 (1) 

AVERAGE: 33.93 (3.2) 14.8 (2) 36.8 (3.73) 7.33 (1) 
 

Band 95 – GLCM Cor Metric – % Outliers 
Region SBP MBP TS FM 

1 38 (4) 13 (2) 34 (3) 6 (1) 

2 36 (4) 10 (2) 34 (3) 6 (1) 

3 36 (4) 12 (2) 31 (3) 8 (1) 

4 36 (4) 15 (2) 33 (3) 6 (1) 

5 39 (4) 13 (2) 29 (3) 7 (1) 

6 41 (4) 11 (2) 33 (3) 7 (1) 

7 35 (4) 15 (2) 36 (4) 6 (1) 

8 37 (4) 14 (2) 36 (3) 8 (1) 

9 36 (4) 10 (2) 34 (3) 5 (1) 

10 36 (4) 12 (2) 33 (3) 7 (1) 
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11 39 (4) 9 (2) 36 (3) 7 (1) 

12 38 (3) 13 (2) 38 (3) 6 91) 

13 34 (3) 15 (2) 36 (4) 5 (1) 

14 35 (3) 16 (2) 35 (3) 9 (1) 

15 36 (3) 13 (2) 37 (4) 7 91) 

AVERAGE: 36.8 (3.73) 12.73 (2) 34.33 (3.2) 6.67 (1) 
 

Band 115 – GLCM Cor Metric – % Outliers 
Region SBP MBP TS FM 

1 42 (4) 13 (2) 34 (3) 7 (1) 

2 44 (4) 15 (2) 36 (3) 7 (1) 

3 41 (4) 15 (2) 36 (3) 6 (1) 

4 39 (4) 17 (2) 38 (3) 7 (1) 

5 43 (4) 14 (2) 36 (3) 8 (1) 

6 40 (4) 15 (2) 39 (3) 5 (1) 

7 42 (4) 15 (2) 37 (3) 7 (1) 

8 42 (4) 13 (2) 30 (3) 7 (1) 

9 44 (4) 17 (2) 36 (3) 8 (1) 

10 45 (4) 16 (2) 42 (3) 7 (1) 

11 48 (4) 15 (2) 44 (3) 9 (1) 

12 43 (3)  15 (2) 47 (4)  8 (1) 

13 43 (4) 16 (2) 34 (3) 6 (1) 

14 41 (4) 13 (2) 36 (3) 8 (1) 

15 45 (4) 16 (2) 38 (3) 8 (1) 

AVERAGE: 42.8 (3.93) 15.0 (2) 37.53 (3.07) 7.2 (1) 
  

Band 157 – GLCM Cor Metric – % Outliers 
Region SBP MBP TS FM 

1 41 (4) 16 (2) 36 (3) 7 (1) 

2 42 (4) 13 92) 36 (3) 7 (1) 

3 44 (4) 12 (2) 34 (3) 8 91) 

4 41 (4) 15 (2) 38 (3) 6 (1) 

5 40 (4) 11 (2) 39 (3) 9 (1) 

6 39 (3) 16 (2) 41 (4) 7 (1) 

7 37 (4) 18 (2) 36 (3) 6 (1) 
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8 42 (4) 12 (2) 35 (3) 5 (1) 

9 42 (4) 11 (2) 37 (3) 9 (1) 

10 44 (4) 14 92) 32 (3) 8 (1) 

11 41 (4) 16 (2) 36 (3) 8 (1) 

12 43 (4) 15 (2) 38 (3) 7 (1) 

13 47 (4) 15 (2) 37 (3) 9 (1) 

14 42 (4) 14 (2) 39 (3) 7 (1) 

15 45 (4) 17 (2) 40 (3) 8 (1) 

AVERAGE: 42.0 (3.93) 14.33 (2) 36.93 (3.07) 7.4 (1) 
 

Band 184 – GLCM Cor Metric – % Outliers 
Region SBP MBP TS FM 

1 44 (3) 14 (2) 46 (4) 7 (1) 

2 42 (3) 12 (2) 46 (4) 7 (1) 

3 41 (3) 14 (2) 49 (4) 9 (1) 

4 47 (4) 11 (2) 38 (3) 7 (1) 

5 48 (4) 15 (2) 41 (3) 8 (1) 

6 43 (4) 17 (2) 38 (3) 7 (1) 

7 46 (4) 13 (2) 41 (3) 9 91) 

8 47 (4) 12 (2) 46 (3) 9 (1) 

9 41 (4) 14 92) 39 (3) 7 (1) 

10 44 (4) 16 (2) 38 (3) 6 (1) 

11 45 (4) 13 (2)  33 (3) 8 (1) 

12 47 (4) 11 (2) 38 (3) 5 (1) 

13 48 (4) 10 (2) 34 (3)  9 (1) 

14 43 (4) 14 (2) 36 (3) 8 (1) 

15 46 (4) 16 (2) 38 (3) 8 (1) 

AVERAGE: 44.8 (3.8) 13.47 (2) 40.07 (3.2) 7.47 (1) 
 

Band 195 – GLCM Cor Metric – % Outliers 
Region SBP MBP TS FM 

1 43 (4) 16 (2) 36 (3) 8 (1) 

2 41 (4) 13 (2) 34 (3) 7 (1) 

3 44 (4) 11 (2) 34 (3) 7 (1) 

4 47 (4) 15 (2) 34 (3) 8 (1) 
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5 48 (4) 12 (2) 37 (3) 7 (1) 

6 43 (4) 14 (2) 36 (3) 9 (1) 

7 41 (4) 10 (2) 39 (3) 6 (1) 

8 46 (4) 14 (2) 40 (3) 8 (1) 

9 45 (4) 13 (2) 39 (3) 8 (1) 

10 47 (4) 16 (2) 36 (3) 7 (1) 

11 49 (4) 13 (2) 34 (3) 8 (1) 

12 44 (4) 15 (2) 38 (3) 7 (1) 

13 48 (4) 14 (2) 35 (3) 7 (1) 

14 44 (4) 16 (2) 36 (3) 8 (1) 

15 47 (4) 15 (2) 40 (3) 9 (1) 

AVERAGE: 45.13 (4) 14.73 (2) 36.53 (3) 7.6 (1) 
Table 29: Percentage of outliers from threshold for GLCM Correlation metric. 

 
As with the CitiPix data analysis, the number of outliers from the variance threshold image 

for each texture test region serves as a “sanity check”, since it confirms the results found 

with the MF metric and the GLCM Contrast metric.  It therefore provides a convenient 

synopsis of the relative performance of the texture characterization models.  This table 

further supports the ranking of the models based on their spatial domain performance 

indicated by the results of the GLCM Contrast and MF metrics, since the FM model has the 

lowest percentage of outliers, while the MBP model contains the second lowest.  As 

observed previously, the SBP model performs virtually the same as the MBP model in band 

20, and even in most cases in band 32, but the values tend to diverge increasingly for the 

later bands due to the poorer spatial performance of the SBP model.  The oscillatory 

behavior between the SBP and MBP models in these later bands is still present, and the 

problems with the road transition regions in the TS model imagery is obvious for regions 12, 

14, and 15.    Therefore, the samew rank order as found for the MF and GLCM Contrast 

metric will be maintained.  The next sections will present the results of applying the spectral 

SCR metric and the spatial-spectral SCM metric on the exact same texture test regions of the 

rendered DIRSIG imagery. 
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5.4.3  SCR Metric 

 As discussed in Section 4.5.2.1, the SCR metric has been included in order to assess 

the overall spectral content and complexity of the background clutter present in each of the 

rendered DIRSIG images as compared with the real HYDICE ARM imagery.  The 

advantage of using this metric is that it provides a single numeric value indicative of spectral 

performance, without any consideration of the spatial domain.  If the spectral structure and 

complexity is captured in the synthetic image, then its SCR value (for the given region being 

tested) should theoretically be within an acceptable variance threshold of the corresponding 

value for the real HYDICE ARM image.  The same fifteen texture test regions have been 

used to obtain SCR values from the SBP, MBP, TS, and FM model DIRSIG images.  These 

values were then compared with the corresponding real image SCR values.  The threshold 

was defined by taking repeated measurements of the SCR from the same regions of the real 

image that were used to construct acceptable variance threshold images for the MF, GLCM, 

and SCM metrics.  This threshold value is the rightmost column of the below table, which 

indicates the (1 sigma) standard deviation of the repeated SCR measurements from the real 

image.  It was found that the use of a 1-sigma threshold separated texture model 

performance much better than a 2-sigma threshold did for the SCR metric.   

 

Region SBP MBP TS FM Real S.D. 

1 56.95 (4) 85.36* (2) 91.58* (1) 97.78* (3) 90.50 25.94 

2 58.28 (4) 82.12 (2) 95.97* (1) 139.66 (3) 104.74 15.19 

3 76.90 (4) 188.47 (3) 276.90* 

(1) 

225.29 (2) 411.95 176.03 

4 26.25 (4) 68.05* (2) 81.79* (1) 117.19 (3) 77.21 16.15 

5 198.09 (4) 106.49* (2) 119.04* 

(1) 

158.92* (3) 120.25 39.16 

6 464.34 (4) 254.69* (3) 200.91* 

(1) 

235.27* (2) 196.06 72.86 
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7 33.19 (4) 163.71 (3) 297.16* 

(1) 

176.39 (2) 504.28 237.99 

8 773.24 (4) 897.42 (3) 4,469.35* 

(1) 

943.44 (2) 6,222.54 2,258.74 

9 192.91 (4) 274.19 (3) 663.82* 

(1) 

297.29 (2) 1.004.99 486.53 

10 103.53 (4) 145.25* (2) 147.31* 

(1) 

126.60 (3) 172.51 43.30 

11 110.23 (4) 133.75* (2) 142.37* 

(1) 

118.99* (3) 153.82 35.32 

12 34.48 (4) 90.85* (2) 142.68* 

(1) 

162.67 (3) 123.61 35.86 

13 28.94 (4) 86.95* (2) 123.45* 

(1) 

195.37* (3) 119.29 74.10 

14 32.14 (4) 73.85* (2) 60.43* (1) 75.01* (3) 58.90 18.96 

15 145.97 (4) 103.46 (2) 62.94* (1) 110.35 (3) 72.74 12.47 

Average: 155.70 

(4.0) 

183.64 

(2.33) 

465.05 

(1.0) 

212.01 

(2.67) 

628.89 236.57 

Table 30: SCR metric values and ranking for each test region for SBP, MBP, TS, and FM 
models for HYDICE ARM imagery (* = value is within +/- 1 sigma S.D).  The average SCR 

value is tallied in the bottom row, as well as the average rank value for each model. 
 

 The above table exhibits some clear trends.  First, the TS model has the closest SCR 

values to the SCR values of the real HYDICE ARM image.  In each case, the TS model 

image regions have an SCR value within 1 sigma standard deviation of the real 

corresponding value.  This is an intuitive result, since the very nature of the TS model 

guarantees that the spectral statistics will be correct due to its spectral covariance 

enforcement methodology in creating synthetic texture.  Another consistent observation is 

that the SBP model has SCR values farthest from the corresponding real image SCR values.  
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In fact, none of its SCR values lie within the standard deviation threshold, although some 

values are quite close to the threshold.  This result is not surprising since the single-bandpass 

z-score curve selection algorithm has only utilized a single narrow band in the visible region 

of the spectrum, and thus it has tended to select curves from the ground truth measurement 

database that were not optimal for each of the materials in the scene for non-correlated 

spectral bands.   

 The MBP and FM models both perform quite well for this metric; however their 

relative performance is not consistent.  Despite this oscillatory behavior, it is possible to rank 

one over the other if the results are carefully analyzed.  For instance, the MBP model has 9 

of its 15 values within the threshold value, while the FM model has 6.  It is also worthy to 

note that for the three cases in which the FM model SCR values lie outside of the threshold, 

they were extremely close to the threshold value, as one can infer from the above table.  

Further, the MBP model attained the second-best performance metric value (next to the TS 

model) for 10 of the 15 regions, while the FM model did so for the other 5 regions, which 

incidentally are all homogeneous texture regions.  Therefore, since the rankings of each 

region for the SCR metric are consistent 66.6% of the time, and because the SCR values are 

so close between the FM and MBP models, the following ranking based solely on the SCR 

metric result can be concluded (which is further confirmed by the average rankings listed in 

the above table): 

 a. TS model; 

 b. MBP model; 

 c. FM model; and 

 d. SBP model. 

 It is important to note that there is a potential for bias with the SCR values of the TS 

model result.  Since the input texture sample images used to generate the synthetic textures 

for each material class region were extracted from the real HYDICE imagery in the same 

vicinity as the SCR texture test regions, the covariance calculations were derived from 

virtually identical region samples.  This means that the SCR values of the TS model result are 
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using the exact same spectral covariance values in the statistical enforcement step of texture 

synthesis and for the SCR computation.  It is thus not surprising that the SCR values for the 

TS model are extremely close to those of the real HYDICE image.  At the same time, there 

is also much room for improvement for the MBP model.  The image-derived “ground truth” 

spectra used in the spectral reflectance curve database for applying spectral variability to each 

pixel of the MBP result utilized only a subset of spectral curves in order to avoid unpalatably 

long run times.  The initially large (103 – 104 curves) DIRSIG emissivity files were randomly 

truncated to contain 500 curves.  In effect, this did not guarantee that the same spectra were 

used for the SCR metric computation while further limiting the ability of the model to 

capture the complete nature of variability for each texture test region.  Therefore, the MBP 

SCR values are not as close to those of the real image or the TS model.  If one is willing to 

endure very long DIRSIG rendering run times with non-truncated reflectance curve 

databases, then the MBP model SCR metric results would accordingly improve to resemble 

the SCR values of the real image, and may even rank better than the TS model.  Since the 

SCR metric is exclusively spectral in nature and the MF and GLCM metrics were strictly 

spatially oriented, the SCM metric results presented in the following section will provide a 

means to investigate a simultaneously weighted measure of the spatial and spectral fidelity in 

the HYDICE ARM synthetic imagery. 

 
5.4.4  SCM Metric 

 As detailed in Section 4.5.2.2, the SCM has been implemented into the ENVI 

processing environment with the capability of the user specifying a basic and a comparison 

spectral band when applying the SCM metric.  Since an exhaustive sample of all 

combinations of spectral band pairs would not be practical within the scope of this work, 

four representative spectral band pairs were selected for the HYDICE ARM data in order to 

assess the simultaneous spatial-spectral texture characterization for well-correlated (bands 

22-32), ill-correlated (bands 30-162), negatively ill-correlated (bands 30-193), and negatively 

“well”-correlated (bands 65-185) spectral bands (see Chapter 4 for more details on 

methodology of the application of the SCM metric).  If the SCM metric values for a 
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particular texture model are low and within or near the acceptable variance threshold, then 

the model is able to maintain both the spatial and spectral correlation and structure in the 

output DIRSIG image.  This is because the SCM metric works just as the GLCM spatial 

metric does, except it performs the operation across two specified spectral bands.  It 

therefore represents a parameterized description of spatial and spectral texture through the 

use of the familiar co-occurrence matrix features introduced earlier.  In order to be 

consistent in the application of all performance metrics, the Contrast and Correlation 

features were investigated for each texture test region for each of the DIRSIG images and 

compared with the corresponding regions of the real HYDICE ARM image.  The analysis 

will be completely analogous to that of the GLCM metric.  It is expected that this metric will 

be much more significant for this data set than for the CitiPix imagery, simply due to the 

larger spectral dimension of the HYDICE ARM data.  The following synopsis tables present 

the SCM metric Contrast and Correlation features for each region and texture model: 
Bands 22-32 – SCM Con Metric – Avg Value of Absolute Difference Image 

Region SBP MBP TS FM 
1 5.65 (4) 4.4 (2) 5.4 (3) 1.4 (1) 

2 3.69 (4) 2.29 (2) 3.49 (3) 1.78 (1) 

3 0.89 (4) 0.67 (2) 0.86 (3) 0.44 (1) 

4 1.09 (3) 0.72 (2) 1.17 (4) 0.34 (1) 

5 0.56 (1) 1.31 (3) 0.77 (2) 1.6 (4) 

6 1.58 (3) 1.38 (2) 1.59 (3) 1.1 (1) 

7 3.5 (3) 2.1 (2) 3.58 (4) 0.89 (1) 

8 0.87 (4) 0.57 (2) 0.60 (3) 0.41 (1) 

9 15.1 (3) 12.6 (2) 84.9 (4) 5.4 (1) 

10 3.72 (3) 2.9 (2) 4.61 (4) 1.69 (1) 

11 4.32 (3) 3.2 (2) 4.79 (4) 1.67 (1) 

12 41.6 (3) 5.4 (2) 42.4 (4) 1.34 (1) 

13 1.71 (3) 1.46 (2) 1.79 (4) 1.22 (1) 

14 47.3 (3) 9.31 (2) 48.6 (4) 3.96 (1) 

15 14.8 (3) 9.56 (2) 17.6 (4) 6.9 (1) 

AVERAGE: 9.76 (3.13) 3.86 (2) 14.81 (3.53) 2.01 (1.2) 
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Bands 30-162 – SCM Con Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 310.2 (4) 31.1 (2) 256.6 (3) 21.2 (1) 

2 79.7 (4) 15.6 (2) 39.2 (3) 9.4 (1) 

3 48.9 (4) 38.1 (2) 41.9 (3) 36.2 (1) 

4 123.4 (4) 87.3 (2) 120.6 (3) 69.6 (1) 

5 18.9 (4) 6.08 (2) 17.9 (3) 1.94 (1) 

6 93.2 (4) 51.2 (2) 81.3 (3) 28.5 (1) 

7 297.6 (4) 113.3 (2) 272.1 (3) 12.5 (1) 

8 5.13 (4) 4.66 (2) 4.97 (3) 3.4 (1) 

9 182.8 (4) 97.2 (2) 121.6 (3) 6.2 (1) 

10 120.6 (4) 59.8 (2) 113.1 (3) 54.1 (1) 

11 169.7 (4) 44.7 (2) 157.4 (3) 32.2 (1) 

12 327.1 (4) 16.45 (2) 189.7 (3) 9.6 (1) 

13 147.3 (4) 30.5 (2) 140.2 (3) 17.2 (1) 

14 392.6 (4) 27.2 (2) 379.8 (3) 14.3 (1) 

15 162.3 (4) 54.4 (2) 145.6 (3) 50.2 (1) 

AVERAGE: 165.30 (4) 45.17 (2) 138.80 (3) 24.44 (1) 
 

Bands 30-193 – SCM Con Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 272.9 (4) 33.7 (2) 251.6 (3) 16.2 (1) 

2 45.7 (4) 12.3 (2) 20.2 (3) 4.1 (1) 

3 33.6 (4) 27.6 (2) 29.7 (3) 21.3 (1) 

4 147.3 (4) 98.4 (2) 122.8 (3) 92.1 (1) 

5 19.6 (4) 6.7 (2) 11.2 (3) 3.9 (1) 

6 66.8 (4) 44.2 (2) 46.7 (3) 26.3 (1) 

7 192.4 (4) 81.4 (2) 187.2 (3) 34.8 (1) 

8 1.86 (4) 1.66 (2) 1.71 (3) 1.2 (1) 

9 152.1 (4) 77.9 (2) 92.1 (3) 21.3 (1) 

10 124.9 (4) 65.3 (2) 73.2 (3) 60.1 (1) 

11 98.9 (4) 29.2 (2) 84.3 (3) 14.3 (1) 

12 79.8 (4) 22.6 (2) 63.1 (3) 13.7 (1) 

13 157.6 (4) 42.54 (2) 148.2 (3) 13.4 (1) 
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14 279.3 (4) 37.6 (2) 229.7 (3) 21.1 (1) 

15 239.9 (4) 83.3 (2) 166.4 (3) 61.2 (1) 

AVERAGE: 127.51 (4) 44.29 (2) 101.87 (3) 27.0 (1) 
  

Bands 65-185 – SCM Con Metric – Avg Value of Absolute Difference Image 
Region SBP MBP TS FM 

1 60.33 (4) 27.9 (2) 54.6 (3) 18.6 (1) 

2 67.8 (4) 22.1 (2) 66.9 (3) 6.9 (1) 

3 14.8 (4) 8.6 (2) 13.1 (3) 7.1 (1) 

4 43.4 (4) 26.4 (2) 34.7 (3) 17.6 (1) 

5 186.3 (4) 21.3 (2) 136.4 (3) 18.2 (1) 

6 42.7 (4) 13.2 (2) 16.7 (3) 5.8 (1) 

7 364.4 (4) 76.6 (2) 227.6 (3) 21.6 (1) 

8 192.8 (4) 9.31 (2) 191.6 (3) 3.9 (1) 

9 138.9 (4) 47.89 (2) 61.3 (3) 24.7 (1) 

10 247.3 (4) 36.7 (2) 171.9 (3) 20.8 (1) 

11 243.7 94) 42.3 (2) 170.8 (3) 24.7 (1) 

12 283.9 (4) 34.3 (2) 157.6 (3) 21.6 (1) 

13 256.8 (4) 50.7 (2) 113.4 (3) 30.2 (1) 

14 167.4 (4) 31.4 (2) 154.7 (3) 24.1 (1) 

15 123.6 (4) 64.6 (2) 112.9 (3) 23.8 (1) 

AVERAGE: 162.28 (4) 34.22 (2) 112.28 (3) 17.97 (1) 
Table 31: Average values of absolute difference images for SCM Contrast metric. 

Bands 22-32 – SCM Con Metric – % Outliers 
Region SBP MBP TS FM 

1 22 (3) 14 (2) 34 (4) 7 (1) 

2 21 (3) 15 (2) 36 (4) 8 (1) 

3 24 (3) 12 (2) 38 (4) 8 (1) 

4 20 (3) 11 (2) 33 (4) 7 (1) 

5 27 (3) 16 (2) 31 (4) 9 (1) 

6 29 (3) 14 (2) 30 (4) 7 (1) 

7 23 (3) 13 92) 36 (4) 7 (1) 

8 22 (3) 13 92) 37 (4) 8 (1) 

9 20 (3) 10 (2) 34 (4) 6 (1) 
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10 25 (3) 14 (2) 36 (4) 7 (1) 

11 26 (3) 16 (2) 38 (4) 6 (1) 

12 28 (3) 15 (2) 36 (4) 8 (1) 

13 24 (3) 13 (2) 39 (4) 6 (1) 

14 26 (3) 16 (2) 33 (4) 7 (1) 

15 29 (3) 12 (2) 36 (4) 7 (1) 

AVERAGE: 24.4 (3) 13.6 (2) 37.53 (4) 7.2 (1) 
 

Bands 30-162 – SCM Con Metric – % Outliers 
Region SBP MBP TS FM 

1 39 (4) 16 (2) 36 (3) 7 (1) 

2 43 (4) 18 (2) 38 (3) 7 (1) 

3 46 (4) 19 (2) 36 (3) 6 91) 

4 38 (4) 14 (2) 34 (3) 7 (1) 

5 49 (4) 17 (2) 35 (3) 7 (1) 

6 47 (4) 12 (2) 36 (3) 8 (1) 

7 49 (4) 17 (2) 36 (3) 7 (1) 

8 46 (4) 10 (2) 38 (3) 8 (1) 

9 49 (4) 13 (2) 39 (3) 8 (1) 

10 48 (4) 16 (2) 36 (3) 7 (1) 

11 44 (4) 18 (2) 34 (3) 6 (1) 

12 48 (4) 13 (2) 32 (3) 7 (1) 

13 49 (4) 16 (2) 36 (3) 9 (1) 

14 46 (4) 14 (2) 34 (3) 7 (1) 

15 48 (4) 15 (2) 31 (3) 6 (1) 

AVERAGE: 45.93 (4) 15.2 (2) 35.4 (3) 7.13 (1) 
 

Bands 30-193 – SCM Con Metric – % Outliers 
Region SBP MBP TS FM 

1 44 (4) 18 (2) 34 (3) 6 (1) 

2 47 (4) 14 (2) 33 (3) 8 (1) 

3 42 (4) 15 (2) 36 (3) 8 (1) 

4 47 (4) 17 (2) 36 (3) 9 (1) 

5 49 (4) 13 (2) 39 (3) 8 (1) 



 188

6 48 (4) 16 (2) 38 (3) 7 (1) 

7 46 (4) 15 (2) 31 (3) 9 (1) 

8 46 (4) 15 (2) 35 (3) 7 (1) 

9 49 (4) 11 (2) 37 (3) 6 (1) 

10 44 (4) 12 (2) 36 (3) 8 (1) 

11 45 (4) 17 (2) 36 (3) 8 (1) 

12 48 (4) 15 (2) 38 (3) 7 (1) 

13 45 (4) 16 (2) 32 (3) 8 (1) 

14 47 94) 12 (2) 34 (3) 7 (1) 

15 49 (4) 15 (2) 34 (3) 9 (1) 

AVERAGE: 46.4 (4) 14.73 (2) 35.27 (3) 7.67 (1) 
 

Bands 65-185 – SCM Con Metric – % Outliers 
Region SBP MBP TS FM 

1 47 (4) 16 (2) 36 (3) 6 (1) 

2 44 (4) 18 (2) 35 (3) 8 (1) 

3 49 (4) 13 (2) 33 (3) 8 (1) 

4 47 (4) 13 (2) 31 (3) 8 (1) 

5 48 (4) 16 (2) 34 (3) 9 (1) 

6 50 (4) 15 (2) 36 (3) 7 (1) 

7 49 (4) 12 92) 38 (3) 8 (1) 

8 48 (4) 15 (2) 35 (3) 8 (1) 

9 46 (4) 10 (2) 37 (3) 7 (1) 

10 48 (4) 17 (2) 36 (3) 8 (1) 

11 46 (4) 13 (2) 36 (3) 9 (1) 

12 49 (4) 17 (2) 34 (3) 6 (1) 

13 47 (4) 13 (2) 36 (3) 7 (1) 

14 49 (4) 17 (2) 36 (3) 9 (1) 

15 48 (4) 13 (2) 38 (3) 8 (1) 

AVERAGE: 47.67 (4) 14.53 (2) 35.4 (3) 7.73 (1) 
Table 32: Percentage of outliers from threshold for SCM Contrast metric. 
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Bands 22-32 – SCM Cor Metric – % Outliers 

Region SBP MBP TS FM 
1 32 (3) 17 (2) 34 (4) 8 (1) 

2 39 (4) 17 (2) 36 (3) 8 (1) 

3 28 (3) 16 (2) 36 (4) 9 (1) 

4 29 (3) 14 (2) 39 (4) 8 (1) 

5 26 (3) 16 (2) 40 (4) 8 (1) 

6 29 (3) 19 (2) 36 (4) 9 (1) 

7 30 (3) 15 (2) 39 (4) 7 (1) 

8 28 (3) 15 (2) 38 (4) 9 (1) 

9 26 (3) 12 (2) 35 (4) 9 (1) 

10 25 (3) 11 (2) 34 (4) 7 (1) 

11 28 (3) 17 (2) 37 (4) 8 (1) 

12 29 (3) 11 (2) 39 (4) 8 (1) 

13 26 (3) 18 (2) 33 (4) 9 (1) 

14 29 (3) 15 (2) 38 (4) 7 (1) 

15 26 (3) 17 (2) 36 (4) 9 (1) 

AVERAGE: 28.67 (3.07) 16.07 (2) 36.67 (3.93) 8.2 (1) 
 

Bands 30-162 – SCM Cor  Metric – % Outliers 
Region SBP MBP  TS FM 

1 41 (4) 17 (2) 34 (3) 9 (1) 

2 44 (4) 18 (2) 32 (3) 8 (1) 

3 45 (4) 15 (2) 30 (3) 8 91) 

4 42 94) 14 (2) 33 (3) 8 (1) 

5 43 (4) 12 (2) 39 (3) 9 (1) 

6 41 (4) 17 (2) 36 (3) 7 (1) 

7 39 (4) 11 (2) 36 (3) 9 (1) 

8 40 (4) 18 (2) 34 (3) 8 (1) 

9 44 (4) 13 (2) 36 (3) 8 (1) 

10 48 (4) 10 (2) 37 (3) 9 (1) 

11 49 (4) 15 (2) 36 (3) 9 (1) 

12 46 (4) 18 (2) 34 (3) 7 (1) 
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13 48 (4) 19 (2) 36 (3) 8 (1) 

14 45 (4) 14 (2) 38 93) 8 (1) 

15 49 (4) 17 (2) 35 (3) 7 (1) 

AVERAGE: 44.27 (4) 15.2 (2) 35.07 (3) 8.13 (1) 
 

Bands 30-193 – SCM Cor Metric – % Outliers 
Region SBP MBP TS FM 

1 47 (4) 16 (2) 34 93) 8 (1) 

2 44 (4) 13 (2) 36 (3) 8 (1) 

3 46 (4) 16 (2) 36 (3) 9 (1) 

4 49 (4) 17 (2) 38 (3) 9 (1) 

5 48 (4) 14 (2) 34 (3) 9 (1) 

6 46 (4) 15 (2) 32 (3) 7 (1) 

7 44 (4) 15 (2) 34 (3) 9 (1) 

8 48 (4) 18 (2) 32 (3) 9 (1) 

9 48 (4) 19 (2) 36 (3) 8 (1) 

10 49 (4) 14 (2) 38 (3) 7 (1) 

11 44 (4) 16 (2) 32 (3) 9 (1) 

12 43 (4) 11 (2) 30 (3) 8 (1) 

13 48 (4) 17 (2) 36 (3) 7 (1) 

14 46 (4) 19 (2) 34 (3) 6 (1) 

15 45 (4) 18 (2) 33 (3) 9 (1) 

AVERAGE: 46.33 (4) 15.87 (2) 34.33 (3) 8.13 (1) 
  

Bands 65-185 – SCM Cor Metric – % Outliers 
Region SBP MBP TS FM 

1 47 (4) 13 (2) 36 (3) 8 (1) 

2 44 (4) 21 (2) 38 (3) 8 (1) 

3 49 (4) 16 (2) 36 (3) 9 91) 

4 48 (4) 17 (2) 36 (3) 8 (1) 

5 49 (4) 15 (2) 38 (3) 8 (1) 

6 46 (4) 13 (2) 36 (3) 7 (1) 

7 44 (4) 12 (2) 33 (3) 9 (1) 

8 48 (4) 17 (2) 34 (3) 8 (1) 
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9 49 (4) 15 (2) 32 (3) 8 (1) 

10 46 (4) 17 (2) 34 (3) 9 (1) 

11 49 (4) 14 (2) 36 (3) 7 (1) 

12 50 (4) 16 (2) 31 (3) 9 (1) 

13 49 (4) 13 (2) 32 (3) 8 (1) 

14 48 (4) 10 (2) 36 (3) 8 (1) 

15 50 (4) 16 (2) 38 (3) 9 (1) 

AVERAGE: 47.73 (4) 15.0 (2) 35.07 (3) 8.2 (1) 
Table 33: Percentage of outliers from threshold for SCM Correlation metric. 

 

 Both the Contrast and Correlation features of the SCM metric are able to distinguish 

the performance of each of the texture models quite well in terms of both spatial and 

spectral structure.  As with the other metrics, the best performance values belong to the FM 

model.  This is evident by the average (and range) of values of each region’s absolute 

difference image, since the entries are much lower than those of the other three models (see 

the above tables).  In order to verify this result (since the average and range are not always 

themselves sufficient to confirm that overall performance is better for this metric), the 

absolute difference images were compared directly for each model result, and for each 

texture test region for the Contrast feature of the SCM metric.  In all cases, when the FM 

model metric images were subtracted from the corresponding images of the other models, 

the result was greater than zero.  This indicates that all pixel values were smaller for the FM 

model, and thus performed the best of all models.  Further, the magnitude of the deviation 

from the threshold was also investigated in order to supplement the information provided by 

the percentage of outliers for each texture region.  The deviation from the threshold was 

smallest for the FM model, and second to smallest for the MBP model, despite the fact the 

actual percentage of outliers for the FM and MBP models were very close for all 4 spectral 

band pairs.  This indicates that the best overall spatial-spectral performance was achieved by 

the FM model for the rendering of the HYDICE ARM imagery.  It has been shown already 

that the FM model performs quite well spatially through the application of the MF and 

GLCM metrics.  However, since the SCR metric indicated that the spectral performance of 
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the FM model was not as good as for the TS model, and extremely close to the performance 

of the MBP model, its spatial-spectral overall performance had the potential to suffer.  The 

results of the SCM metric clearly show that by weighting both spatial and spectral 

dimensions, the FM model performs better than the other models.  This means that what 

the FM models lacks spectrally (compared to the TS model), it makes up for in the spatial 

domain.  Further, the very good results of the SCM metric also shows that the weighting of 

the end member spectra according to their fractional abundance maps generally creates an 

adequate level of spectral structure and clutter that is comparable to the real counterpart 

image.  That is, despite the fact that the spectral covariance statistics are not as close to the 

real image as the TS model is, the spectral correlation is preserved in the FM model image 

for this sampling of spectral band pairs, and it is reasonable to infer that this correlation is 

maintained throughout the spectral extent of the image.  This means that the various linear 

combinations of end member spectra assigned to each mixed pixel is sufficient to represent 

the spectral clutter present in the real HYDICE ARM image.  The number of outliers in the 

SCM Correlation metric further substantiates the best overall performance of the FM model.  

One must keep in mind however that there is a stricter requirement on the availability of 

multi-band input image data in order to have the FM model perform optimally. 

 The SCM performance metric values that come closest to the FM model belong to 

the MBP model.  There is very clear separation between the MBP model and the FM model, 

as well as between the MBP model and the SBP and TS models.  The range and average 

values for the MBP imagery are all greater than that of the FM model, but less than those of 

the TS and SBP models.  This is also true for the corresponding pixel values of the absolute 

difference images; that is, there is no oscillatory behavior between the MBP model and any 

other model.  The percentage of outliers and the magnitude of the deviation from the 

acceptable variance threshold of the SCM Contrast metric is much smaller for the regions of 

the MBP image than for the SBP and TS models.  Therefore, the MBP model has secured 

the second-best ranking for the SCM metric alone, which is reinforced by the number of 

outliers for the SCM Correlation metric in the above table. 
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 The relative performance of the TS and SBP models was the most difficult to 

discern.  For the 95%-correlated band pair (bands 22 and 32), the SBP model performs 

better than the TS model in general, although the difference tended to be subtle, since the 

values were lower for the SBP model for 60% of the regions, of which all but one were 

homogeneous texture regions.  However, for the remaining three band pairs, the TS model 

achieved better performance values.  This is an intuitive result since the SBP and TS models 

shared similar spatial performance metric values for the later spectral bands, while the SBP 

model performed better spatially for band 20 and often for band 32.  Since the SBP model 

uses only one bandpass for spectral reflectance curve selection, it was able to choose spectra 

for each pixel that were optimized for that region of the spectrum.  It therefore was able to 

maintain the spatial-spectral correlation between bands 22 and 32 better than the TS model 

because these bands are so well correlated.  This broke down for the band pairs that 

involved later spectral bands due to the lack of adequate spatial structure in those bands (as 

observed with the MF and GLCM metrics), and due to the poor spectral performance in 

those bands (as evidenced by the performance of the SBP model with the SCR metric).  

Since the spectral performance is much better for the TS model than the SBP model, and 

because the spatial performance for the later spectral bands of the SBP and TS models are 

comparable, the SCM metric is able to account for both of these aspects and provide metric 

values that weight spatial and spectral performance simultaneously.  In general then, it is 

reasonable to rank the overall performance of the TS model higher than the SBP model for 

the HYDICE ARM imagery despite the fact that the SBP model performs slightly better for 

bands well-correlated with the visible region of the spectrum.  Further, for the SCM metric 

alone (both Contrast and Correlation features), the TS model out-performs the SBP model 

for 75% of the tested band pairs.  Therefore, the ranking based on the SCM metric alone is: 

 a. FM model; 

 b. MBP model; 

 c TS model; and 

 d. SBP model. 
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 The SCM metric is therefore successful as a simultaneous measure of spatial and 

spectral fidelity of synthetic image texture.  Determining how much the SCM metric 

differentially weights the spatial and spectral domains is difficult.  However, since only two 

spectral bands are used in its computation and it otherwise follows the process of the 

GLCM spatial metric, it is reasonable to estimate that this metric weights the spatial domain 

more than the spectral domain.  See Sections 5.5.5 and 5.5.6 for more discussion regarding 

weighting of each performance metric and spatial-spectral weighting of the SCM metric. 

This is an important result since this metric provides the initial mechanics for summarizing 

the relative performance of all four models for the HYDICE ARM imagery.  This is true 

because the separate analyses of the MF, GLCM, and SCR metrics suggested that the FM 

model always performed the best spatially, and the MBP model performed second-best.  

Also, the oscillatory behavior observed with the spatial metrics made it very difficult to 

conclusively rank the relative performance of the SBP and TS models.  This was designed to 

be alleviated by considering the spectral domain as well in order to diagnose the overall 

performance of each model.  The SCR metric verified that the TS model performed 

extremely well spectrally, while the SBP model performed the worst of all four models.  The 

result was two quite different rank orders from separate spatial and spectral analyses.  The 

question then became, “how much does one weight the spatial and spectral performance 

metrics?”  This aspect will be discussed in Section 5.5.6. 

 5.5  Comparative Performance Analysis of Texture Models 

 The above analysis contained in the previous two sections has provided separate 

analyses of each model using each of the four performance metrics, for both the CitiPix and 

the HYDICE ARM imagery.  The following section will summarize the results achieved by 

each of the texture models, as well as provide a final overall ranking based on a list of 

conditions that must be satisfied and/or limitations that must be overcome for each model 

to perform reasonably well.  The following table represents a summary of the above synopsis 

tables for the rendered HYDICE ARM imagery.  It contains the “average of the averages” 

for the average value of the absolute difference images and the percentage of outliers from 
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the threshold for all eight sample spectral bands, and for the MF, GLCM, and SCM 

performance metrics. 

Texture Model AVERAGE % Outliers AVERAGE Avg Value 

SBP 38.11 (3.87) 37.40 (3.43) 

MBP 12.94 (2.0) 14.24 (2.06) 

TS 36.32 (3.36) 36.12 (3.39) 

FM 6.79 (1) 5.12 (1.02) 

Table 34: Summary table indicating overall performance of texture models for all eight 
sample spectral bands and MF, GLCM, and SCM performance metrics.  The average ranking 

using these metrics is also included in parentheses. 
 

 The above table suggests a preliminary ranking of texture models based only on the 

HYDICE imagery of: 1. FM model; 2. MBP model; 3. TS model; and 4. SBP model.  This 

rank order will be verified in Section 5.5.6 through the application of weights for each 

performance metric. 

 5.5.1  SBP Model 

 The performance of the SBP z-score selection texture characterization model 

depends significantly upon the spectral extent of the image to be rendered, as well as the 

availability of accurate and thorough ground truth measurements.  This is evidenced by its 

bipolar performance between the results of the rendered CitiPix and HYDICE ARM 

DIRSIG imagery.  For the CitiPix data, the SBP model performed second-best, next only to 

the FM model.  The reason it performed so well is because the use of only one bandpass for 

selecting material spectra on a pixel-by-pixel basis for a scene consisting only of well-

correlated spectral bands is reasonable and thus preservation of spectral correlation is not a 

significant concern.  There was also a very large and well maintained database of material 

spectra present in the CitiPix scene, due to ongoing efforts at RIT in constructing the 

DIRSIG Megascene, from which the CitiPix image used in this work has been derived.  This 

thorough sampling of material spectra permitted the excellent modeling of both 

homogeneous and transition region textures. 
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 The SBP model performed worst overall of all four texture models for the HYDICE 

ARM DIRSIG scene (see the final ranking charts in Section 5.5.6).  The reasons for its poor 

performance are just the contrary to those cited above; that is, the MTL-supplied ground 

truth measurements did not adequately capture the true spatial-spectral variability of the 

materials present in the HYDICE ARM scene.  The spatial-spectral performance lacked 

especially in the later spectral bands because the z-score curve selection algorithm only uses 

one narrow bandpass to assign spectra to all pixels in the scene for all wavelengths, which 

resulted in incorrect choices for non-correlated spectral regions.  This was quantitatively 

verified by its poor performance spatially in the later spectral bands through the application 

of the MF and GLCM metric, as well as its inability to perform within the standard deviation 

threshold for the SCR metric.  The SCM metric further corroborated this analysis by 

demonstrating that while the spatial-spectral structure was maintained in spectral bands well-

correlated with the visible region, it broke down for non-correlated band pairs. 

 5.5.2  MBP Model 

 The MBP model performed quite well for both the CitiPix and the HYDICE ARM 

rendered DIRSIG imagery.  Although it was ranked third overall for the CitiPix image, it 

nonetheless performed almost exactly as well as the SBP model did, and far better than the 

TS model performed.  The reason for the poorer performance by the MBP model is that the 

use of three separate bandpasses for the z-score selection algorithm tended to over-constrain 

the choice of spectra for each pixel in the resultant DIRSIG image.  This was an interesting 

result, since the motivation for the MBP texture model concept was to improve on the SBP 

model results.  This result, of course, is only the case when rendering imagery with only well-

correlated spectral bands (i.e, for images with small spectral dimension).  For cases where the 

spectral dimension is large and thus contains several uncorrelated spectral band regions, the 

distinct advantages of the use of the MBP texture model are obvious.  This was the case for 

the rendered HYDICE ARM imagery using the MBP texture model, in which the spatial-

spectral structure was preserved throughout the entire spectral range, and it was ranked 

second-best, next only to the FM model.  The results shown in Section 5.2 demonstrate this 
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effect of the deterioration of the spatial-spectral structure of the SBP image in the later 

bands, while the MBP image does not exhibit this phenomenon whatsoever.  It is interesting 

to note that for the CitiPix imagery, both the SBP and MBP texture models utilized the same 

database of ground truth measurements for the application of image texture.  However, for 

the HYDICE ARM imagery, the ground truth data was demonstrated to be lacking and thus 

image-derived spectra were used in place of the actual measurements obtained at the 

collection site.  This drastically improved the results for both the SBP and MBP models, but 

the most significant improvement was observed in the MBP imagery.  This is yet another 

instance that suggests that both the SBP and MBP models depend greatly on the availability 

of thorough and accurate ground truth spectral measurements.  In order to avoid testing of 

ground truth practices, the best-case scenario of image-derived spectra was used as the final 

result to which the texture performance metrics were applied.  If the entire set of image-

derived spectral reflectance curves had been used for the z-score selection algorithm, then 

the SCR metric values would accordingly improve to the level of the TS model or better, 

thereby closer resembling the SCR values of the real HYDICE image. 

 5.5.3  Texture Synthesis Model 

 The TS model consists of an entirely new methodology of creating synthetic texture 

in DIRSIG imagery.  It does not have the dependence upon ground truth spectra since 

texture is created directly by sample texture image inputs from which spatial and spectral 

statistics are derived (unless, of course, one wants to extend the spectral extent of the output 

DIRSIG image.  In this case, ground truth curves would be used to calculate the spectral 

covariance statistics of each material in the scene for input into the Spectral Expansion TS 

model).  It does, however have other limitations that are evident in the results of both the 

rendered CitiPix and HYDICE ARM DIRSIG imagery.  One of these is that there is a 

minimum input sample texture image size required, which must be in increments of powers 

of two for this model.  This places restrictions on the types of materials in a scene that can 

be rendered, since any narrow features which are not at least 64 x 64 pixels in dimension will 

require some pre-processing (such as the mirroring routine that was used in this work) in 
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order to grow regions out to the minimum size required by the TS model.  Another 

associated problem then arises in that this tends to introduce artifacts in the output DIRSIG 

image, such as those observed in the road region of the HYDICE ARM image, and the 

baseball dirt of the CitiPix image. 

 Another limitation is that within- and between-material class transitions are not well- 

modeled, such as the transitions between healthy and stressed grass and the lines on the 

football field in the CitiPix image.  Also, structural patterns are very difficult to capture in 

the TS model synthetic textures, such as the plowed field regions of the HYDICE ARM 

image.  This is due to the fact that there is a finite input sample texture size from which the 

TS model extracts statistics to construct synthetic texture.  This method tends to work better 

for materials with repeating structural primitives on a much smaller scale than that observed 

for the plowed field regions.  Lastly, the between-material transition regions are more abrupt 

than the other models, since their smoothness depends on the transitions in the associated 

material class map for scene construction.  Since transition regions of a given material class 

would seldom be used as an input sample texture image for this model, the homogeneous 

properties will be repeated in the output synthetic texture until the transition edge occurs to 

another material class region.  This is the case for the reflectance map implementation of the TS 

model into DIRSIG; it is possible that future efforts can concentrate on a more complex 

incorporation of this model into the DIRSIG environment.  The TS model approach has the 

attractive feature of forcing a solution that matches the desired spectral covariance and 

spatial correlation statistics in one spectral band.  However it cannot assure that the areal 

spatial patterns within a texture region are reproduced in the output SIG image. 

 These limitations were evident in the CitiPix and HYDICE ARM DIRSIG imagery 

especially in the spatial domain, since neither data set possessed the aesthetically pleasing 

spatial appearance that the other three models were able to produce.  As such, the TS model 

was ranked last in terms of performance for the CitiPix imagery, even though certain 

material types that demonstrated relatively little within-material class variability (such as 

asphalt, rooftops, etc.) were characterized just as well as the MBP model was able to 
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produce.  However, the advantage of the TS model was more obvious upon the application 

of spatial and spectral metrics on the HYDICE ARM data.  Although the TS model 

produced the worst spatial results in the earlier spectral bands, it performed comparably with 

the SBP model for the later spectral bands.  Further, since the TS model guarantees that the 

spectral covariance statistics will be correct in the output synthetic textures (due to the 

nature of the constraint enforcement of the model), it performed better than any of the 

models for the purely spectral SCR metric.  After the application of the weighted spatial-

spectral SCM metric, it was clear that the TS model was able to out-perform the SBP model 

overall for the HYDICE ARM imagery due to its ability to maintain spectral fidelity in its 

synthetic textures.  The TS model was not able to perform as well as the MBP or FM 

models. 

 5.5.4  FM Model 

 The FM texture model was ranked as the best overall model for both the CitiPix and 

HYDICE ARM imagery.  It was expected that, given reasonably well-separated and noise-

free fractional abundance planes coupled with accurate representative end member spectra, 

the FM model would perform very well in the spatial domain, since it literally re-mixes 

spectra on a pixel-by-pixel basis into an output DIRSIG image.  The concern with this 

model was more significant for the spectral domain, since the current DIRSIG 

implementation of this model only accepts one “averaged” end member spectrum for each 

fraction plane, and the spatial-spectral texture is thereby created by re-mixing combinations 

of each constituent end member according to the weights of their corresponding fraction 

maps. 

 For the CitiPix data, the FM model performed exceptionally well, which was not a 

surprising result since only well correlated spectral bands were present in the image and thus 

the potential problems associated with the assignment of a single end member reflectance 

spectrum is not as crucial as it was for the HYDICE ARM data.  Therefore, the MF, GLCM, 

and SCM metrics all indicated that the FM model performed much better than the other 

three models both spatially and spectrally for the CitiPix DIRSIG image. 
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 For the HYDICE ARM data, the MF and GLCM metrics both indicated that the 

FM model once again performed best in the spatial domain.  However, the spectral SCR 

metric ranked the FM model third out of the four models (although it performed almost 

exactly as well as the MBP model for this metric).  It therefore performed comparably with 

the MBP model in a spectral sense, but not nearly as well as the TS model.  The SCM metric 

confirmed that the FM model performed best overall in a spatial-spectral sense, which 

implied that the re-mixing of different combinations of the eight end member spectra was 

able to produce the same amount (or even better) of spatial-spectral complexity and clutter 

as the MBP model, while maintaining the spectral correlation between selected spectral band 

pairs.   

 Although this model was deemed to perform best for both the CitiPix and the 

HYDICE ARM data sets, it does not necessarily imply that it is always going to be the best 

model to use.  The relative performance of the models depends on what data is available to 

the user as well as the nature of the imagery to be rendered.  In order to create adequate 

spatial and spectral mixing in the output DIRSIG imagery, one must have a sufficient 

number of input spectral bands of imagery available to produce the necessary fraction maps.  

In the case tested here, the entire real HYDICE image was used to select end members and 

subsequently to unmix to create fraction planes.  Also, there are certain conditions that must 

be met in order to ensure that the FM model performs optimally.    First, one must be sure 

to utilize a spectral unmixing algorithm that will produce distinct, noise-free fractional 

abundance maps.  Second, the results are very sensitive to the number of end members used 

for the unmixing process.  In order to capture the same spatial and spectral complexity of 

real imagery, one must use an appropriate number of end members.  A certain degree of trial 

and error may be involved with this process.  Also, one must be careful when assigning an 

“average” spectrum to each of the end member fraction maps.  In order to maintain the 

spectral structure and correlation, a truly representative spectrum must be used; otherwise 

the results of the SCR and SCM metric will not achieve the excellent results that have been 

shown in this work.  It is clear that with accurate end member spectra allocated to each 
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fraction plane, the spectral clutter present in real imagery can be replicated through their 

various fractional contributions. 

 5.5.5  Sources of Error 

 Every possible effort was made in this research to be consistent in the incorporation 

and application of the image texture characterization models, the texture model performance 

metrics, and the resulting analyses.  By doing so, the sensitivity of error propagation on the 

comparative performance analysis of each of the texture models could often be minimized 

and/or “cancelled out.”  However, the appearance of anomalies and subtle errors are 

virtually unavoidable in any research effort and as such they will be discussed here. 

 The most eminent potential for error is in the choice of image calibration 

methodology used in this work.  The Empirical Line Method (ELM), although a robust 

technique for calibration of imagery to the desired units of measurement and for the removal 

of the worst of atmospheric effects, is sensitive to errors if not treated carefully.  Since the 

process involves the fitting of ground truth and image-derived values to a straight-line 

relationship, the line can be easily skewed if the “bright points” used for calibration are 

incorrect.  This can adversely affect the slope of the calibration line, thereby causing the 

introduction of erroneous reflectance (or whichever unit of measurement is preferred) values 

of scene materials.  The simplicity of this model often causes it to be the target of much 

criticism, but it can also work to the user’s advantage.  For example, the ELM calibration of 

the HYDICE ARM scene (and of the corresponding DIRSIG rendered scenes) was very 

straight-forward since the scene contains calibration panels for the purpose of calibrating the 

image to reflectance units.  With the assistance of a very detailed ground truth report by 

MTL, the ELM calibration could be carried out with high confidence.  The only potential 

problem encountered was the fact that the brighter panels tended to be saturated in the 

image subset used for this research.  In order to alleviate concerns with how this might affect 

the calibration results, the HYDICE ARM image was calibrated using all 6 panels of the 6-

step grayscale, and then with only 5 panels (the 64% reflectance panel was not used), and 

finally with only 4 panels (in which the 32% reflectance panel was also not used).  Image 
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wide and material-specific local statistics were extracted from each of these three calibrated 

images, including mean, standard deviation, and variance values.  The results were 

remarkably similar for all three cases, which implied that the two brightest panels did not add 

much information for the calibration process.  The mean and standard deviation values were 

all well within less than 0.5% of each other in each case.  It was decided that the image 

calibrated using all six panels would be used thereafter for the real and DIRSIG imagery. 

 The calibration of the CitiPix imagery was slightly more challenging due to the fact 

that there were no calibration panels present in the scene.  However, as mentioned 

previously, there has been extensive ground truth collection efforts in the vicinity and within 

the boundaries of the CitiPix image used in this work.  Both the dark and bright points used 

in the calibration were very reliable measurements, consisting of many repeated 

measurements with tight distributions.  This was crucial for an accurate calibration, since 

ideally the dark and bright points should be inherently low in variability, such as rooftops, 

asphalt, and concrete.  Fortunately, thorough ground truth data was available for all three of 

these types of materials as well as others present in the scene.  In order to test the calibration 

results, a second line was fit using other spectra with moderate nominal reflectance values 

(i.e., neither considered “bright” nor “dark”).  The results of the two calibrated images were 

analyzed in the same manner as the three HYDICE ARM calibrated images.  In this case, the 

results were within 1% of each other for local and global statistics.  The original calibration 

was then used on all subsequent DIRSIG-rendered CitiPix imagery for consistency sake.  As 

discussed in Sections 4.4, 5.1, and 5.2, a visual inspection of the corresponding real and 

DIRSIG images within linked ENVI displays demonstrated that all calibrations appeared to 

be equally successful.  This is particularly important since it was the reflectance values that 

were ultimately compared using the texture model performance metrics.  Therefore, each of 

the calibrated images were produced with a high level of confidence, especially since the 

exact same bright and dark control points were used to calibrate the real and DIRSIG 

imagery thereby avoiding any variations introduced due to inconsistent calibration processes.  

The results for samples of performance metrics using the alternately-calibrated images were 
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also analyzed and compared with the results using the nominally calibrated imagery in order 

to determine if there was any suspected error propagation when applying the performance 

metrics.  For all cases, the observed differences between the metric image results were at the 

same 0.5% and 1% values as indicated above, thus indicating negligible error propagation 

from the calibration step to the metric analysis step. 

 Another potential factor for variability within the results is the edge effects resulting 

from performance metric application to the corresponding real and DIRSIG imagery.  Since 

the MF, GLCM, and SCM metrics all act as filters within 3x3 processing windows, these 

edge effects are unavoidable.  Although this phenomenon has the potential to introduce 

edge artifacts, it is not considered to be a significant concern since the edge effects occur 

consistently to all corresponding texture test regions being investigated.  That is, the edge 

truncation and/or wrapping algorithm within the ENVI filtering feature is always performed 

in the same manner and thus any artifacts appearing in a particular texture test region metric 

image for one texture model would appear in the corresponding metric image for another 

texture model. 

 The fundamental limitations involved with the use of the TS texture characterization 

model also provide a potential for errors in the form of artifacts that should not be present 

in the output synthetic texture image.  Although this is not really considered to be an “error” 

per se, it is worthwhile to discuss its implications once again.  The best illustrative example 

of such an instance is for the road region of the HYDICE ARM image, which is a narrow 

feature from which it is impossible to extract a pure square input material texture sample 

image for the algorithm.  For this and other non-square regions not exceeding 64x64 pixels 

in dimension, this becomes a problem.  The method invoked to address this dilemma was to 

grow out the sample region through the use of a mirroring code.  As discussed earlier, this 

introduced repetitive artifacts in the road region of the TS model DIRSIG image that clearly 

did not exist in the real HYDICE ARM imagery.  Perhaps with a more complex and versatile 

DIRSIG implementation of the TS model, or even through the modification of the TS 

model source code this restriction can be improved, but the fact nonetheless remains that an 
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outside process other than the TS model code has created such artifacts, despite the fact that 

the root cause is the limitation imposed by the model itself. 

 There is some uncertainty associated with the overall texture model performance 

ranking process (see Section 5.5.6).  There are numerous alternate methods that can be used 

to differentially weight the performance based on each metric result, since both spatial and 

spectral metrics have been used.  Further, it is difficult to quantitatively determine how much 

to fractionally weight the SCM metric in terms of its spatial/spectral emphasis in its result.  

Since the SCM metric only compares two spectral bands per computation but otherwise 

follows the same process as the GLCM metric, one could surmise that this metric is more 

spatially weighted than spectral.  Therefore, the accuracy of the application a differential 

spatial-spectral weighting to this metric of 0.5-0.5, 0.7-0.3, or 0.85-0.15 is impossible to 

robustly determine.  Although this uncertainty exists, it does not significantly affect the 

results of overall ranking since using each of the above rankings still provides identical 

overall model rankings.  This is because there is enough separation between model 

performance for each of the metrics that variability in SCM metric weighting does not affect 

the overall rank order. 

 As previously mentioned, there is a concern with biased SCR metric values for the 

TS model since the same regions were used to enforce spectral covariance statistics in 

synthesizing the texture as used for the covariance for computation of the SCR value of each 

region.  This has the potential to produce overly optimistic SCR metric values in relation to 

the results of the other models.  In order to reduce run times, the reflectance curve database 

had to be truncated for the MBP model.  This caused the corresponding real and MBP SCR 

metric values to diverge somewhat.  If the entire sampling of curves had been used, then the 

SCR metric values for the MBP model would likely be comparable to those of the TS model 

and the real image.  This dilemma suggests the potential for biased results based on 

methodology such as the choice of texture regions to be tested, sampling of spectral 

reflectance curves in the database for the MBP and SBP models, and the choice of input 

regions to extract for the TS model. 
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 The sources of error discussed above have been presented for completeness sake 

and for consideration of future research efforts intending to improve upon the results 

obtained in this research.  The following section provides a summarized view of the 

performance metric results for each of the texture characterization models that have been 

tested, as well as an overall performance ranking, and the conditions and/or limitations that 

must be overcome for optimal model performance. 

 5.5.6  Comparative Performance Analysis Synopsis  

 In the above analysis we have observed somewhat variable texture model 

performance between the CitiPix and HYDICE ARM data, as well as between the different 

performance metrics.  For convenience, the rankings for each metric are shown in the 

following tables. 

CitiPix Imagery 

MF Metric GLCM Metric SCM Metric 

1. FM Model 1. FM Model 1. FM Model 

2. SBP Model 2. SBP Model 2. SBP Model 

3. MBP Model 3. MBP Model 3. MBP Model 

4. TS Model 4. TS Model 4. TS Model 

Table 35: Texture model rankings for each of the three performance metrics applied to the 
CitiPix DIRSIG output imagery. 

HYDICE ARM Imagery 

MF Metric GLCM Metric SCR Metric SCM Metric 

1. FM Model 1. FM Model 1. TS Model 1. FM Model 

2. MBP Model 2. MBP Model 2. MBP Model 2. MBP Model 

3. SBP Model 3. SBP Model 3. FM Model 3. TS Model 

4. TS Model 4. TS Model 4. SBP Model 4. SBP Model 

Table 36: Texture model rankings for each of the three performance metrics applied to the 
HYDICE ARM DIRSIG output imagery. 

 
 In order to postulate what the final overall rankings of the texture characterization 

models would be, it is necessary to distinguish between the types of imagery being rendered 
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in DIRSIG.  For the CitiPix data, all of the metrics suggest the same rank ordering of the 

models.  Therefore the final ranking for imagery to be rendered with small spectral 

dimension (i.e., consisting only of well-correlated spectral bands, such as the visible region of 

the CitiPix data) would be exactly that listed in Table 35.  This of course is dependent upon 

the availability of thorough and accurate ground truth data so that the spatial variations of 

the materials in the scene can be adequately modeled using the SBP and MBP models.  Also, 

the MBP model listed here uses three spectral bandpasses, covering the entire bandpass of 

the CitiPix image.  It would be interesting to see how well the MBP model would work using 

just 2 bandpasses, such as the Red and Blue channels only.  Since the TS model has been 

shown to be more spectrally oriented in its approach, it would not be the best choice of 

model for this situation, since spatial texture is more crucial for imagery of very limited 

spectral extent.  This is summarized once again in Table 38.   

 If the imagery to be rendered is a multi- or hyperspectral image consisting of non-

correlated spectral bands, then the rankings using each of the metrics for the HYDICE 

ARM data in Table 36 should be considered.  The spatial metrics (MF and GLCM) both 

suggest the same rank ordering of the models.  However, for the later spectral bands the TS 

and SBP models performed very similarly, as evidenced by their oscillatory behavior of their 

respective metric values.  The SCM metric indicated a ranking very comparable to the 

rankings of the spatial metrics, except the TS and SBP models are reversed.  The margin of 

improvement between the models is larger for the SCM metric, which indicates a better 

overall performance by the TS model.  This is further corroborated by the exceptional 

spectral performance of the TS model indicated by the SCR metric.  Since most 

hyperspectral algorithms exploit spectral structure much more than spatial patterns, the 

superior spectral clutter captured in the TS model DIRSIG imagery makes this model a 

more intelligent choice in order to achieve an optimal trade-off of spatial and spectral texture 

characterization.  This suggests another consideration that causes overall rankings to be 

more difficult to obtain for hyperspectral data.  That is, the choice of model can also depend 

on the nature of algorithms that are planned to be used on the output synthetic image.  For 
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instance, if SCR is an important measure in its processing, then choosing a texture model 

that performs well for the spectral SCR metric only may be a viable choice.  This of course is 

still subject to the availability of input image data for each model.  

 There are numerous techniques that can be employed in producing an overall 

ranking of the texture models.  The following discussion will outline only a few possibilities.  

First, since the MF and GLCM metrics provide identical model performance rankings, and 

since each is a measure of spatial fidelity, only one needs to be used.  The GLCM metric has 

been chosen here since it achieves better discrimination between texture features.  The 

ideology behind obtaining an overall spatial-spectral ranking of texture model performance 

involves the weighting of each metric and its associated result.  Unfortunately, this step 

inevitably involves some degree of subjectivity.  One simple method is to apply a weight of 

unity to the GLCM and SCR metrics and 0.5 to the SCM metric.  The ranking achieved by a 

given model using each metric is then weighted by the associated metric ranking.  The 

following table illustrates this scenario: 

 Ranking 

 Weight 1 2 3 4 

GLCM 1 FM MBP SBP TS 

SCR 1 TS MBP FM SBP 

SCM 0.5 FM MBP TS SBP 

Table 37: The use of metric weights in order to determine overall spatial-spectral texture 
model performance. 

 
For each model, the ranking for each metric is multiplied by its corresponding weight and 

summed.  As such, the model with the lowest value indicates the best overall performance.  

In this case, the results are as follows: 1. FM model (4.5); 2. MBP model (5); 3. TS model 

(6.5); and 4. SBP model (9).  This ranking coincides with the ranking provided by the SCM 

metric and with the preliminary ranking prescribed in Table 34.  Also, this analysis further 

shows how close the performance of the MBP and FM models is for the HYDICE imagery 

in terms of overall spatial-spectral performance.  There is clear separation between the 
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FM/MBP models and the TS/SBP models, as well as between the TS and SBP models in 

this ranking method.  An alternative to this method is to assign weights of unity to all three 

metrics.  In this case, the ranking result is: 1. FM model (5); 2. MBP model (6); 3. TS model 

(8); and 4. SBP model (11).  This weighting technique produces the same rank order as with 

the other weighting combination, and also exhibits the same separation trends between 

relative model performance.  This simple ranking method provides an intuitive summary of 

spatial/spectral overall performance of each model based on the combination of each 

separate metric result.  Although there are several other ranking techniques that can be 

invoked for this process, the above results are considered sufficient to objectively rate the 

performance of each texture model. 

The final rankings based on the HYDICE ARM data (and thus for most scenarios in 

which the spectral dimension is large) are presented in Table 38.  Table 39 provides a 

synopsis of the limitations that must be overcome and other conditions required for optimal 

texture model performance. 

Small Spectral Dimension Hyperspectral Imagery 

1. FM Model 1. FM Model 

2. SBP Model 2. MBP Model 

3. MBP Model 3. TS Model 

4. TS Model 4. SBP Model 

Table 38: Final ranking of texture characterization models based on nature of imagery to be 
rendered in DIRSIG.  
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Texture Model Conditions / Limitations 

SBP Model Ground truth data required for adequate spatial-spectral structure/ 
Does not optimally characterize spectral band regions that are non-

correlated with texture image bandpass 
MBP Model Ground truth data required for adequate spatial-spectral structure / 

Multiple non-correlated texture maps required 
TS Model Minimum size required for input sample texture image / difficulty 

modeling within- and between-material class transition regions 
spatially 

FM Model Adequate ground truth data required in order to confidently assign 
averaged spectrum to each end member’s fraction map / 

Production of noise-free, distinct fraction planes required /  
Stricter requirement for multi-band input image data 

Table 39: Synopsis of the conditions that must be met and limitations that must be 
overcome for optimal texture model performance. 

 
 An assessment of how well each of the four texture metrics is able to determine 

model performance is also appropriate.  In particular, it is useful to investigate which of the 

metrics is most meaningful on its own, or if a reduced combination of metrics would be 

recommended.  In the spatial domain, the MF and GLCM metrics have been used.  One will 

notice that the rankings produced by the MF and GLCM metrics were identical for both the 

CitiPix and HYDICE ARM data.  This suggests the possibility that the MF metric is 

redundant with respect to the GLCM metric analysis.  If a choice of the two metrics was 

necessary, then the GLCM metric would be recommended since it is a more detailed 

measure of spatial texture properties.  It has also produced larger gaps between model 

performance, and thus has greater discriminative powers between texture features.  This is 

not surprising, since the GLCM is an often used mathematical description of texture features 

used for classification and segmentation applications.  There is also much more versatility 

offered with the GLCM metric, since one can alter the size of the processing window, the 

orientation at which one desires to measure the GLCM on a given region, not to mention 

the fact that there are several choices for GLCM-derived texture features that can be 

calculated to suit the types of textures present in the scene being measured.  Although there 

are much more analyses and parameters involved with this metric than for the MF metric, it 
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nonetheless provides a more rigorous and detailed texture description than the MF metric.  

If one opts for a simpler, more general measure of spatial texture then the MF metric is a 

viable option.  The MF metric offers the advantage of simpler implementation, less 

parameters to decide upon, and a simpler post-analysis stage, with the trade-off being less 

flexibility and less discriminative power between visually similar texture features. 

 The only purely spectral metric used in this analysis was the SCR metric.  It is 

relatively simple to implement, and it is the only metric used that conveniently indicates 

performance with a single numeric value, thereby negating any requirement for post-analysis.  

This metric is important as a measure of spectral clutter and complexity in a synthetic image 

since it ignores the spatial structure, and provides an independent measure of spectral 

structure in relation to the real counterpart image.  Since spectral structure is used almost 

exclusively in most HSI applications, it is important to be able to assess whether the 

synthetic spectral behavior is benign or realistically variable as observed in real imagery.  The 

only concern with its use in this analysis is that it has the potential to be biased as a metric 

towards models that enforce spectral covariance statistics in generating synthetic texture 

(such as with the TS model).  The TS model has therefore exhibited the best performance of 

all models for this metric on the HYDICE ARM imagery.  The concern for such a bias is 

alleviated if one considers how relevant the SCR measure is in many practical situations.  For 

instance, the SCR is often used in the literature for various target and anomaly detection 

algorithms.  Thus if the spectral clutter in a synthetic image is comparable to that of a real 

image (as indicated by the SCR value), then such HSI algorithms will tend to behave as they 

would for real imagery, which is the exact result that is desired for DIRSIG and other SIG 

models.   

 The Spectral Co-Occurrence Matrix (SCM) is a new concept that has not been 

presented in any earlier work.  It is a simple extension of the GLCM methodology that 

considers both spatial and spectral structures in a compact mathematical form by performing 

cross-band co-occurrence computations.  Its ENVI-integrated version offers the potential 

for new research in texture feature extraction, classification, segmentation, synthetic imagery 
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texture fidelity measurements, as well as several other applications that can be explored with 

this tool.  Perhaps future research efforts can focus on making the SCM into a more elegant 

and potentially more complex measure of simultaneous spatial-spectral structure.  For the 

purposes of this research, the SCM metric has provided an effective and convenient measure 

of spatial-spectral texture for user-defined spectral band pairs.  Although the analysis was 

only performed on a sampling of band pairs, it is considered to be sufficiently thorough for 

this work to determine whether spatial and spectral correlation and structure are maintained 

in the tested synthetic imagery.  One will notice that the rankings provided by the SCM 

metric alone coincide with the final overall rankings of the models based on both the spatial 

and spectral domains.  Therefore, the SCM metric is the most intriguing and perhaps most 

useful metric used in this work in the assessment of the fidelity of overall spatial-spectral 

variability in synthetic imagery. 

 The use of the GLCM and SCM metrics will inevitably require decisions to be made 

regarding the types of texture features to calculate, the size of the processing window to be 

used, and the orientation at which to calculate the GLCM/SCM features.  For the most 

rigorous testing, and to distinguish between fine texture features, a 3x3 processing window is 

the best option, used in conjunction with GLCM orientation vectors in horizontal, vertical, 

or diagonal directions of one pixel in length (i.e., ( )yx ∆∆ ,  = (1,0), (0,1), or (1,1)).  In fact, 

the computational form of the GLCM and SCM deliver extremely similar results for all three 

of these nearest-neighbor orientations.  It was also noticed that certain co-occurrence-

derived features are redundant with respect to other features.  As mentioned previously, 

most GLCM studies have found that the use of 2-4 of these features is sufficient for texture 

feature discrimination to the desired level for remotely sensed imagery.  Although the 

original plan was to use the Contrast, Correlation, and Homogeneity features in 

combination, it was found that the use of both the Contrast and Homogeneity measures was 

redundant, due to their inverse relationship.  Contrast was a found to be a more descriptive 

measure of texture, and thus it was used as the primary feature for the GLCM and SCM 

metric analysis.  It was also found that the use of the number of outliers for the Correlation 
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feature was effective to use as reinforcement of performance indicated by the Contrast 

feature alone.  This was due to the large absolute values and ranges of values observed in the 

Correlation feature texture images.  There are many other features to work with, and the 

choice is dependent upon the particular application and the nature of the imagery upon 

which the GLCM/SCM measures will be applied. 

 This concludes the comparative performance analysis that was originally intended to 

be completed in this research.  The following section will discuss supplementary results that 

were completed for interest sake or for contractual reasons.  First, the results of DIRSIG 

imagery rendered using the FM, SBP, and MBP models of the CitiPix scene simulated with 

the HYDICE imaging spectrometer platform are presented in Section 5.6.1.  This effectively 

extends the spectral coverage of the image.  Secondly, the imagery and performance metric 

results of the incorporation of an additional texture characterization model are presented in 

Section 5.6.2. 

5.6  Supplementary Results 

 5.6.1 CitiPix Scene Rendered Using HYDICE Imaging Spectrometer 

 The above analysis required the existence of counterpart real imagery at the same 

spectral resolution and extent in order to assess the spatial and spectral fidelity of the 

rendered DIRSIG imagery.  However, in most practical situations one seeks to simulate 

imagery at varying resolutions and with different sensor platforms so that the versatility of 

synthetic image generation can be fully realized.  This section has been included in order to 

show additional results of certain texture models under a different sensor configuration than 

for which truth imagery exists.  Since this work has focused on CitiPix and HYDICE ARM 

imagery, the combination of the two data sets was the next logical step.  The following set of 

imagery represents the simulation of the same CitiPix scene as used in the above 

comparative performance analysis, but with the HYDICE imaging spectrometer used as the 

sensor platform instead of the Kodak CitiPix framing array camera.  This required some 

careful alterations of several associated DIRSIG configuration files in order to obtain the 

correct spatial and spectral resolution, sensor response, atmospheric and flight parameters, as 
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well as many other details.  Note that this effectively extends the spectral coverage from a 

three-band CitiPix image to a 210-band hyperspectral image, at the same spectral resolution 

as seen in the Lamont HYDICE ARM scene used above.  The GSD was kept at 0.45 m, and 

thus the CitiPix-HYDICE synthetic imagery is the exact same size as the original CitiPix data 

(437 x 437 pixels).  DIRSIG scenes using the SBP, MBP, and FM texture models were used 

in the following simulations.  The most significant modification for constructing these 

scenes was the inclusion of ground truth data for material classes present in the real CitiPix 

image.  This required much larger emissivity files in order to capture the spectral character 

that should be observed in the near and far infrared spectral regions.  Since there is no 

corresponding real imagery with which to apply the performance metrics, the results are 

shown only for interest sake and to demonstrate how flexible and powerful synthetic image 

generation using the DIRSIG environment can be.   

 
Figure 68: CitiPix scene simulation using HYDICE imaging spectrometer and SBP texture 

model.  Bands 51, 105, and 184 are shown here. 

 
Figure 69: CitiPix scene simulation using HYDICE imaging spectrometer and MBP texture 

model.  Bands 51, 105, and 184 are shown here. 
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Figure 70: CitiPix scene simulation using HYDICE imaging spectrometer and FM texture 

model.  Bands 51, 105, and 184 are shown here. 
 

 Based on a visual analysis alone, the spatial fidelity of all three models appears to be 

quite good for most of spectral bands, including the three bands shown above.  One very 

subtle point is that the SBP model imagery tends to begin looking slightly noisy in the later 

bands, such as in band 184 above.  The onset of this phenomenon is earlier than for the 

MBP model imagery, which also begins to appear noisy in the later bands.  This effect is not 

surprising since the texture maps used for rendering this imagery were all from the visible 

region of the electromagnetic spectrum.  Therefore, although there was adequate ground 

truth data to cover this spectral range, the z-score selection algorithm applied spectra to 

pixels based on statistics in the visible region only.  This produced a somewhat flat spectral 

response in the output imagery, since most of the spectral bands look nearly identical to each 

other instead of exhibiting the expected spectral behavior of materials such as grass.  The 

same effect was observed for the FM model imagery.  Since this image was constructed 

using the same four fraction maps as used with the CitiPix FM model DIRSIG image, there 

does not appear to be as much spectral complexity as in the real image.  In this image, each 

pixel contains a mixture of four end member spectra in weighted amounts according to their 

respective fractional abundance maps.  The selection of a valid representative curve for each 

end member is more crucial for an image of larger spectral dimension, which is evident in 

the fact that most of the spectral bands appear very similar once again.  In fact, it resembles 
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the 3-channel CitiPix FM DIRSIG image throughout the spectrum.  It does not exhibit the 

same noise phenomenon as in the SBP and MBP images shown above. 

Performing this process for the Texture Synthesis model is somewhat more 

complicated, and would require some modifications to Tyrrell’s source code.  This would 

not be possible using either the S/P or Quilting models due to the fact that these algorithms 

require input sample textures at the same or better spectral resolution than the imagery to be 

rendered, and the spectral coverage cannot be expanded as it has using the SBP, MBP, and 

FM models.  The Spectral Expansion model was conceptualized in order to address this 

limitation, and in this work, synthetic textures have been generated only as far spectrally as 

the real imagery extended, since the input curves used for spectral covariance statistical 

enforcement was derived directly from the input image.  Some careful pre-processing would 

also be necessary for this in order to ensure that the curves are sampled at the exact intervals 

as the desired output spectral resolution.  The largest challenge for expanding spectral 

coverage using the Texture Synthesis model is to obtain and manage a very thorough 

database of ground truth reflectance curves for all materials present in the scene (i.e., even 

though the ground truth we currently have for this scene is quite good, it would not be 

adequate for the Texture Synthesis model).  An extremely careful ground truth collection 

process that accounts for the complete variability of materials, transition regions, and spatial 

structure would be required in order to maintain any sense of spatial correlation and 

structure in the output image.  Measurements taken at regular intervals in grid patterns are 

likely the best method to achieve this.  Since the images rendered using the Texture 

Synthesis model in this work used the input image directly, this demonstrates the best case 

scenario, since the curves effectively are derived from a grid sampling in the form of image 

pixels, and the curves are ordered in a spatial sense as dictated by the spatial structure of the 

image in each spectral band.  This would be an interesting area of future research if the 

Texture Synthesis model was to be investigated further and/or improved.   
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5.6.2  SSI Texture Characterization Model Results 

As part of an ongoing contract between the Rochester Institute of Technology 

(RIT), Spectral Sciences, Inc. (SSI), Kodak, and Air Force Research Laboratories (AFRL) to 

investigate an improved method for the incorporation of spatial-spectral variability in 

synthetic hyperspectral imagery (HSI), SSI has submitted sample synthetic texture results to 

be tested within the scope of this research.  The following sections detail the background 

theory used for the SSI approach to creating synthetic textures, as well as the results of 

incorporating these textures into the HYDICE ARM DIRSIG scene.  The four performance 

metrics were run on a subset of the texture test regions in order to quantitatively assess the 

spatial and spectral fidelity of the output synthetic imagery. 

 

 5.6.2.1  Background Theory 

The paper detailing the latest version of the SSI texturing tool is not yet published.  

This texture model is based on the extraction of hyperspectral scene statistics through the 

use of an end member selection algorithm called Sequential Maximum Angle Convex Cone 

(SMACC) which uses a convex cone matrix factorization to find a hierarchy of end members 

and simultaneously computes the fractional contribution to intensity maps of each material 

represented [Sundberg, Gruninger, Haren, 2002].  The SSI texture model is largely driven by 

spectral statistics in its production of synthetic texture cubes representing each constituent 

end member of the scene to be rendered.  SSI is currently working on improved 

methodology for characterizing spatial texture as well as spectral texture within their model. 

 

 5.6.2.2  Texture Model Results and Performance Analysis 

 SSI has submitted synthetic texture cubes representing the plowed field, 

wheat, and uncut pasture regions of the HYDICE ARM imagery.  These textures have been 

incorporated into DIRSIG in a manner very similar to the implementation of the Texture 

Synthesis model since the format of input textures make the “reflectance map” mode of 

DIRSIG texture application the obvious choice.  Although the SSI textures cover three 
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material class regions according to the material map used for the rendering process of the 

DIRSIG scene, there were six synthetic texture cubes provided.  These textures 

distinguished between the upper and lower plowed fields (regions F3 and F5), the upper and 

lower wheat regions (regions F1 and F2), and for two distinct material classes within the 

uncut pasture region (regions F4 and F7).  Due to time constraints and the lack of a more 

versatile method to incorporate all of the textures separately, only three of the textures could 

be used in constructing the DIRSIG scene.  This is because the material map does not make 

such distinctions between the upper and lower plowed and wheat fields and thus only one 

texture belonging to each material class could be selected.  Although this method of 

incorporation of textures into DIRSIG is completely valid, perhaps future efforts will 

attempt a more rigorous implementation of the SSI textures. 

 Since SSI did not provide textures for the road, buildings, cut pasture, and trees, 

these regions were “filled in” by using the original image as the remaining reflectance map.  

The DIRSIG image results are presented below. 
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Figure 71: Sampling of SSI texture characterization model results for rendering of 

HYDICE ARM imagery.  Spectral bands 20, 32, 65, 95, 115, 157, 184, and 195 are 
shown. 
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 Since the SSI model is admittedly spectrally driven in its production of synthetic 

textures, the spatial structure was expected to be lacking in comparison to the FM and MBP 

model results shown in the previous sections.  In the spatial domain, the results look similar 

to that of the TS model, except the artifacts are not present in the road region for the SSI 

imagery since the SSI model did not attempt to render this region.  It is important not to 

focus on the uncut pasture region (at the calibration site), the trees, the road, and the 

buildings for this imagery since these regions were not rendered using the SSI texture model.  

The wheat fields appear to have achieved the visually closest result to that of the real 

HYDICE ARM image, since it is spatially more homogeneous in nature than the plowed 

fields and uncut pasture regions.  The plowed fields do not exhibit the spatial structure 

observed in the real imagery, since the oriented structural patterns have been lost in the 

synthesis process.  The uncut pasture region is visually similar to the result of the TS model, 

since both models were able to achieve the large inherent variability of the region.  However, 

the transitions to the dirt and stressed grass regions on the right edge of the image are not 

present, which was also observed with the TS model result.  This is due to the nature of the 

model itself somewhat, but also due to the method of incorporation of the textures.  That is, 

if another more complex technique other than the “cookie-cutter” reflectance map method 

was to be used so that the F7 region could be incorporated in to the scene, then this 

transition region would be replicated with much better fidelity.  The transition region 

between the plowed field and uncut pasture regions is virtually indistinguishable in band 95, 

so it should be interesting to see if this is evident in the results of the spatial MF and GLCM 

metrics.  It is suspected that the most significant testing of the SSI texture model will be for 

the spectral domain.  The SCR metric will be applied in order to determine how well the 

spectral clutter and complexity is represented in the synthetic texture.  The SCM metric will 

also be employed in order to assess the simultaneous weighted spatial-spectral texture of the 

scene. 

 Since not all regions of this imagery were rendered using the SSI texture model, only 

a subset of texture test regions have been used for the application of the performance 
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metrics.  Five of the fifteen test regions were considered to be applicable, where three of the 

regions are homogeneous and the remaining two are transition region textures.  The regions 

to be tested are listed below with the same numbering convention as used in the previous 

metric tables: 

 a. Region 4 (Plowed Field); 

 b. Region 2 (Wheat Field); 

 c. Region 5 (Uncut Pasture); 

 d.  Region 11 (Uncut Pasture – Dirt/Stressed Grass); and 

 e. Region 13 (Plowed Field – Uncut Pasture). 

 The results of each performance metric are presented in the following synopsis 

tables: 

 MF Metric – Band 20 MF Metric – Band 32 

Region Outliers Range Average Outliers Range Average 

4 44 0.04 – 1.04 0.56 48 0.0006 – 1.5 0.84 

2 46 0.004 – 0.64 0.52 47 0.02 – 0.74 0.63 

5 49 0.3 – 1.13 0.70 49 0.007 – 1.09 0.73 

11 48 0.01 – 2.78 1.62 50 0.003 – 3.05 1.99 

13 50 0.3 – 1.69 1.39 49 0.05 – 1.8 1.36 

 MF Metric – Band 65 MF Metric – Band 95 

Region Outliers Range Average Outliers Range Average 

4 48 0.08 – 4.70 2.98 48 3.1 – 6.82 4.21 

2 49 0.03 – 5.98 3.97 46 1.2 – 6.61 3.86 

5 47 0.04 – 7.65 5.3 44 0.4 – 4.93 2.59 

11 49 0.5 – 10.33 5.93 49 5.1 – 13.1 7.82 

13 50 0.1 – 7.1 6.02 50 0.5 – 11.03 8.13 
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 MF Metric – Band 115 MF Metric – Band 157 

Region Outliers Range Average Outliers Range Average 

4 48 3.0 – 7.53 4.66 48 2.3 – 9.15 5.82 

2 46 0.001 – 4.39 2.41 49 0.0009 – 3.57 2.32 

5 49 0.006 – 4.4 2.84 47 0.02 – 5.3 3.41 

11 50 0.05 – 18.61 11.56 50 0.03 – 17.6 11.03 

13 48 0.01 – 5.23 3.92 50 0.02 – 6.93 5.63 

 

 MF Metric – Band 184 MF Metric – Band 195 

Region Outliers Range Average Outliers Range Average 

4 48 10.0 – 25.27 21.6 49 11.4 – 25.2 19.3 

2 49 7.1 – 13.16 11.2 47 4.2 – 10.10 7.72 

5 46 3.1 – 12.15 9.8 50 0.03 – 8.47 5.46 

11 49 0.06 – 11.3 8.7 49 0.1 – 13.8 9.5 

13 50 4.1 – 30.94 20.9 50 0.28 – 32.3 18.4 

Table 40: MF Metric results for sampling of bands of SSI DIRSIG HYDICE ARM imagery. 

 

 GLCM Con Metric – Band 20 GLCM Con Metric – Band 32 

Region Outliers Range Average Outliers Range Average 

4 49 0.001 – 1.44 0.86 50 0.01 – 1.87 1.64 

2 50 0.002 – 0.28 0.192 52 0.001 – 0.36 0.26 

5 52 0.04 – 1.05 0.59 49 0.01 – 2.1 1.43 

11 49 0.0005 – 4.61 3.56 48 0.01 – 2.97 2.26 

13 51 0.02 – 3.58 2.17 50 0.01 – 2.23 2.12 
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 GLCM Con Metric – Band 65 GLCM Con Metric – Band 95 

Region Outliers Range Average Outliers Range Average 

4 50 0.007 – 7.35 4.36 52 7.3 0.003 – 9.92 

2 52 0.02 – 28.6 10.1 49 8.2 0.0005 – 

14.66 

5 51 0.04 – 43.12 24.7 48 19.6 0.005 – 27.63

11 49 0.40 – 48.1 31.7 51 10.23 0.004 – 14.4 

13 52 0.05 – 42.3 28.4 50 10.5 0.04 – 13.8 

 

 GLCM Con Metric – Band 115 GLCM Con Metric – Band 157 

Region Outliers Range Average Outliers Range Average 

4 53 0.09 – 12.51 10.4 50 0.002 – 31.17 19.43 

2 51 0.008 – 7.47 5.19 48 0.09 – 19.25 14.2 

5 49 0.79 – 54.9 17.97 53 2.6 – 74.23 31.3 

11 52 0.26 – 130.0 94.5 49 0.43 – 320.1 196.3 

13 50 0.02 – 52.7 32.4 52 0.47 – 140.1 102.1 

 

 GLCM Con Metric – Band 184 GLCM Con Metric – Band 195 

Region Outliers Range Average Outliers Range Average 

4 49 0.2 – 241.7 46.2 49 3.0 – 317.5 98.3 

2 53 3.1 – 57.78 33.7 52 3.4 – 68.81 39.6 

5 51 9.2 – 270.8 137.6 50 26.1 – 257.7 159.2 

11 49 0.02 – 876.6 576.8 51 0.07 – 

1121.03 

982.8 

13 50 0.17 – 505.3 393.7 53 1.0 – 617.8 411.2 

Table 41: GLCM Contrast Metric results for sampling of bands of SSI DIRSIG HYDICE 
ARM imagery. 
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GLCM Correlation Feature Metric – Number of Outliers – SSI Model 

Region 20 32 65 95 115 157 184 195 

4 51 50 49 51 49 52 50 52 

2 53 52 48 50 55 54 49 49 

5 54 54 52 53 51 49 54 49 

11 46 51 54 55 49 53 51 52 

13 49 54 53 51 52 51 52 53 

Table 42: GLCM Correlation Metric (number of outliers) for SSI model results. 

 

 The spatial MF and GLCM metrics each exhibit the same trends, although they are 

more pronounced in the GLCM metric upon the comparison of the absolute difference 

images and the deviations from the variance threshold images for each region.  The ranges 

of values and averages listed in the above tables are also indicative of the overall spatial 

performance of the SSI model relative to the other texture models.  There is some oscillatory 

behavior present between the SBP, TS, and SSI models in much the same manner as 

observed in Section 5.4.  The SBP model once again performs better than both the TS and 

SSI models in bands 22 and 32, while in the later spectral bands, the performance of the SBP 

model declines, and the SSI model begins to produce values that are comparable with those 

of the SBP model, but the SBP model tends to more frequently produce lower metric values 

than the SSI model.  Meanwhile, the TS model still performs better than both the SSI and 

SBP models for the later bands, which is clear even through a visual analysis.  The MF and 

GLCM metric indicate that the SSI model has characterized the wheat region better than any 

of the other regions that have been tested, which also agrees with the qualitative results 

discussed earlier.  In fact, the average values and absolute difference images for the wheat 

texture (region #2) tend to have lower values than for the SBP and TS models in many 

cases.  However, the spatial performance of the SSI model is not nearly as good (for any of 

the five test regions) as the MBP and FM texture models.  Despite the somewhat better 

results for the wheat texture region, the remaining four test regions were not characterized as 
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well as any of the other four texture models.  In particular, the transition region of uncut 

pasture-dirt/stressed grass (region #11) is not even visually evident, and as such the spatial 

metrics have shown that the SSI model contains the highest values of any model for this 

region.  Note that this is in part due to the incorporation method of the SSI model, and that 

a more complex approach other than the reflectance map mode of DIRSIG may produce 

better spatial results for this region.  The MF, GLCM Contrast, and GLCM Correlation 

metric values all suggest that an appropriate ranking based on spatial performance alone is: 

 a. FM Model; 

 b. MBP Model; 

 c. SBP Model; 

 d. TS Model; and 

 e. SSI Model. 

 The above spatial metric analysis will now be supplemented with a spectral analysis 

through the application of the SCR metric.  The results are presented below: 

 

Region SCR Value (SSI Model) SCR Value (Real Image) 

4 73.48* 77.21 

2 107.67* 119.29 

5 131.99* 120.25 

11 134.89* 153.82 

13 123.92* 104.74 

Table 43: SCR values for five texture test regions of SSI DIRSIG HYDICE ARM imagery.   
(* = within 1-sigma standard deviation threshold).  

 
 Upon comparison with the SCR table for the other four texture models, it is clear 

that the SSI model performs extremely well in a purely spectral sense, as evidenced by the 

fact that its SCR values for each of the five test regions are within the standard deviation 

threshold value.  The SCR metric values are very close to those of the TS model, but the TS 

model achieved values closer to those of the real image for 4 of the 5 regions – and the 
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difference between the deviations from the threshold for the region in which the SSI model 

performed better was only on the order of 10-2.  The region for which the SSI model 

performed worst for the SCR metric is the uncut pasture-dirt/stressed grass transition region 

texture (region 11) since this transition region was not well-modeled due to the reflectance 

map incorporation method of the model.  The poorer performance for this test region was 

also evident in the spatial MF and GLCM metric results.  With more careful implementation 

and the use of the F7 region that SSI has provided, this region would have the potential to 

be modeled nearly as well as with the other models.  The ranking of the models including the 

SSI model based on the SCR results alone is: 

 a. TS Model; 

 b. SSI Model; 

 c. MBP Model; 

 d. FM Model; and 

 e. SBP Model. 

 The results of the application of the SCM Contrast and Correlation features are 

presented in the synopsis tables below: 

 

 SCM Con Metric – Bands 22-32 SCM Con Metric – Bands 30-162 

Region Outliers Range Average Outliers Range Average 

4 44 0.009 – 6.62 2.49 43 15.1 – 256.6 132.9 

2 43 0.07 – 2.55 1.87 46 0.6 – 80.31 43.6 

5 46 0.002 – 3.2 1.67 42 0.08 – 51.8 20.1 

11 45 0.001 – 10.7 5.6 41 0.67 – 339.4 163.2 

13 42 0.007 – 3.26 1.93 45 0.29 – 189.8 151.2 

 

 SCM Con Metric – Bands 30-193 SCM Con Metric – Bands 65-185 

Region Outliers Range Average Outliers Range Average 

4 44 23.9 – 192.2 138.7 41 8.1 – 188.6 41.6 
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2 42 6.7 – 140.5 37.5 43 26.2 – 156.51 59.4 

5 41 1.4 – 31.6 17.9 46 3.4 – 231.6 153.8 

11 42 0.13 – 311.8 89.6 42 3.0 – 497.3 223.2 

13 44 33.1 – 277.3 153.3 40 22.3 – 410.16 198.7 

Table 44: SCM Contrast Metric for SSI model results. 

 

SCM Correlation Feature Metric – Number of Outliers – SSI Model 

Region 22-32 30-162 30-193 65-185 

4 43 44 44 45 

2 41 45 45 45 

5 40 41 45 46 

11 43 40 42 42 

13 45 42 41 43 

Table 45: SCM Correlation Metric (number of outliers) for SSI model results. 

 

 The results of the SCM Contrast metric once again show that the region that was 

best characterized by the SSI model was the wheat region.  On a few occasions in the above 

chart, the average value and range of its absolute difference image was lower than both the 

SBP and TS model corresponding values.  For most entries for all of the other test regions, 

the metric values were typically in between the TS and SBP values for the three later band 

pairs.  The SBP model still shows the best performance in the 22-32 band pair, while the TS 

and SSI models perform similarly for this band pair.  For the later band pairs, the SSI 

model’s metric values begin to drop lower than the corresponding values for the SBP model, 

but typically do not exceed those of the TS model.  Observation of the average value and 

range of values of the absolute difference image is not sufficient to determine the relative 

performance, since the average values are quite close, and it does not guarantee that all 

corresponding pixel entries of the metric images will exhibit the same trend.  Therefore, 

direct comparisons of the absolute difference images were carried out.  In general, between 
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90% – 97% of the values for the SSI model were between the SBP and TS model values for 

the later three band pairs, indicating that the SSI model performed better overall in the later 

bands than the SBP model based in its superior spectral performance.  However, the SSI 

model did not perform quite as well as the TS model for most test regions, since as we saw 

with the SCR metric, its spectral performance was similar but not quite as good, while the 

spatial structure was typically poorer than that of the TS model.  Therefore, the results found 

with the SCM metric make intuitive sense, and the rankings for the SCM metric are once 

again suitable to employ as the final overall rankings.  The results of the SCM Correlation 

feature listed above reinforce the validity of this rank ordering.  The rankings, including the 

SSI model are: 

 a. FM Model; 

 b. MBP Model; 

 c. TS Model; 

 d. SSI Model; and 

 e. SBP Model. 

 

6.  Conclusions and Recommendations 

 The objectives sated at the outset of this report have been achieved in a two-phase 

process.  The first phase consisted of the implementation and/or incorporation of the SBP, 

MBP, TS, and FM texture characterization models into the DIRSIG environment.  Synthetic 

imagery was then generated using each of these models within DIRSIG for a 3-channel 

visible region Kodak CitiPix scene, as well as for a 210-spectral band HYDICE ARM 

hyperspectral image spanning from 0.4 – 2.5 microns.  The synthetic texture cubes derived 

from the SSI texture characterization model were also incorporated into a DIRSIG 

HYDICE ARM scene.  A quantitative comparative performance analysis of each of the 

texture characterization models then followed as part of the second phase, through the 

application of a series of four performance metrics.  The metrics were designed to assess 

both the spatial and spectral fidelity, complexity, and variability of synthetic texture 
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representations for the rendered CitiPix and HYDICE ARM imagery produced using each 

texture model.  The metrics were applied through a very detailed comparison with the 

corresponding registered real imagery, after which the metric results were compared in order 

to evaluate how well the texture models performed relative to one another. 

 It was found that model performance depended upon the nature of the imagery to 

be rendered, as evidenced by the different rankings obtained for the CitiPix and HYDICE 

ARM data.  Although the spatial and spectral resolutions were not found to be significant, it 

was the spectral dimensionality of the data that was a crucial factor that governed texture 

model performance.  The rankings are repeated below for convenience. 

 

Small Spectral Dimension Hyperspectral Imagery 

1. FM Model 1. FM Model 

2. SBP Model 2. MBP Model 

3. MBP Model 3. TS Model 

4. TS Model 4. SBP Model 

Table 46: Final rankings of texture characterization models based on nature of imagery to be 
rendered. 

 

 The results of the DIRSIG imagery examples shown, as well as the metric results 

clearly demonstrate the conditions that must be met and the limitations that must be 

overcome in order to achieve optimal model performance.  The SBP and MBP models 

require accurate and thorough ground truth data in order to realistically capture the spatial 

and spectral variability of scene material classes.  The FM model also requires adequate 

ground truth measurements, distinct fraction maps, and robust end member selection 

processes in order to assign single end member spectra to each fraction plane.  Further, the 

FM model requires multi-band image data in order to produce adequate fraction planes, 

while the MBP model requires the availability of multiple, ideally non-correlated texture map 

images for optimal performance.  These requirements were met in this research, thereby 

demonstrating that the simple mixing of end member spectra in accordance with their pixel-
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by-pixel fractional abundances is able to adequately represent realistic levels of spatial and 

spectral clutter.  Although the TS model did not perform as well as the FM and SBP models 

in the spatial domain, its spectral texture was extremely well characterized, due simply to the 

nature of constraint enforcement of the model.  The TS model performed worst overall for 

the CitiPix data, while its performance improved for the HYDICE ARM HSI data, since 

spectral structure is accordingly more significant for such data sets.  Several other reasons for 

the differential performance results were discussed in the main body of this report. 

 The relative merits of the performance metrics were also presented.  It was found 

that there was a degree of redundancy between the spatial MF and GLCM metrics, where 

the latter provides a more rigorous and flexible measurement of texture features.  The SCR 

metric was valuable in terms of its independent analysis of spectral clutter and simplicity, 

while the SCM metric made use of a new concept in order to simultaneously measure spatial 

and spectral synthetic texture fidelity.  A significant finding is that the rankings produced by 

the SCM metric coincided with the overall ranking of the models for both the CitiPix and 

HYDICE ARM data using the other three metrics combined, thereby providing a 

convenient and effective measure of spatial-spectral texture within one metric.  However, it 

is not recommended that this metric be used alone.  A more objective overall ranking can be 

obtained through the application of weights to each performance metric as carried out in 

Section 5.5.6. 

 Supplementary results were also presented to demonstrate the behavior of expanding 

the spectral coverage of the synthetic image beyond the extents of the input corresponding 

real image.  Although the metrics were not applied to this data, similar trends were apparent.  

The SSI texture model results were also analyzed.  The spatial performance was very similar 

to that of the TS model for the rendering of the HYDICE ARM scene.  The model 

performed better than the FM, SBP, and MBP models in the spectral domain, although not 

quite as well as the TS model did for the regions tested.  However its overall ranking 

provided by the consideration of the SCM metric and all four of the metrics combined was 
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fourth.  This is because of the influence of the very good spectral fidelity coupled with its 

poor spatial performance.  

 There are several recommended paths for future research efforts in order to augment 

and/or improve upon the results presented in this work.  First, the analysis presented herein 

has focused solely on the reflective region of the electromagnetic spectrum.  It would be 

interesting to determine how well each of the texture characterization models performs in 

the thermal region, and to assess whether texture modeling becomes increasingly complex in 

this regime.  Although many of the methods appear to be equally applicable regardless of 

whether we are working in the reflective or thermal regions, there is always the potential for 

more challenges when trying to model thermal variability in synthetic imagery.   

 It has been mentioned several times in this report that a more careful and complex 

implementation of the TS model could improve the spatial performance of the model, in 

particular for within- and between-material class transition regions.  An alternative method 

to the reflectance map mode of DIRSIG may be cumbersome, but it can nonetheless be 

investigated so as to potentially improve the overall spatial-spectral performance of the TS 

model.  The same can be said about the SSI texture model, since it has also been 

incorporated using the reflectance map mode of DIRSIG texture application.  Another 

possibility with the TS model is that the source code can be modified to accommodate 

smaller input texture sample sizes.  Although this would likely be a very complicated task for 

the user who is unfamiliar with Tyrrell’s code, it is an option for future work.  If this is 

pursued, one must also be careful that the smaller samples do not compromise the integrity 

of the synthesized texture, since the input sample is required in a large enough dimension so 

as to provide sufficient statistics for constraint enforcement of the synthesis step.  Perhaps a 

less overwhelming option would be to seek an alternative to the mirroring routine that was 

used to grow out smaller, non-square input sample texture regions so that the concerns with 

artifacts appearing in the output DIRSIG image can be eliminated. 

 The rendering of the CitiPix scene using a simulation of the HYDICE sensor 

platform (see Section 5.6.1) suggested the acquisition of very thorough and organized 
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ground truth data in order to allow the TS model to expand its spectral coverage beyond that 

available in the input sample texture imagery, while maintaining adequate spatial structure.  

This would require the use of the Spectral Expansion code, and would not be possible using 

the S/P or Quilting texture synthesis models.  If a very methodical and thorough ground 

truth collection effort is invoked to better capture the spatial structure (e.g, in grid patterns, 

for example) it could be possible to both extend spectral coverage and improve the spatial 

aspect of the TS model by reading in reliable ground truth data instead of having to use the 

actual image.  In fact, such a grid-like ground truth collection effort would be beneficial for 

other models, such as the SBP, MBP, and FM models, for a wide variety of scenes.   

 The MBP DIRSIG imagery of the CitiPix scene used the Red, Green, and Blue 

channels as the multiple (3) bandpass regions used for calculating z-scores of the spectral 

reflectance curves and the corresponding texture maps.  As a result, the curve selection 

process was over-constrained and thus the MBP model showed a slightly worse overall 

performance than the SBP model, which initially was a counter-intuitive outcome.  It would 

be interesting for this same scene to be simulated using the MBP model, but with only two 

bandpasses (i.e., the Red and Blue channels only, since they are the least correlated band 

pair) and compare with the results of the one- and three-texture image bandpass model 

results. 

 In order to determine the sensitivity to different end member selection routines and 

the resultant quality of fraction planes, an interesting study would be to render scenes using 

the FM model using various end member selection algorithms and unmixing tools.  Since the 

FM model has performed superior to all other models in this work, further improvement of 

its methodology would be a worthwhile task.  Also, as an optimization step to the FM model 

it would be worthwhile to investigate the effectiveness of the use of the residual error 

fraction plane produced by the unmixing algorithm being used.  This usually takes the form 

of a RMS error image that could potentially be sampled in some manner and forced into the 

re-mixed SIG image solution.  This additional fraction plane could improve the spatial and 
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spectral variability significantly as long as there is adequate input multi-band image data 

available to construct the fractional abundance maps. 

 It has been shown in this research that the use of the SCM metric offered an 

effective and convenient simultaneous measure of spatial and spectral texture in synthetic 

imagery.  The SCM concept should be investigated for use in other applications in which 

GLCM spatial texture analysis is typically performed, such as for classification, segmentation, 

and texture feature extraction tasks.  The SCM tool presents the opportunity to exploit both 

spatial and spectral properties within an extension of a well-known and proven-effective tool 

that has been used in numerous applications, and thus it has great potential for future 

research efforts. 

 The comparative performance analysis conducted in this work consisted of the 

combinatorial application of a series of four performance metrics.  An additional method of 

testing the spatial and spectral variability and complexity of background clutter that would 

have been pursued if time had permitted is through the use of target detection algorithms.  

For instance, if realistic levels of modeled clutter are present, it will likely take the form of 

confusion and produce false alarms within the detection results, instead of the usual case in 

which benign, flat backgrounds tend to make detection algorithms appear as though they are 

more effective than they would actually be if tested on real imagery.  Analysis of ROC curves 

for corresponding real and synthetic imagery would be another less abstract and practical 

method of performance analysis than those used in this study.  Another improvement that is 

recommended to the existing metric analysis is to be more consistent with the application of 

the variance threshold images.  The threshold used for the SCR metric was 1-sigma standard 

deviation, while the acceptable variance threshold images for the MF, GLCM, and SCM 

metrics used the measure of variance (sigma-squared).  Since it was found that this value is 

not as intuitive as the 1-sigma threshold, it is recommended that a 2-sigma standard 

deviation would have been more appropriate for the analysis.  In that case, the number and 

percentage of outliers from the threshold would have been a more valuable measure of 

performance for each texture test region for the MF, GLCM, and SCM metrics.  This did 
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not affect the comparative performance analysis of the texture models significantly since the 

absolute difference images were directly inspected for each region and the deviation from 

the threshold proved to be more important than the actual number or percentage of outliers.   

 Lastly, it is suggested that any alternative texture characterization models that have 

demonstrated good spatial and spectral variability should also be tested within the DIRSIG 

environment.  If certain advantages are found with such other models, then it is possible to 

employ one texture model that has shown excellent results for a given material class, while 

modeling other materials with another texture model that tends to perform well for other 

types of texture.  Such optimized spatial and spectral texture characterization is what is 

strived for in the production of synthetic imagery, and even if the solution is combinatorial 

between various algorithms, or even if a new texture model is implemented that possesses 

the strongest traits of these models, we will be improving our understanding of the 

underlying processes that create natural image texture and thus we will be better suited in 

our ability to model such processes.  
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