Relating Multimodal Imagery Data in 3D

By

Karl C. Walli
B.S., Michigan Technological University, 1991

M.S., Joint Military Intelligence College, 1995

M.S., Rochester Institute of Technology, 2003

A dissertation submitted in partial fulfilment of the

requirements for the degree of Doctor of Philosophy.
Chester F. Carlson Center for Imaging Science
College of Science

Rochester Institute of Technology

July 22, 2010

Signature of the Author

Accepted by

Coordinator, Ph.D. Degree Program Date






CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE
ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

Ph.D. DEGREE DISSERTATION

The Ph.D. Degree Dissertation of Karl C. Walli has been examined and approved
by the dissertation committee as satisfactory for the dissertation

required for the Ph.D. Degree in Imaging Science

Dissertation Advisor:

Dr. John Schott

Committee Member:

Dr. Harvey Rhody

Committee Member:

Dr. Carl Salvaggio

External Chair:

Dr. Andrew Herbert






DISSERTATION RELEASE PERMISSION
CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE
ROCHESTER INSTITUTE OF TECHNOLOGY

Title of Dissertation:
Relating Multimodal Imagery Data in 3D

I, Karl C. Walli, hereby grant permission to Wallace Memorial Library of R.I.T. to reproduce my
dissertation in whole or in part. Any reproduction will not be for commercial use or profit.

Signature

Date






Disclaimer

The views expressed in this dissertation are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or the
United States Government.

Vvii






Relating Multimodal Imagery Data in 3D

By
Karl C. Walli

Chester F. Carlson Center for Imaging Science
College of Science

Rochester Institute of Technology

ABSTRACT

This research develops and improves the fundamental mathematical approaches and
techniques required to relate imagery and imagery derived multimodal products in 3D. Image
registration, in a 2D sense, will always be limited by the 3D effects of viewing geometry on the
target. Therefore, effects such as occlusion, parallax, shadowing, and terrain/building elevation
can often be mitigated with even a modest amounts of 3D target modeling. Additionally, the
imaged scene may appear radically different based on the sensed modality of interest; this is
evident from the differences in visible, infrared, polarimetric, and radar imagery of the same

site.

This thesis develops a ‘model-centric’ approach to relating multimodal imagery in a 3D
environment. By correctly modeling a site of interest, both geometrically and physically, it is
possible to remove/mitigate some of the most difficult challenges associated with multimodal
image registration. In order to accomplish this feat, the mathematical framework necessary to

relate imagery to geometric models is thoroughly examined. Since geometric models may need
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to be generated to apply this ‘model-centric’ approach, this research develops methods to
derive 3D models from imagery and LIDAR data. Of critical note, is the implementation of
complimentary techniques for relating multimodal imagery that utilize the geometric model in
concert with physics based modeling to simulate scene appearance under diverse imaging
scenarios. Finally, the often neglected final phase of mapping localized image registration

results back to the world coordinate system model for final data archival are addressed.

In short, once a target site is properly modeled, both geometrically and physically, it is possible
to orient the 3D model to the same viewing perspective as a captured image to enable proper
registration. If done accurately, the synthetic model’s physical appearance can simulate the
imaged modality of interest while simultaneously removing the 3-D ambiguity between the
model and the captured image. Once registered, the captured image can then be archived as a
texture map on the geometric site model. In this way, the 3D information that was lost when
the image was acquired can be regained and properly related with other datasets for data

fusion and analysis.
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Figure 3-7 The basic process for relating images to a model when the camera pose is unknown.
The main difference here is that the initial camera pose must be solved for using
correspondences or user manipulation of the model pose. At this point the process
then mimics the one described earlier in Section 3.1. ....cccooviiiiiiniiiiiiiniieceeee, 3-10

Figure 3-8 Algorithm 7.1 — The Gold Standard Algorithm for estimating P from world to image
point correspondences in the case that the world points are very accurately known. 3-
11

Figure 3-9 This simple graphic displays how a linear estimate of a nonlinear function can
provide a rough estimate of the local/global minimum location, within some margin
(o] <] o o S UURU 3-15

Figure 3-10 On the left is the working image with the same 12 locations selected as on the
model; these locations are twice the number required for resectioning with a model
(8 GCPS). .ot e e ee e e eee e ee e ee e eeseeeeeeee e et ee s eeee e en e e e en s eenens 3-17

Figure 3-11 On the left, the DLT provides a good starting point for LMA to optimize a solution.

Figure 3-12 The figure above show a 2D SWIR image (A) and an image projection of a 3D model
that was textured/attributed using the same LIDAR SWIR intensity returns that were
utilized to create the facetized 3D MOdEl........ccuvveeeeiieiicee e, 3-19

Figure 3-13 The results of automated registration (using SIFT & RANSAC), between the 2D SWIR
image and the 3D LIDAR model are apparent. ......cccovveeeeeeeeieciirreeeeeeeeeeecireeeeeeeeenn 3-20

Figure 4-1 This graphic depicts the six basic steps required for relating multiple images to
recover sparse structure via the Bundle Adjustment process. Once invariant features
are extracted and matched, a linear estimate of the 3D point set is fed into a Bundle
Adjustment process to simultaneously optimize the model points and camera

[T =T =1 (=T OO PP P PP PUPPPRRPPPPPPPRE 4-2
Figure 4-2 The epipolar relationships of the cameras, image points, and model points........... 4-4
Figure 4-3 Hartley & Zisserman’s 7-Point Fundamental Matrix using RANSAC. ........ccccccceeeee.n. 4-5

Figure 4-4 Process for tiling images larger than 2kx2k for SIFT feature extraction and matching.

Figure 4-5 Displays the utility of RANSAC plane fitting to SPC terrain data for outlier removal.. 4-
8

Figure 4-6 Rectification of the matches must be performed for accurate 3D estimation of the

Figure 4-7 The 3D estimate of structure is dependent on the baseline between the images, so
corrections are required that change the image pixel locations to be aligned with the
flight line path. This amounts to a coordinate system conversion of the matched
locations to one that is defined by the axes connecting both camera location at the
TIME Of CQUISITION. tiiieiiiiiiiiie e e e e b e e e e e e e e s e aaraeeeees 4-10
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Figure 4-8 The overlapping images above (red & yellow) are registered and have matches that
are common to all (cyan). These common locations can then be utilized for 3D
registration or as seeds for the DPC extraction process (Section 4.3.3). ................. 4-11

Figure 4-9 Once the image bundle is optimized using SBA, it is possible to relate the images,
cameras and 3D point cloud into a 3D mathematical framework to determine the
region of overlap for DPC interrogation and additional processing..........cccccceuu..... 4-12

Figure 4-10 The basic process for developing Dense Point Clouds using Epipolar relationships
DETWEEN IMAEES. .oeeeieeiie ittt e e e e s e e e e e s et er e e e e e e s e ssnnrraeeeeeeeesennnnes 4-13

Figure 4-11 Example showing the angular diversity required to recover 3D Terrain from
AITDOINE IMABEIY. oottt e e e e s e e e s sbee e e e s staeeeesnseaeean 4-15

Figure 4-12 Thousands of invariant keypoints generated and matched using the SIFT algorithm.

Figure 4-13 Depiction of the Fundamental Matrix constraint between images which is used for
(o] o [ T=T g =T Yo 1V 7Y F U PURUR 4-18

Figure 4-14 Graphic showing two collection stations of an airborne sensor utilized to recover
R T ) Lot U =SSP PPRN 4-20

Figure 4-15 Corrections are required to compensate for aircraft pitch, yaw, and roll and flight
line orientation as discussed earlier in Section 4.2.1.3. These are done by projecting
the matches onto a virtual focal plane and then transforming them to a coordinate
system aligning the x-axis to the flight line connecting the two image centers. .....4-21

Figure 4-16 The interim estimates of the four individual SPC’s can be seen compared to the
CAMETA JOCATIONS. ..eiiiiieiiiee ettt ettt s e e st e e saneessaneeeas 4-23

Figure 4-17 Example results of the Sparse Bundle Adjustment process on the Sparse Point
Cloud. Here the absolute global coordinates (A) can be compared to the facetized
surface (B), visualized in Google Earth (C), or re-projected back into any of the images
contained within the buNdIe (D). ...eeiiiiiiiiiiiiiiei e 4-26

Figure 4-18 The image derived SPC mesh fidelity can be directly compared to both hi-fidelity ~1
[m] LIDAR terrain and a lo-fidelity ~30 [m] Digital Elevation Map. .......ccccceeeeeennnens 4-27

Figure 4-19 Left: Image with single point chosen. Middle/Right: Corresponding epipolar lines in
(o] o [T g 10 F= =4 LSS 4-29

Figure 4-20 Left: Initial estimate of the structure of the dense point cloud from three images.
Right: Result after SBA, world coordinate mapping and projective image texturing... 4-
30

Figure 4-21 Resulting 3D structure recovered from three overlapping images using Dense Point
Correspondences (The model provided by Pictometry is embedded within Google
=Y 4 ) PSR 4-31
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Figure 4-22 Matching between a nadir and oblique images using ASIFT and then RANSAC with
the Fundamental Matrix as the fitting model (Images courtesy Pictometry Int.
(g oo o =Y Va0 A i 0 ) ) RSP 4-32

Figure 4-23 Growing 3D depth maps based on the initial SPC results and epipolar relationships.
In the upper left inset, the 3D SPC is projected back onto the base image. For these
locations the depth information is already known (upper right) and can be used to
constrain the matching locations in the other images (lower left) to follow a general

SUITACE FUNCTION. ciiiiirieiiie ettt e ee s e e e e e e s e bbb aereeesesseansrbeneees 4-33
Figure 4-24 The structure and composition of a Bundle Adjustment Jacobian matrix............. 4-35
Figure 4-25 The structure and composition of the normal equations (~YHessian matrix). ....... 4-35

Figure 4-26 A sparse matrix obtained when solving a modestly sized bundle adjustment
problem. This sparsity pattern is of a 992x992 normal equation (i.e. approx. Hessian)
matrix, where black regions are nonzero blocks. (Lourakis and Argyros 2009)........ 4-36

Figure 5-1 The basic process for relating 3D models and structure using a 3d Conformal
transform. As in the previous sections, the key here is to relate similar features
within the two datasets in order develop a mathematical relationship. The only
added complexity is in the additional dimensionality and possible feature disparity of
L1 01l o oY = LY = U PURR 5-2

Figure 5-2 The Midland Site SPC (top) resulting from BA of tens of thousands of 3D points
compared to the millions of 3D points embedded within a LIDAR DPC (Bottom). ....5-3

Figure 5-3 Relating the SPC pts to DPC points via an iterative nearest neighbor approach. ..... 5-5

Figure 5-4 The image derived SPC mesh above is compared to a LIDAR derived DPC mesh below
for comparison in Meshlab. The absolute coordinates of the image derived results
are only as accurate as the projected location of the base image, so a final
translation, acquired from the matched locations (right), may be necessary. .......... 5-7

Figure 5-5 The results of the linear 3D Translation and Meshlab (Pisa 2010) implemented ICP
nonlinear refinement can be visualized above. Note the general agreement between
LIDAR and SPC surfaces as they fight for visibility across the scene. ......ccccceeeeennnes 5-8

Figure 5-6 This illustrations shows the initial LIDAR DPC with grayscale intensity attributed
points on the left. This can be utilized to produce a clean facetized model utilizing
the author’s MATLAB code as shown in the graphic on the right. .........c.cccooennne. 5-9

Figure 5-7 This graphic portrays a manual feature correspondence generation that can be used
to relate a Faceted Model to a LIDAR DPC that has been facetized. Once
accomplished, the initial relationship is improved through nonlinear ICP analysis. 5-10

Figure 5-8 The graphic above shows how the Conformally transformed site model can then be
placed on the same LIDAR dataset that was now used to create a bare-earth terrain
a1 o 1] FA O PP PP PP 5-11
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Figure 5-9 The Bundle Adjusted VanLare Site SPC (top), was projected back into the base image
(Middle) and can then be compared directly with the FM where the base image is
used as a UV texture on the terrain (BOttom). .....veeeeviiiiiiiiiriiiiiiceieiireeeeee s 5-13

Figure 5-10 The Control Points used to related the GE and AANEE models (top) and the
resulting transformation of the local points into Global UTM coordinates when
compared to their matching Google Earth locations (bottom). .......cccccvvveeiiieennnns 5-16

Figure 6-1 Multimodal image synthesis using DIRSIG’s physics based modeling [courtesy Dr.
Y1 I CT: [ o L= PSP 6-1

Figure 6-2 Multimodal imagery registered to GE textured terrain using user assisted GCP
selection and overlaid upon the initial sensor derived (IMU/GPS) global coordinate
predictions. The inverted contrast of water in VNIR and Infrared is circled. ............ 6-2

Figure 6-3 This figure illustrates the MSRA Approach to 3D Multimodal Registration, where A) is
the modeling phase, B) is the physics based simulation phase, C) is the 2D image
registration phase, and D) is the Image archival phase onto a model. ...................... 6-4

Figure 6-4 This flowchart illustrates three different paths for generating geometric models for
DIRSIG simulation. From left-to-right they are Existing/User Created, LIDAR Derived,
and Multiview Image Derived models with varying degrees of fidelity. ........c........... 6-5

Figure 6-5 This Hi-Fidelity model of the VanLare Waste Water Processing plant is representative
of an existing geometric model placed in Google Earth that utilizes UV mapped image
textures for added realism (courtesy Pictometry Int.) ...ccocveeeeeiieiiciiiieeeee e, 6-6

Figure 6-6 This illustration depicts the process of adding spectral reflectance curves to a
realistic scene model in DIRSIG using Hyperspectral or Advanced Spectrometer Data
(ASD) to properly simulate material appearance in various spectra...........cccceeeeuneen. 6-7

Figure 6-7 lllustrates the UV Texturing process: A) The wireframe model, B) The faceted model,
C) The UV textured Model, D) The flattened (unwrapped) model with overlaying
image texture, and E) The textured wireframe model. ..........cccccveiiiiiiieccciiee e, 6-8

Figure 6-8 This graphic illustrates the process used to turn a UV Texture map (A), into a
material class map LUT (C) by first segmenting the image with a K-Means classifier
(= TSP 6-9

Figure 6-9 This flowchart depicts the process utilized for DIRSIG model creation using hybrid
MOAEIS AN IMAGEIY. .o e e e e e eee e e e e e e s e e aareaeeeeaeeeeennnnes 6-11

Figure 6-10 This figure illustrates the process utilized to register a site model (A), to a faceted
LIDAR dataset (B), to assess model fidelity and to ensure proper building placement
and dimensions (C). Finally the model is placed on the bare earth LIDAR terrain (D) to
create a hybrid scene using both the LIDAR terrain and Image derived building
(4 aTeTo L= [ PP UPPPPRPP 6-13

Figure 6-11 Example geometric shapes that could be used to represent tree foliage when
paired with LIDAR POINt FETUINS. ..cccuiviieiieii ettt eeesinrrer e e e e e e eeaanns 6-14
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Figure 6-12 The process by which a LIDAR Return Point Cloud (A), can be transformed into
model facets textured with real imagery of the forested terrain (B). The results of
this process can be viewed above in MATLAB (C) or Meshlab (D). .....ccccoveeeecnnnennn. 6-15

Figure 6-13 The final model of the VanLare site, as viewed in Blender, using manually derived
multiview imagery building models (courtesy Pictometry Int.) and LIDAR derived
terrain and tre@ MOAEIS. ......eii i 6-16

Figure 6-14 This flowchart depicts the process utilized for DIRSIG model creation using LIDAR
(o Y I T o To I T 0 o= SR 6-17

Figure 6-15 This graphics shows the 3 stages in transforming LIDAR data from a Point Cloud (A),
to a faceted model (B), and finally texturing that model with the intensity return of
tHE LIDAR FESEIF (C). w.veveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeseeeeeseseeseeseseeseeseseseeneseeeesnaeseneees 6-18

Figure 6-16 The LIDAR Direct process involves utilizing Imagery (A), to create a material map in
order to physically describe the site. Here, automated segmentation of the terrain
(B) is used in concert with user assisted ID of site materials (C). ...c.cccovveverrvvieennnns 6-19

Figure 6-17 By using the spatial, brightness, and facetized characteristics of the LIDAR returns,
aggregate material identification for DIRSIG should be possible. ...........ccoouuunnneeen. 6-20

Figure 6-18 The relative quality of terrain information as derived from LIDAR, Multiview
Imagery, and RADAR reSPeCtIVEIY. ....ccieicuiiieiiiiee et 6-22

Figure 6-19 The ability to use Multiview Imagery derived Surface Elevation Maps to
orthorectify an image is Shown above. ........ccceeviiiiiiiiiiiiiee e, 6-23

Figure 6-20 The physics based simulation process that DIRSIG utilizes for synthetic image
generation (Digital Imaging and Remote Sensing Laboratory 2006)..........c..ccuu...... 6-26

Figure 6-21 The general process involved when associating emissivity curves to intensity values
from an image texture map. Here a region of interest was extract from the image
and compared to the 44 curve emissivity plot (bottom) and the DC Histogram (right).
Ideally, a simulation could link every DC value to a specific emissivity curve (i.e. 256
(B VLT T=T=To [T l o 1= <) PO RORR 6-28

Figure 6-22 When only one emissivity curve exists in the material file, all of the image texture
intensity values will be associated with only the singular curve. This will result in no
texture information “coming through” in the DIRSIG simulation. .............ccuuunneee. 6-29

Figure 6-23 The resulting emissivity expansion of the original gravel roof material from 44
CUIVES 10 400, .. e 6-30

Figure 6-24 The simulated DIRSIG images above illustrate the need for material files with
numerous emissivity curves to allow proper reconstruction of image texture within a
ST, e 6-31

Figure 6-25 The Hybrid DIRSIG model of the VanLare Water Processing Plant shown at an
obligue view. From this vantage it is possible to see the detail on the sides of
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buildings, but, the tree facets are reduced in size due to the cosine viewing effect. .. 6-
32

Figure 6-26 In the figure above, the Southern (left) and Northern (right) sections of the VanLare
plant are again visible at an oblique angle, but, now in slightly greater detail........ 6-32

Figure 6-27 On the left is a contrast enhanced image of the VanLare plant taken by the WASP
imaging system, while on the right, is similarly enhanced DIRSIG simulation of the
same site using the WASP view and the Hybrid model of the site..........ccccccuveeeeee 6-33

Figure 6-28 The Northern portion of the VanLare Plant around the Smokestack and storage
vats, imaged by WASP (left) and simulated by DIRSIG (right). .......cccoeevvieeircreeennnnn. 6-33

Figure 6-29 The Southern portion of the VanLare Plant around the administration buildings,
imaged by WASP (left) and simulated by DIRSIG (right).......ccceeveveiiiiiiieeeciiieeees 6-34

Figure 6-30 On the left is an image of the VanlLare plant taken by the WASP SWIR sensor, while
on the right, is a DIRSIG simulation of the site, in the same spectral region, using the
WASP view and the Hybrid model of the site.......ccccoeiiiiiiiiii i, 6-35

Figure 6-31 The LIDAR Direct process involves utilizing Imagery Textures and Materials Maps
(A), with user assisted identification of dominant site materials (B) for ingestions into
DIRSIG to physically simulate the site (C). ...coocvveeiriiiieeecee e 6-36

Figure 6-32 The LIDAR Direct DIRSIG simulation’s similarity to real imagery is readily apparent.
The ability to relate LIDAR derived models, textured with archival imagery, to newly
acquired images is key to the model centric approach. .........cccoeeevivveeieeiiiiccicnneneen. 6-36

Figure 6-33 DIRSIG simulated image in the SWIR region (A) compared to an actual image from
the WASP sensor acquired in the same SWIR region and from a similar camera
POSItion and OriEeNtAtioN. ......coeeiiii i e 6-37

Figure 6-34 The basic process for relating multimodal image bundles utilizing DIRSIG. Here the
model show various “colored” cubes that represent the 3D physical model which can
be projected into an image of various modalities. ..........ccccviiiiiieiiieiicceeee e, 6-38

Figure 6-35 The images above show the initial WASP SWIR image paired with its DIRSIG
simulation and the initial features matched using SIFT (A), the outliers removed using
RANSAC with the F-Matrix (B), which were supported by using RANSAC with the M-
Matrix (C), and finally where the largest contributing error match was removed using
RIMISDE @NalYSIS. weveieieieieiiiieee sttt e e e e e et re e e e e e e e e s aareaeeeeeeeeeennnnes 6-45

Figure 6-36 In the left plot, the initial RMSDE is plotted w.r.t. the number of good matches.
After the largest error contributor was removed, the data was used to create a new
model with error distributed slightly more linearly. ........ccccovvieieiiiiicciiee s 6-47

Figure 6-37 The results of the transformed DIRSIG simulated image (right), when compared to

the WASP SWIR IMAe (1€Ft)...eceeeeieeeeeee et 6-47
Figure 6-38 Here a WASP SWIR image of Vanlare can be compared to the LIDAR Direct DIRSIG
SIMUIAtioN Of the SIte. .eooeeiiee e e 6-49
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Figure 6-39 The Sequence above illustrates the features extracted using SIFT (A), outlier
removal using RANSAC (B), and the final transformation using the resulting good
matches (C), which resulted in sub-pixel registration accuracy. .......ccccceeecuvveeeennnnn. 6-50

Figure 6-40 By ray tracing from the camera to the simulated image correspondence location it
is possible to isolate the 3D model location of interest for use in pose estimation.6-54

Figure 6-41 To obtain “vertex texture” locations for UV mapping a model to an image starts at
the camera and then projects the 3D model onto a 2D image. The projected model
vertex locations on the image are the uv texture locations.........cccccceeeeeeviecnnnnnnn. 6-55

Figure 6-42 This series of snapshots show how the matches from the base image can be
directly related to the 3D SPC model and then used as the vertex texture locations
with the base image to create the model’s UV Texture map. ....cccccceeeeveciveeecncnvennnn 6-57

Figure 6-43 This figure shows the IR Attributed LIDAR model from a NADIR (right) and an
ODBlIQUE (1€FL) VIBW. .ttt e e e e s sbae e e s aae e e e e e 6-59

Figure 6-44 A summary of the DIRSIG Rosetta Stone strengths regarding multimodal image
=Y oA 1S 1 = 1 [0 o 1PN 6-61

Figure 7-1 Relating the cameras, images, and structure to a World Coordinate System
augments the mathematical relationships developed in Chapter 4, by combining it
with the 3D Conformal techniques of Chapter 5 within a GIS construct. .................. 7-2

Figure 7-2 The relationships between the 2D/3D Homographies (H), Projection Matrix (P), and
ColiNEarity EQUAtIONS. .uvvviee i ittt errree e e e e s ab e e e e e e e s esaarnraeeeaeeeens 7-4

Figure 14-1 The Essential Matrix relates the two images using a simple 3D translation and
rotation Of the CAMEIAS. ... e e e e errre e e e e e e e e eanns 14-8

Figure 14-2 The graphics above show the results of Microsoft’s PhotoSynth BA process. ... 14-11

Figure 14-3 The SPC (top) and resulting mesh (bottom) from the Bundler SBA process (Snavely,
Bundler 2010) using VNIR images from the WASP Sensor. .......cccccceeeveeeeeecveeeeenns 14-12

Figure 15-1 An illustrative example of IR image fusion in the form of a pseudo-color image
stack. Circled in red is a new building that was constructed from different material
(green metal) than the surrounding brick buildings with gravel roofs..................... 15-1

Figure 15-2 By using a model (left) and related image (middle) it is possible to produce a
realistic scene (right), as visualized using one of the demonstration tutorials within
the IDL programming environment (ITT Visual Information Solutions 2008). ......... 15-2

Figure 15-3 These multimodal models have been textured with image segments on each facet
(visible-left & thermal-right). ........ccccuiiiiriiie e 15-3

Figure 15-4 This realistic Pictometry model (Pictometry 2010) utilizes UV mapped oblique
imagery to texture its facets and was then inserted into Google Earth (Google Earth
2010) using @ KIML d@SCriptioN. ....ccccuviieecciiie ettt e e e ara e e e e 15-4
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Figure 15-5 lllustrates the UV Texturing process: A) The wireframe model, B) The faceted
model, C) The UV textured Model, D) The flattened (uwrapped) model with
overlaying image texture, and E) The textured wireframe model. ............ccoee.... 15-4

Figure 15-6 Here the same model has been textured using a projection tool in Sketchup
(Google Sketchup 2009) and then imported into Google Earth (Google Earth 2010).

Figure 15-7 Volumetric Pixel (Voxel) approach to save data in volumetric space, but attribute as
2D FACET. ettt et e e s be e e s be e e reeenanes 15-6

Figure 16-1 The DIRSIG Simulator Editor provides access to various components of the
(o] 07=4 =] 1 1 TSP PPPTPNN 16-1

Figure 16-2 The Geometry tab (A), in the DIRSIG Scene editor, references the model geospatial
and directory location, while the Material tab (B) links to the scene materials
description file and emissivity file directory. .....ccccccoveieeiieiiee e 16-2

Figure 16-3 Within the Scene “Property Map” tab there are links (left panel) to the Material
Map descriptions for the site (C) and Texture Maps (D). These “Property Maps” are
tightly coupled within DIRSIG for physical scene description. .......ccccccveecvveeeiicineenn. 16-3

Figure 16-4 The Sensor Editor has links to a Mount Editor (A) and the Imaging Camera in the
Left Panel. As seen here, the Mount interface was utilized to capture the sensor
viewing angles which were retrieved from an Inertial Measurement Unit. ............ 16-5

Figure 16-5 Within the Camera Instrument editor, there is an “edit” button for the Focal Plane
(B). Pressing this button will bring up the Focal Plan Edit menu with additional
buttons for editing the Detector Array (C) and the Response Curve (D).................. 16-6

Figure 16-6 The Focal Plane editor buttons bring up the Detector Array editor (C) and Detector
Spectral Response editor (D) windows, which allow a great deal of flexibility in
defining the sensor specific design characteristics. ........cccceeeeeeieicciiiiieeee e, 16-7

Figure 16-7 The Platform Editor allows for the designation of geospatial position information,
such as Latitude, Longitude, Altitude and the orientation information of the sensors
External Orientation Parameters, such as Pitch, Yaw & ROll. ......ceeeiviiiiiiiiiiiiennnnnnns 16-8

Figure 16-8 In order to properly inject the WASP GPS/IMU data into DIRSIG it is essential to
convert for any local coordinate translations, sensor angles and Geoid offsets. For
the Vanlare site, this offset accounts for 36 [m] higher flying altitude. .................. 16-9

Figure 16-9 DIRSIG’s 5 MegaScene Tiles (courtesy Mike Presnar) cover a swath of Northern
Rochester and include a variety of environmental settings, including residential,
agricultural, industrial, and lake frontage. The VanlLare test site is in Tile-4. ....... 16-10

Figure 16-10 The Atmospheric Conditions Editor allow for designation of the Weather
conditions at the time of the collection and the designation of Radiation Transport
parameters via MODTRAN Tape-5 fileS. ...cuiiiiiviiiiiirieeiei et 16-11
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Figure 16-11 The Data Collection Editor allows the user to designate the day and time of
collection; this is essential for properly casting shadows onto the scene from the
(ool g g =Toi Ay o] F- T gl oo 1 o o A 16-12

Figure 17-1 This flowchart provides a snapshot of the tools provided for image registration and
the related file StrUCTUIE .....ooiii e e 17-1

Figure 17-2 This flowchart provides a snapshot of the tools provided for SPC Generation and
the related file StrUCTUIE ..o e 17-2

Figure 17-3 This flowchart provides a snapshot of the tools provided for Pose Estimation and
the related file STrUCTUIE ......uiii e e 17-3

Figure 17-4 This flowchart provides a snapshot of the tools provided for Model Registration
and the related file STrUCTUrE. .......uveeiiiii e 17-3

Figure 17-5 This flowchart provides a snapshot of the tools provided for LIDAR Processing and
the related file STrUCTUIE ..uvvvi i e e e e 17-4
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Glossary

Bundle Adjustment. A photogrammetric process utilized to relate multiple cameras, images
and the resulting sparse structure by solving for the camera’s external and internal parameters
w.r.t. corresponding image control points.

Dense Point Cloud (DPC). An array of 3D points, that is often associated with a LIDAR dataset
and is described by a global coordinate system.

Discrete Linear Transform (DLT). A linear technique that can provide an initial estimate of a
solution space that is often desired to seed a non-linear optimization algorithm.

Exterior Orientation Parameters (EOP). These parameters refer to the location of the camera
lens [X, Y, Z] and the orientation of the camera [w, ¢, k] at the time of image capture.

Faceted Models (FM). This refers to the traditional computer graphics models that contain
vertices and facets to represent the 3D structure of a scene.

Interior Orientation Parameters (IOP). These parameters refer to the intrinsic properties of
the camera and include focal length, principle point, focal plane skew, and radial distortion.

Levenberg-Marquardt Algorithm (LMA). A robust nonlinear optimization technique often used
in computer vision problems for estimating the solution to nonlinear least squares problems.

Random Sample Consensus (RANSAC). A technique for robustly removing outliers from a
dataset. It does this by minimally sampling the data a statistically significant number of times
to create a mathematical model that maximizes the number of inliers within an error region.

Space Resectioning. A photogrammetry term that implies solving for a camera’s pose by
relating points in one image to those in another, or to a model.

Sparse Bundle Adjustment (SBA). The term “sparse” here relates to the sparse matrix
techniques utilized to solve for extremely large, but, weakly correlated parameters involved
when solving for most Bundle Adjustments.

Sparse Point Cloud (SPC). The array of 3D points locally defined within a 3D coordinate system.

Sparse Structure Bundle (SSB). This includes the entire bundle of sparse structure, images and
related camera positions within a common and local 3D coordinate system.

UV Texture Map. A standard technique in the graphic modeling community used to realistically
texture 3D models. This technique maps a composite texture, mapped in the normalized
‘uv plane’, to the vertices of select model facets; thus obtaining the name “UV Texture Map”.

World Coordinate System (WCS). The absolute coordinate system linked to the global grid.
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1 Introduction

1.1 Use of Imagery Data is now Mainstream

Over the course of the last decade, the use of imagery based products from airborne and
satellite platforms have become mainstream. Applications like Google Earth/Maps (Google
Earth 2010) and Bing Maps (Microsoft Corporation 2010) allows a user to plan travel, assess
real-estate, teach their children geography, or visualize where the latest ‘crisis du jour’ is
happening in the world at the click of a mouse button. The ability to seamlessly view hundreds
of integrated image products in visual databases has thrown open the doors on the once “niche

field” of imagery analysis, integration, fusion, and database archival.

The VanlLare Water Processing Plant — Google Earth Software View

Figure 1-1 — This Google Earth (Google Earth 2010) view of the VanLare Site contains a hi-fidelity model courtesy Pictometry
Int. (Pictometry 2010) and is representative of the realistic representations possible within today’s GIS environments.

1-1



Along with this keen new interest by the general population in seeing a “bird’s eye view” of the
world, comes new mathematical advancements from the field of computer vision that are
allowing robots to perceive their surroundings and avoid obstacles. What do these two
observations have in common? They both require the processing of large volumes of imagery
that are captured from a multitude of vantage points, registered together, and provided in local

or global 3D coordinate systems that allow for integration, fusion and archival.

1.2 The Problem

Although great strides have been made in the automated registration of grayscale imagery from
similar viewing geometries, there are still great challenges in developing robust automated
techniques for registering images taken from varying viewing geometries and from different
spectral modalities. The challenges for 3D multimodal registration are many and are directly
linked to the angular and spectral disparity of the datasets themselves (Van Nevel 2001). The
3D influences of the scene-to-sensor viewing geometry creates occlusions and parallax effects,
the changing solar illumination causes varying shadow positions, and the diverse appearance of
the scene due to a sensor’s spectral responsivity ensures the continuing difficulty in

automatically registering and relating remotely sensed imagery of a site (Figure 1-2).
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3D Projective Effects Multimodal Appearance

VNIR

MWIR

Figure 1-2 The registration challenges resulting from viewing geometry including parallax, occlusion, & shadowing (left)
and spectral diversity (right) are visible above (synthetic SAR and Pl images of VanLare courtesy Dr Mike Gartley).

1.3 The Solution

For decades, imagery analysts (the author included) have tried to register images within a 2D
construct only to find that this solution space is barely adequate to accomplish the task at hand.
It should always be kept in mind that an image is a projection of the 3D world from a certain
vantage point. This 2D projection contains all of the 3D influences of the environment including
the terrain, foliage and the buildings. A 2D solution to relating imagery is only justified when
these images are taken from similar vantage points or if the 3D influences are negligible, such
as when the terrain is flat or if these influences have been removed through ortho-rectification.
It should be no surprise to those that have been frustrated with the limitations of 2D image

registration, that this 3D problem necessitates a 3D solution.
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In previous work by the author (Walli, Multisensor Image Registration utilizing the LoG Filter
and FWT 2003), a case study was developed that demonstrated the results of an automated 2D
image registration algorithm over an urban section of San Diego, CA that contained large
amounts of terrain relief and building parallax (Figure 1-3). These images were taken with
enough angular disparity to exhibit significant amount of parallax, thus frustrating automated

registration attempts with low error.

The Limitation of 2D Image Registration

# of Matches

San Diego, CA AN
0 5 10 15 20
RMSDE = 5.71031 (pix)

Figure 1-3 This graphic shows the result of registering two images of San Diego, where ~75% of the correctly matched
features (red squares) were discarded in a vain attempt to obtain subpixel registration accuracy to a 2D model.

In this example, the 1 meter resolution lkonos imagery (GeoEye, Inc 2010) was used to obtain
~200 good feature matches. Unfortunately, these correspondences resulted in a rather poor
error analysis result, when attempting to relate them using a 2D transformation. Even after

considerable refinement/culling of ~75% of the matched feature locations, through error
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analysis and removal (covered in Section 2.5), the final registration provided only mediocre
results. This is because the 2D solution space was inadequate in its dimensionality to
encompass the matched features, which were highly nonplanar. This dilemma provided a great
deal of justification for the author to pursue a full 3D solution to the image registration
problem, especially as it pertained to the challenges of accurately fusing multimodal imagery

data for the project described below.

1.4 The Advanced ANalyst Exploitation Environment (AANEE)

The AANEE program was conceived by Dr John Schott as a demonstration of what could be
accomplished if the current “state-of-the-art” in synthetic scene modeling, image registration,
and process modeling were combined in a seamless virtual environment for an intelligence
analyst. The main thrust of this project is to immerse an analyst within an environment where
the datasets are archived in a visual database that is easy to interact with and where the data

can be interrogated in an intuitive fashion.

In the world of AANEE, a user could fly through a scene, stop at a building of interest and click
on a wall. Once this is done, the building wall would verbally tell the user when it was made
along with other historical facts. The user would then have pull-down menu options that would
allow for temporal playback of imagery that might highlight any change to the building over
time. Additionally, the user may request imagery that has been collected in multi-modal

spectra other than the traditional visual RGB or Panchromatic bands shown in (Figure 1-4).
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Figure 1-4 — The scenes above show the same model of the VanLare Plant from within the AANEE software program. Note
the accurate casting of shadows and the ability to predict occlusions due to the 3D modeled site and landscape.

To enable AANEE to be more than just a game simulation environment, it is necessary to be
able to use the 3D scene model as a “skeleton” from which to project layers of imagery
products for immediate visual inspection and long term archival. Because once an imagery
based product is registered to an accurate 3D model, it is possible to regain the 3D nature of
the scene that was lost when the image was acquired, but only if it is projected back onto the
model from the same vantage point that it was taken. In this manner, a 3D database of
archived imagery can be saved as image textures on the model and can be categorized

temporally, spectrally, and of course spatially as seen in Figure 1-5.



The VanlLare Water Processing Plant — AANEE Software View

Fie Input Scene View Controls VWindows Help

J Projections

| Projecton Name
& ortholwir078
F ® | otho_VNRO4STt

») Basic info ) Postion ) Rendering

Figure 1-5 - This view of the VanLare site from the AANEE software program contains projections of additional RGB and
LWIR data from RIT’s WASP sensor over the site and terrain model, before registration; using only sensor IMU/GPS data.

1.5 The 3D Model as an Archival Database

Recent advancements in computer vision (epipolar geometry) provide the ability to understand
and model our world in 3D. This allows elegant new solutions to tough old image registration
problems such as understanding and compensating for the effects of scene projection while
relating common features from a database of images. Additionally, a hi-fidelity 3D model of a
scene can help predict and mitigate the effects of occlusion and shadowing if the orientation of

the model (pose) can be determined at the time of image acquisition.

Knowledge of these challenges are critical for understanding the author’s ‘model-centric’
approach to registration and so a significant portion of this document will be spent in
developing techniques (Chapters 2-5) that will be utilized to mitigate these effects. The need

for a 3D Model, for accurate registration of most visible band imagery products, is augmented
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by the need for a physical model when registration of multi-modal imagery is required. The
author will show how physics based modeling of a scene using the Center for Imaging Sciences
(CIS) Digital Imagery and Remote Sensing Image Generation (DIRSIG) program can be utilized to
simulate multimodal imagery that is good enough to automatically register to real data (Section
6.3). This will allow for DIRSIG to act as a physical Rosetta Stone for relating a potentially large
range of disparate imagery products. The ‘model-centric’ approach to relating data and how

DIRSIG is utilized to enable multi-modal image registration is covered in detail in Chapter 6.

1.6 Summary

With the growing interest in integration and fusion of imagery based data, fundamental
research is required in the vital area of mathematical data-relationship development and
database archival. The author has been continually amazed at how often “well registered” data
is taken for granted as an assumption in both fusion applications and change detection
scenarios. Neglecting the essential step of developing a framework to properly relate the data
in a true 3D sense is to ignore the sensor acquisition pose and the structure in a scene and the
effect that they can have on the final registered product. Both image modality fusion and
change detection algorithms should perform at their best when the initial data has been

accurately related in 3D.

The research covered herein develops the fundamental mathematical approaches and
techniques required to relate multimodal imagery and imagery derived products in 3D.
Additionally, it improves upon some well established methods for relating imagery derived

products, by applying new epipolar geometry and efficient mathematical techniques. Finally,
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the author’s physical modeling approach to relating multimodal imagery is a cornerstone of the
value added research contained within this document. The figure below depicts the five major

subcategories that will be covered in this research and their related sections in the document.

Chapter 2 Chapter 3
flmageRegistration\ /Pose Estimation

)
L

2DImage  3p Model
Chapter4 Chapter 5

o
(3DGZD Image\ (3D Rigid Body Reglstratlo\

-8

Pt Cloud Pose Model Pose
. ¥ Jt
Chapter 6

V- 3D DIRSIG Model N\

Figure 1-6 The five primary areas of research contained in this dissertation are covered in Chapters 2-6.
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2 Image Registration
Image registration, in a 2D sense, will always be limited by the 3D effects of viewing geometry
on the target. Therefore, effects such as occlusion, parallax, shadowing, and terrain/building
elevation can often be mitigated with even a modest amounts of 3D target modeling. Once a
target is modeled and textured with representative imagery, it is possible to orient the scene
based model to the same viewing perspective as any remotely sensed image to enable proper
registration. If done accurately, the 3-D ambiguity between the model and the image can be
removed and the newly registered image can now be utilized as an additional texture layer on
the model. If this is done with enough precision, the 3D information that was lost when the
image was acquired can be regained and properly related to other imagery and data of the

target scene. The basic process for registering two images is provided below in Figure 2-1.

S N S N

Target Images ) Feature Extraction

Match Feature

N

Apply Inverse Transform Registered

\Develop Image Transforny \ To sample Original Images

Figure 2-1 The basic process for automatically relating images.

/ \Correspondencey
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2.1 Invariant Feature Extraction

Due to the significant amount of research into automated image registration over the years,
there are several techniques that have been developed that work reasonably well. Currently,
the most robust techniques appear to be multiscale edge based techniques due to their robust
ability to extract repeatable structure from within a scene, even when relating multimodal
imagery. For this reason, the choice of filters to help identify and extract these invariant edge

features from images is a critical design decision for any automated registration process.

In detailed experimentation (K. Mikolajczyk 2002), it was found that the maxima and minima of
a normalized version of the Laplacian of Gaussian (LoG) produce the most stable image features
compared to a range of other possible image functions, including the gradient, Hessian, and
Harris Corner Detector (Harris and Stephens 1988). Due to the proven performance of the LoG
filter and its Difference of Gaussian (DoG) approximation, to robustly extract invariant features

from imagery, these two filters will be explored further.

2.1.1 Laplacian of Gaussian (LoG) Filter

The idea for using edge detection filters for robust feature extraction was sparked while
performing research into automated image registration (Walli, Multisensor Image Registration
utilizing the LoG Filter and FWT 2003). It quickly became apparent that the LoG filter could be
utilized to consistently pinpoint features within an overhead image that might be utilized for
image registration. By applying a threshold to the LoG filtered image, it is possible to isolate
regions that have similar rates-of-variation within a scene and to do so in a repeatable fashion.

This is due to the “second derivative” (V?) nature of the Laplacian filter which produces high
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output for well defined edges. Figure 2-2 demonstrates the effect of the LoG filter on a
synthetic dataset that resembles the letter “X” but could represent a crossroads or building in

an overhead image.

a) Syntheticlmage b) Gaussian Effect c) Laplacian Effect

Figure 2-2 Demonstration of the LoG filter effects on synthetic edge data.

The effect that the LoG filter has on an image is very similar to the lateral-brightness adaptation
of the human eye (also known as lateral inhibition) that leads to the “Mach band effect”.
Evidence of this is provided by Gonzalez and Woods, when they maintain that certain aspects of
human vision can be modeled mathematically in the basic form of the LoG equation (Gonzalez
and Woods 2007). This phenomenon is demonstrated in Figure 2-3, with an exaggeration of

grayscale edge steps.

Grayscale

L.oG Edge-Exaggeration

Distance

Figure 2-3 Edge-exaggeration resulting from convolution with a 1D LoG filter
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The Laplacian is the second derivative of a function. This equation takes the following forms for

both the 1-D and 2-D versions, as shown in (1) and (2):

Zf

2, _0°f 1

Vi == (1)
*f  3f

sz_—_+_ 2
ax2  dy? (2)

Additionally, this function can be approximated with the following 1-D & 2-D digital filters as

seen below in (3) and (4):

Vi=[1 -2 1] (3)

1 4 1
0 1 0

0 1 0
vz:[ (4)

A graphical representation of the effects of this filter when applied to a 1-D step function
(Figure 2-4.a) that has been first convolved with a Gaussian low-pass filter (Figure 2-4.b)
follows. It can be seen why the 2nd Derivative filters are also called “zero-crossing” edge
detectors since the knife edge input (Figure 2-4.a) goes to unity precisely at the zero crossing

between the positive and negative peaks of Figure 2-4.d.

Although the LoG filter can be easily deconstructed into its component parts as seen below, it is

more commonly implemented in one convolution step with a kernel similar to Figure 2-5.
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a) Knife edge input  b) Gaus Low Pass c) 1st Derivative  d) 2nd Derivative

Figure 2-4 Visual effect of the Laplacian of Gaussian Filters in succession.

The 5x5 filter approximation and the “Mexican Hat” (LoG) function are shown below.

0 0 -1 0 0
0 -1 -2 -1 0
-1 -2 16 -2 -1

0 1 2 -1 0
N \f_ 0 0 1 0 0

Figure 2-5 A 1-D representation of the LoG function and the composite 5x5 approximated filter.

The Laplacian is very good at highlighting variation within an image. This result is useful if the
variation is equivalent to information content or edges, but, detrimental if that variation is
represented by noise. On its own, the Laplacian will accentuate all high frequency components,
including noise, along with the edges. For this reason the image is first convolved with a

Gaussian filter, to diminish the effects of noise, before the Laplacian filter is applied.
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Figure 2-6 The results of the LoG filter and thresholding of maxima to create Control Points.
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The results of the LoG thresholding process provide automated Ground Control Point (GCP)
feature extraction within each image, as seen in Figure 2-6. Once these GCPs have been
identified, a point matching routine (Section 2.2) can be utilized to relate the subset of similar
points from each image. These related points can then be used to develop a transformation

equation, for registration of the two images.

2.1.2 Difference of Gaussian Filter

The Difference of Gaussian (DoG) Filter is an approximation to the Laplacian of Gaussian Filter
(Gonzalez and Woods 2007). Like the LoG, the image is first blurred with a low-pass Gaussian
convolution filter which has an initial width = g;, where the Gaussian is mathematically

described by,

L
Gaussian Gy, (X, y) = ——e 202
1

. V)= (5)
Function ’2110%
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The image can be smoothed using two different Gaussian widths (g; and o,) as shown below in
Equations (6) and (7).
Image
Blurred g, xy) =G, xy) *f(x,y) (6)
W/O'l
Image
Blurred gz (Xl Y) = GO‘Z (X) Y) * f(Xl Y) (7)

w/ o,

Now the Difference of Gaussian can be accomplished by subtracting the two blurred images ,

DoG

Filter 8 (xy) —g,xy) = (Go; — Ggy) * f(x,y) = DoG * f(x,y) (8)
tf A G — |
/ : ."\. Go1
JARE -DOG = Go1 - Gy —
0.8 F fll f '-,‘ ]
'II'II IIII\' DoG = GaZ - Gcl
06 F ."‘I : \'.__
/ : \
.'II- \I-I
0.4 f
0.2F
DoG (dashed)
’ vs
LoG (solid)
-0.2 |
-0.4
=N R

Figure 2-7 The 1D visualization of the inverted DoG as the result of subtracting two Gaussian kernels of different widths
(Drakos and Moore 2007). The inset graphic shows little if any perceivable difference between the LoG and DoG convolution
kernels (Gonzalez and Woods 2007).

The DoG can be seen as the 1D difference between the two Gaussian kernel widths (Drakos and

Moore 2007) and is then compared to the Log Filter in the inset of Figure 2-7 (Gonzalez and
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Woods 2007). So at this point, it is possible to extract distinct features from the edge detail
within an image. In fact, by utilizing the LoG and DoG kernels it is possible to accentuate and
identify the best edge detail and from these regions extract robust invariant features from a

scene.

2.2 Matching Invariant Features

The following technique, which is utilized for matching corresponding features, was originally
utilized in astronomy to register images of “star fields” (Chandrasekhar 1999). Since the LoG
filter can be utilized to reduce an image to repeatable point sources, the author was able to

successfully implement the same approach to properly filtered terrestrial images.

The accuracy of registering images utilizing the LoG technique boils down to how well related
areas of both images can be identified, isolated, and matched. Even though the LoG threshold
procedure simplifies the registration process by reducing the images to point sets. It is the
accurate matching of points, from dissimilar point sets, that will determine the utility and

ultimate success of most registration processes.

Base
Image
Point
Filter Match Compute
Images Routine Transform
Working
Image

Figure 2-8 Matching points to determine the Image Transform.
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Throughout the next two sections, robust point matching techniques are introduced and
applied to the task of image registration. An important concept to keep in mind is that the
matched points will provide the matrix equation inputs to solve for the geometric relationship
between two images. So, if an image is shifted, rotated, and scaled with respect to (w.r.t.) a
reference image, then we require three sets of matched points (6 equations) to solve for the 5
DOF required to register this image pair. If we have more matched points than required, the
solution is over-determined and it is possible to either select a subset of the “best” point
matches that uniquely determine the solution or utilize a linear regression model to estimate

the best fit to the data and obtain subpixel registration accuracy.

2.2.1 Point Matching using Distance Similarity

This process utilizes a point’s distance from every other point in a scene and creates an array of
distances with this data. This is done with each point in the image, from which a matrix of
distances is created. The point distance matrices, from each image, are then compared row-to-
row for the total number of matching distances. The two rows that have the greatest number
of distance matches (within some designated error) are considered matched points as shown in

Figure 2-9.
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Figure 2-9 Determining matching points through equivalent distances to other points.

The distance between any two points is equal to the square root of the sum of the squares:

Distance, d =/(x; —x,)2+ (y; —y,)2. For our reference image points 2 and 3, this

becomes: d = \/(2 — 1)2 + (2 —4)2 =+/5. In the matrix, each row and column represents
that point’s distance from the other points, which are also related to their equivalent row and
column. In our example above, point-1 from the reference image would match point-2 from
the warp image, since they have the greatest number of matching distances in their equivalent

rows and columns.

Additional similarity metrics can also be imposed to compare the relative relationship of a
feature to its proposed match, in order to cull bad matches. Angle relationships were

introduced by utilizing a 3D matrix comparison of vertex angles. Additionally, the normalized
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LoG maxima and minima are compared to help discriminate features and mitigate the effects of

illumination variation.

Scale invariance can be established by comparing the ratio of point distances to every other
point or through the use of multi-scale techniques, such as image pyramid (Wavelet) analysis
(Walli, Multisensor Image Registration utilizing the LoG Filter and FWT 2003). Additionally,
scale effects can be addressed directly in the filter itself by implementing a scale normalized

version, where LoG = 02 V2 f (Lindeberg 1994).

Finally, projective invariance can be addressed through the comparison of the cross ratio of
distance ratios. This cross ratio, of four collinear points, is the most fundamental projective
invariant and can be visualized below (Hartley and Zisserman 2004) and (Kraus, Harley and Kyle

2007).

CamA

L 3 L 2 & . 3
C, C, C, C,
Colinear Points in Scene

Figure 2-10 Each set of points has the same cross ratio and are related via line-to-line projectivity
(Hartley and Zisserman 2004).
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2.2.2 Point Matching using Localized Gradient Similarity

The Shift Invariant Feature Transform (SIFT) operator (D. G. Lowe 2004), has become a “gold
standard” in 2D image registration due to its ability to robustly identify large quantities of semi-
invariant feature within images. Whereas the author’s LoG and Wavelet Registration (LoGWaR)
technique could produce hundreds of extracted GCPs per image, the SIFT technique can
produce thousands on images of comparable size. This is extremely useful when attempting to
create sparse structure from matched point correspondences. In addition, more recent
independent testing has confirmed that the SIFT feature detector, and its variants, perform
better under varying image conditions than other current feature extraction techniques
(Moreels and Perona 2006) (Mikolajczyk and Schmid 2005).

Difference

of Gaussian
(DoG) images

Gaussian
smoothed
images

scale (next octave)

(e.g.. 256 x 256)

subsampling

scale (first octave)

(e.g..512x512)

Figure 2-11 For every octave of scale space the initial image is convolved with Gaussians of
varying standard deviations and subtracted from their neighbors producing a DoG pyramid
(D. G. Lowe 2004).

Figure 2-11 - Figure 2-13, portray the basic approach that the SIFT algorithm uses for feature
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extraction (D. G. Lowe 2004). The process begins by filtering the image with Gaussians of
varying standard deviation across a given image scale, where 0,1 = ﬁoi By varying sigma by
a constant value across an octave, Lowe was able to show mathematically the equivalence of
this filter to the scale normalized LoG. These smoothed images are then subtracted from each
other to extract the edge detail at varying spatial frequencies, thus giving the technique its
name “Difference of Gaussian”. This is then repeated at each image octave (dyadic power),
where the image is decimated (scaled in half) to some arbitrary fraction of the former image

dimension.

The next step is to extract the maxima and minima keypoints from the filtered images. This is
accomplished by comparing each sample point to its neighbors in the same filter image and its
scale neighbors that will have extracted slightly difference spatial frequencies due to the

Gaussian width changes induced by varying sigma.

Figure 2-12 Maxima and Minima of the DoG pyramid stacks are detected by comparing each pixel
with its 26 neighbors in 3x3 regions at the current and adiacent scales (D. G. Lowe 2004).

Each location is selected as a minimum or maxima only if it is the largest or smallest among

2-13



these neighbors, as shown in Figure 2-12. Lowe argues that the cost of checking every location

is acceptable since most sample points will be eliminated after the first few checks.

Figure 2-13, shows how SIFT maps out the gradients of the surface surrounding the keypoint
locations. In this example, each 4x4 subregion is described as an 8 element orientation

histogram, where the individual gradient magnitude is added to the “closest” bin.

Image Gradients Keypoint Descriptors

Figure 2-13 Keypoint descriptors are created by computing the gradient magnitude and orientation, Gaussian weighted
by the pixels location, surrounding a keypoint. These samples are then accumulated into 8 bin orientation histograms,
which summarize a 4x4 subregion (D. G. Lowe 2004).

While the example above (Figure 2-13) only shows an 8x8 element analysis around a keypoint,
the actual algorithm observes a 16x16 region. This regional mapping is then stored into a 128
element vector (4x4x8) of orientation histograms that can be utilized to compare against the
regional descriptions of keypoints in other images. Lowe refers to the closest histogram vectors
in different images as “nearest neighbors” and assigns them as a potential match. If these
descriptors are then normalized, they can be quite robust against the effects of scene

illumination (D. G. Lowe 2004).

A demonstration of the robust, invariant feature detection possible with the SIFT algorithm is
available in Figure 2-14. In this example, thousands of keypoints were generated on two 1kx1k

images of the Vanlare site to create hundreds of good matches for developing a precise
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registration transform. It is easy to see the general flow of the correspondences from one

image to the next and to visually detect outliers that deviate from the norm.

Figure 2-14 Thousands of invariant keypoints generated and matched using the SIFT algorithm.

Lowe maintains that the best candidate match for each keypoint will be the one that has the
minimum Euclidean distance from the invariant descriptor vector under analysis. A simple way
to compare the minimum Euclidean distance of description vectors is to take the dot product of
two vectors to gauge their similarity as a potential match. This technique is very similar to the

common spectral signature comparison algorithm called Spectral Angle Mapper (SAM).

Since some descriptors will not have any “good” match, because they were not detected in the
other image, it is necessary to devise a technique to cull outliers early in the process. An
effective method is to compare the distance of the closest match, to that of the second closest.

This measure performs well because an actual correspondence will often have their closest
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potential match much closer, relative to the second closest, than an incorrect match. False
matches will often have several other matches that are relatively close due to the high
dimensionality of the feature space. Lowe found that rejecting all matches with a closest-to-
next closest ratio of 0.8 would eliminate ~90% of the bad matches while eliminating only ~5% of

the good matches (D. G. Lowe 2004).

2.3 Transform Development

Once a valid set of correspondences, or matched GCPs have been obtained via automated or
user assisted means, it is possible to utilize these points to develop a transform to warp the
working image into the spatial domain of the base image. This polynomial expression is
covered in several pieces of literature (Schott 2007) and (Schowengerdt 2007), and takes the
following general form of (9) & (10), where [x, y] represents the warp image coordinates and [X,

Y] represents the base image coordinates.

N N-1
k=0 [=0
N N-1
k=0 [=0

This section will utilize a subset of the general polynomial expressions, both 1st order and
affine. The affine coefficients are the linear relationships that allow for shift, scale, rotation and
skew between two images of interest and are represented by the first 3 terms in the

polynomial expressions below in (11) and (12). The last, multiplicative term, completes the 1st
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order polynomial expression with a coefficient which enables a projective transformation from

the warp image to the base image domain.

Xi = ago + aroX; + ao1y; + a1 xy; (11)

Y; = boo + b1oy; + bo1X; + b11xy; (12)

This 1st order polynomial expression can be put into a compact 3x3 matrix notation which is

convenient for mathematical manipulation as is evident in (13),

Qo1 Q10 Qoo hyy hyp hys (13)
[bol b1o blll hp; hypy hys|=H
ayr b h3; hz; hss

where H is the homogeneous 2D image transform (homography), that relates the warp image
to the base image. In order to solve for a projective transformation, the warp image coordinate

would take the following forms (Hartley and Zisserman 2004), shown in (14) and (15).

_ huxi 4+ hipy + has (14)
hz1x; + h3zy; + h33

_ ha1x; + hazy; + ho3 (15)
h31x; + h3py; + hs3

The ability to relate images utilizing a matrix transformation approach is extremely useful and is
covered very well in “Digital Image Warping” (Wolberg 1990). By utilizing a homogeneous
coordinate system to represent the points and transformation allows us to linearize the
solution for least squares analysis. To implement a homogeneous coordinate system, we

essentially add another dimension to the image point and transform descriptions. This can be
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accomplished by the following mathematical representations for the reference (base) image

locations X and working (warp) image locations X (Wolberg 1990).

Working I (16)
x=1y
1
Base . [X (17)
X=|Y
1
Rotation cosf sinf 0 (18)
Ry =|—sin@ cosf 0
0 0 1
Scale S. 0 0 (19)
Transform Sy=10 S, 0
0 0 1
Translation 1 0 t, (20)
Transform Thp=10 1 ¢
0 0 1
Composite SxC0s8  s,sind (txsxcosé? +tys sin@) (21)
Transform H = RST = Y
—5,sinf  s,cos0 (t,s,cosf —t,s sinb)
0 0 1
Simplified X = Hx (22)
Notation
Matrix X1 X2 X Hyy Hyp Hyz|x1 X2 X (23)
Formula Yi Y, Y [=|Ha1 Hy Hpy [3’1 Y2 "'yi]
1 1 1 H31 H32 1 1 1 b 1
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— 1
Inver.se H = Xx (24)
Solution

. R N |
Pseudq Inv H= XxT (xxT) (25)
Solution
. e ﬂ_\.I.
S/mp//jf/ed H=Xx (26)
Notation

Where, Xit represents the Psuedo Inverse Least Squares solution to H. The five rotation,

scale, and translation parameters can be extracted by utilizing the following equations,

(27)

Rotation _1(H12
tan
Hy;

Angle 6 = _> = atan2(Hqz, Hyz)

Scale Hyp " 5 (28)
x-axis Sx=70s0 =,/H11 +H31
Scale Hi> ) ) (29)
y-axis Sy= g = |Hiz + Hz

Translation Hq{3c0s0 — Hy3sin6 (30)
X-0Xis x= S,

Translation Hq3sin@ + H,3c0s6 (31)
y-axis y= Sy
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Although care must be taken to avoid division by zero with some of these solutions, alternate

equations can be obtained when necessary.

2.4 Constraining the Transform Results - 2D Conformal and Affine

Due to the construction of the homogeneous coordinates and 2D homography in matrix
notation, it is often easier to solve for the full projective solution than it is for an affine or
conformal (rigid body) transformation. This is in part due to the ease of solving for the 3x3
projective through the linear least squares (pseudo-inverse, Eq 2-22) method. However, many
times, we will want to constrain the solution to the transformation that changes the data least
and still relates them properly. This minimalist approach is not only relevant for 2D image
registration, but, 3D structure registration as well (Section 5.4). Since it is often beneficial to
induce only the rigid body effects of rotation, scaling, and translation (RST), the following Direct
Linear Transform (DLT) approach can be utilized to solve for the 4 unknown parameters (R, S,

Ty, T,) of the 2D conformal transformation (DeWitt and Wolf 2000).

_ . (32)
X=RSx+T
[Xi] _ [6059 —sinH] [S 0 [xi] n [Tx]
Y; sind cos@ 10 S| " IT, (33)
X1 [ —hz] [xi] n (hs3] (34)
-Yi- - -hZ h1 yi _h4_
_hl_
X ;] _ [x; —V; 10 h; (35)
Yi - yi X 0 1 h3
]
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The least squares solution can be obtained through the pseudo-inverse technique (26). It is
useful to note that the h; and h, coefficients are not only part of the rotation matrix, but, also

contain the rigid body scaling component of the conformal transform (S =S5, = Sy).

In a similar manner, The DLT technique can also be utilized to solve for the six unknowns of the
affine transform (R, Sx, Sy, Tx, Ty, and either k, or k), where shear parallel to the x-axis results

inx" = x + k, X y and shear parallel to the y axis delivers y’ =y + k,, X x.

= ~ (36)
X=RSWx+T
[Xi]:[C059 —sin@] [Sx 0] 1k [xi]+[Tx] (37)
Y;l " lsind cos6 110 S,||k, 1| IT,
Xi _ h1 hg] [xi] [h5]
[Yi]_[hz hyl Vi + he (38)
_hl_
h,
X1 [ 0 y; 0 1 O0]|hs
[Yi]_ 0 x 0 y 0 1f|hy (39)
hs
e

2.5 Outlier Removal and Error Analysis

Once the initial matched point set has been obtained by automated means, it will always be
necessary to test for bad matches or “outliers”. The following two methods offer robust outlier
removal, but, are fundamentally different in their conception. The statistical RMS Distance
Error (RMSDE) technique utilizes the weight of all of the matches to estimate a solution and
removes those matches with the most error or those that vary by some standard deviation

from the mean. Alternatively, the RANdom SAmple Consensus (RANSAC) algorithm (Fischler
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and Bolles 1981) can be utilized to robustly remove outliers from the data and will be discussed

in greater detail in Section 2.5.2.

2.5.1 RMSDE Analysis

The RMSDE metric computes the deviation from a polynomial model to determine registration
accuracy. RMSDE, is one of the more common techniques utilized in remote sensing for judging
the “goodness” of a registered dataset. In fact, the RMSDE technique is even used by ENVI to
judge deviation of matches from the prescribed polynomial model to judge registration
accuracy. Discriminating outliers based on deviation from a mathematical model describing the
transform from one image domain to another is shown in Figure 2-15. By analyzing the error
associated with each matched point from the polynomial model of choice, it is possible to reject

bad matches.

One way to do this is through analysis of the standard deviation from the RMSDE. Any matches
that deviate significantly from the mean (> 1 STD) can then be removed. If additional iterations
are required to derive a transform within a given error constraint, the matches below a given

threshold could be removed based on their deviation from the mathematical model.
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Figure 2-15 Utilizing RMSDE as a Metric to cull Outliers; note the distinctive “knee” in the error curve.

This can be done iteratively to determine a statistical solution that is of low enough error to
satisfy the accuracy of registration required for a given task. Figure 2-15 shows this process,
which utilizes an iterative statistical solution to cull the outliers. Note the distinctive “knee” in
the curve of the error plot; is a good indicator of the presence of outliers. The iterative pruning
of match points can deliver a registration with subpixel accuracy. In fact, it is an easy task to
continually remove the match with the greatest error, until the total RMSDE is less than a user
defined quantity. Obviously, one would like to maintain a significant number of points relative
to the degrees of freedom while still ensuring that the matched locations encompass as much

of the two images as possible.

2.5.2 Random Sample Consensus (RANSAC) Analysis

The RANSAC technique iteratively and randomly samples the minimal amount of matches

required to develop a given mathematical relationship. Once this is done, it determines the
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number of inliers and outliers from that relationship using prescribed error thresholds. After a
statistically meaningful number of samples have been taken, it will remove outliers based on
the best (most inliers) model that was derived. Figure 2-16, graphically portrays this robust

technique (Hartley and Zisserman 2004).

Figure 2-16 A) A dataset with outliers; B) Shows how a line can be determined with the minimal number of two points and
how the inliers are tallied; C) Shows how two close points can provide poor extrapolation and low inlier count; D) Shows the
“correct” solution for culling the outliers.

RANSAC has proven to be a robust technique for outlier removal, even in the presence of large
numbers of incorrect matches. Also, because it is not necessary to test all the sets of points for
a solution, it can be efficiently utilized with techniques like SIFT that provide large numbers of

automated matches. This technique will be covered in greater detail starting in Section 4.1.

For most of the 2D image-to-image registration and outlier removal, the SIFT algorithm will be
utilized in conjunction with RANSAC, unless otherwise noted, due to their robust performance
under various imaging conditions. In the next section we will increase the dimensionality of

one of the datasets in order to relate images with 3D models.
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3 Relating Images to Models

Since 2D registration will always be limited by the effects of projective viewing geometry,
occlusion, shadowing, terrain elevation and building height variations, it is essential to model
the 3D influences on a scene so that they can be adequately mitigated. If a 3D model of the
target scene is available, it is possible to orient the model to the same viewing perspective as
the camera that acquired the image and then project it onto the same 2D plane as the target
image. Once this is accomplished with enough accuracy, traditional 2D registration techniques
can be utilized to relate the image to the projected model. Essentially, the 3D ambiguity
between the model and the image are removed and the image can then be utilized as a texture
map on the model. If this is done properly, the 3D nature of the image that was lost when the

image was acquired can be substantially regained.

3.1 Known Camera Pose

This approach relies on knowledge of the camera pose (position and orientation), to estimate
the proper 3D scene projection relative to the remotely sensed image. Once the initial model
orientation is estimated, this knowledge can be utilized with scene based registration to
properly overlay imagery within Geographical Information System (GIS) applications, such as

Google Earth (Walli and Rhody, Automated Image Registration to 3-D Scene Models 2008).

This technique can allow a user to properly place imagery within a 3D environment using simple
geographic location descriptions that can be coded in script languages, like the Keyhole Markup

Language (KML). Additionally, projected imagery from the camera acquisition location has
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been implemented with the AANEE program (Section 1.3) as a technique to blend various

modalities of interest (i.e. Pseudo-Color IR) as shown in Figure 3-1 below.

Figure 3-1 In this Pseudo-Color composite of the WASP SWIR/MWIR/LWIR composed as an RGB image stack, the Northern
Bldg at the VanLare Plant (Red Circle) was recently built and is evidently made of a different material than its neighbors.

The process in Figure 3-2, describes the basic steps required to solve for precise image-to-
model registration when the camera pose is known. This step can be implemented as a way to
mitigate any residual error in the accuracy of the sensor’s Inertial Measurement Unit (IMU)

pointing and Global Positioning System (GPS) location parameters.



Image to Model Registration with Known Pose
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Figure 3-2 The process for relating an image to a model when the camera pose is known starts with changing
the orientation of the model to mimic the known sensor view. Then the extraction and matching of similar
features from the image and model can occur in similar 2D construct. These matches are then used to refine
the model pose (due to IMU/GPS precision error) for final projective texturing of the image on the model.

3.1.1 Approach

For this section we assume that the camera pose is available and that we have a model that has
been textured with imagery of a similar modality. Since this approach primarily focuses on
removing the 3-D ambiguity of the registration process, it should be applicable to most
automated 2-D image registration techniques if even rudimentary models of a scene are
available. Additionally, since all remotely sensed images are influenced by the 3-D world in
some manner, it is important to understand and control these effects whenever possible. The
utility of relating these two datasets should be readily apparent from Figure 3-3. Here a crude
model has been textured (by draping an image-Section 15.1) and oriented to the acquisition

view of another image to remove some of the undesirable 3D influences.
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Figure 3-3 Even rudimentary models textured with images (top) can be used to simulate the 3D effects of scene projection,
shadowing, and occlusion evident within real images (bottom) and can thus allow for precise 2D registration.

Since we can orient our model to the respective orientation dictated by the known camera

pose, it is possible to project our model into a similar space to that of the target image and

utilize traditional point extraction techniques for feature extraction. Additionally, since we

have assumed that the model is textured with imagery of a similar modality, the extracted edge

detail should provide similar features from both the projected model and target image.

With powerful physics based modeling software, like Digital Imaging and Remote Sensing Image
Generation (DIRSIG), it is possible to replicate the appearance of many modalities including
visible, infrared, polarimetric, synthetic aperture radar, and low light panchromatic (Digital
Imaging and Remote Sensing Laboratory 2006). This increases the probability of extracting
similar features from a wide range of potential modalities, since the edge detail should be

accurately generated if the model is geometrically correct and removes the 3D ambiguity.

The feature matching in this section will be approached in the same way as traditional 2D

feature matching in Section 1.2. However, when utilizing a GIS environment such as Google

3-4



Earth (Google Earth 2010), care must be taken to ensure that the modeled scene contains the
appropriate terrain and building models, but that the working image is unaltered. In this way,
when the pose of the acquisition camera has been properly encoded into the viewport, the
working image should closely resemble the modeled scene (Walli and Rhody, Automated Image

Registration to 3-D Scene Models 2008).

Reference Model Working Image
in a GIS scene atinitial location

Center Based
Relative
Registration

Center Extracted ROI
w/o model or terrain

Center Extracted ROI
with model & terrain

Applied to KML
Description

Affine Image
Transform

Figure 3-4 The general process utilized to register images to GIS modeled scenes.



If the IMU/GPS information is sufficiently accurate, then a 2D affine relationship will often
provide acceptable accuracy to relate the model projection to the target image. This approach
provides a piece-wise affine solution to the projective problem presented by our camera pose
estimation. It can be likened to a linear estimate of a nonlinear problem that provides
acceptable levels of error over small regions of the solution space and is shown in Figure 3-4,
where a hi-fidelity model of the VanlLare site was provided by Pictometry International

Corporation (Pictometry 2010).

3.1.2 Case Study - Using Google Earth Models and WASP Imagery

This section provides a brief summary of results obtained when implementing the procedure
outlined above. For this case study, Google Earth (GE) was utilized as the GIS visualization tool,
with detailed Collada models of the Frank E. VanLare Water Treatment Plant embedded within
the standard satellite imagery and 30[m] terrain elevation maps. The working imagery was
obtained from RIT’s Wildfire Airborne Sensing Program’s (WASP) multimodal sensor suite that
provides 4kx4k Visible Near Infrared (VNIR) and 640x512 Short Wave Infrared (SWIR), Mid-

Wave Infrared (MWIR), and Long Wave Infrared (LWIR) images.

A significant limitation in utilizing GE’s as the GIS for 3D scene representation, is that terrain
overlaid image descriptions are limited to heading angle and a Latitude/Longitude box. This can
limit the transformations to those of an affine nature if preprocessing of the imagery is not
performed. Additionally, this tool was designed for square North/South and East/West “box”

areas, and so the working imagery was designed for ortho-rectification as a requirement for
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proper implementation. After working through some of GE’s limitations, the results, seen in

Figure 3-5 and Figure 3-6, show that precise registration is available by utilizing this technique.

Figure 3-5 The top image with initial IMU/GPS pose and the bottom after affine correction. Both images are displayed in
Google Earth with 30m accuracy terrain and detailed Pictometry model of the VanLare Site.
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The careful observer will note the displacement of building models from their placement w.r.t.
the imagery in Figure 3-5, especially over the settling ponds in the SE area of the VanLare Plant.
In the multimodal results of Figure 3-6 the registered image is overlaid on top of the initial
IMU/GPS location. This shows the relative placement and correction obtained from in-scene

registration compared to the initial hardware solution.

5 ,
Image ©2009 New, YorkiGIS

Figure 3-6 Comparison of Registered VNIR WASP image (outlined in green) overlaid on its initial location (outlined in red)
with the detailed site model in GE.

In order to overcome the GE limitations for texturing the terrain with imagery, it is essential to
implement mathematical techniques that link the camera orientation parameters to the 2D

Projective Homography (Seedahmed 2006). This technique requires that a true planar
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relationship exists between the correspondences used to create the projective transformation.
While this may not always be the case, the statistical techniques developed by the author in
Sections 2.5.1 and 6.4.1.1 to ensure accurate RMSDE consistency of the model with the match
points can be utilized to constrain the solution space. This is particularly relevant and
applicable to the Section 6.4.1.1, where a 2D planar relationship between the image and model

is warranted due to accurate scene modeling.

3.2 Unknown Camera Pose

Given the utility of using camera information to remove 3D ambiguity from a registration result,
the next logical task is to determine this camera information from “in-scene” information when
it is not available. The ability to estimate the position and orientation of a camera (camera
pose), without prior knowledge, is often essential for relating imagery of a given scene. The
ability to use known 3D control points and corresponding image locations to retrieve camera
position and orientation when the image was acquired is referred to by photogrammetrists as
“space resectioning”. Resectioning images can be a very powerful technique, since the camera
information for a given image of interest, may not be readily available. Even when it is, the
accuracy of that information may be unknown or may not be precise enough to use without

further refinement. This resectioning process is shown in Figure 3-7.
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Image to Model Registration with Unknown Pose
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Figure 3-7 The basic process for relating images to a model when the camera pose is unknown. The main difference here
is that the initial camera pose must be solved for using correspondences or user manipulation of the model pose. At this
point the process then mimics the one described earlier in Section 3.1.

The resectioning approach implemented by the author is similar to the Maximum Likelihood,
“Gold Standard Algorithm” proposed by Hartley & Zisserman (Hartley and Zisserman 2004);

which is shown in Figure 3-8:
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Objective

Given n > 6 world to image point correspondences {X,; «+ X;}, determine the Maxi-
mum Likelihood estimate of the camera projection matrix P, i.c. the P which minimizes
Z'd(x..Px.)"‘.

Algorithm

(1) Linear solution. Compute an initial estimate of P using a linear method such as
algorithm 4.2(p109):

(a) Normalization: Use a similarity transformation T to normalize the image
points, and a second similarity transformation U to normalize the space points.
Suppose the normalized image points are X; = Tx;, and the normalized space
points are X, = UX,.

(b) DLT: Form the 2n x 12 matrix A by stacking the equations (7.2) generated by
cach correspondence X; — X;. Write p for the vector containing the entries of
the matrix P. A solution of Ap = 0, subject to ||pl| = 1, is obtained from the
unit singular vector of A corresponding to the smallest singular value.

(i1) Minimize geometric error. Using the lincar estimate as a starting point minimize the
geometric error (7.4):
Y d(x,PX,)?
over P, using an iterative algorithm such as Levenberg-Marquardt.

(iii) Denormalization. The camera matrix for the original (unnormalized) coordinates is
obtained from P as

P=T"'PU.

Figure 3-8 Algorithm 7.1 — The Gold Standard Algorithm for estimating P from world to image point correspondences in the
case that the world points are very accurately known.
Since the mathematical formulation and execution for this algorithm are treated exhaustively in
Chapters 12 & 13, they will only be covered briefly in the following sections to highlight areas of

additional interest.

3.2.1 Approach - Feature Extraction and Matching

As noted above, the data that we want to relate in this section is the 2D information from an
image to that of a known 3D model. By orienting our model to the viewing geometry of an
arbitrary scene image, we wish to determine information about the camera that acquired that
imagery of our 3D modeled site. Specifically, we wish to determine the internal and external

camera parameters (see Chapter 11).
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The case of feature extraction in this scenario is not as straightforward as in the image-to-image
registration of Chapter 2. Here, we have a 3D model which we can easily rotate to an
orientation that approximates our image view through user assisted computer graphic
manipulation. MATLAB’s (The Mathworks, Inc. 2010) graphical plotting interface allows these
manipulations through simple mouse-driven commands, when the rotation button is active (see

figures in the next Case Study - Section 3.2.3).

Once this is accomplished, we can implement a “back-culling” facet routine to extract only
those features visible in the Graphical User Interface (GUI) window. In this way, it is possible to
isolate all of the vertices that should be present as image corners within a scene. Since faceted
models are often overly-simplified renditions of the original scene, these vertices will be a
subset of the corners within a scene. For this reason, it is possible to utilize automated
techniques to extract the semi-invariant features necessary to match a model with an image

utilizing “facet culling” and corner/edge detection techniques.

Once the common invariant features have been extracted from the model and image, the
critical and yet daunting task of relating correspondences begins. The problem is challenging in
this situation, because of the dissimilarity in the two datasets and uncharacterized error in the
model points may make them extremely difficult to relate automatically. Finally, regardless of
the specific approach utilized to automatically match features, both the statistical RMSDE and

RANSAC techniques can be used for outlier removal and error minimization.
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3.2.1.1 Using the Projected Model and Image

When a hi-fidelity model is available (which is texture mapped with imagery of the same
modality), traditional 2D image registration techniques may be applied to extract
correspondences. This was the approach utilized in Section 3.1, for the final registration step.
Recall that the model was projected onto a similar 2D plane as the image where features can be
extracted via traditional edge detection algorithms such as SIFT (D. G. Lowe 2004), LoGWaR

(Walli 2003), or Harris Corner Detector (Harris and Stephens 1988).

If 2D registration of the projected model and image is feasible, direct methods to relate the
underlying 3D resectioning relationships between the image and the model using the
fundamental matrix (see Section 14.2) and 2D homography can be utilized (Seedahmed 2006).
This allows for an automated comparison of the projected model vertices with the extracted

invariant match points for potential commonality and precise model to image registration.

3.2.1.2 Using Feature Distances

A related method is to relate the image and model features based on a feature distance
relationship, such as the technique utilized in LoGWar. Since the user assisted orientation can
remove most of the projective effects between the model and the image, it is possible to utilize
the projection of the observed vertices for comparison to the extracted image features. The
distance relationship is naturally invariant to shift and rotation, and scale invariance is achieved
through the ratio of distances. Additionally, the projective effect is invariant when comparing
the cross ratio of distance ratios along a line. As long as the dissimilarity in point sets doesn’t

preclude a robust solution, this technique can also provide a viable automated solution.

3-13



3.2.1.3 Using Semi-Automated Tools and User Assistance

If completely automated techniques prove to be too difficult to provide a linear estimate of the
image resectioning solution, manual selection of no less than 6 model vertices that are visible
within the image may be required. Of course, due to error in the model representation of the
real world, image point selection and other error, additional correspondences will provide

increased accuracy when using least squares estimated solutions (Section 3.2.3).

3.2.2 Develop Linear and Non-Linear Solutions

An initial linear estimate of the camera pose is obtained by performing a Direct Linear
Transform (DLT). A more detailed discussion regarding the DLT’s implementation w.r.t.
estimating the full 11 parameter camera pose problem is available in Appendix B (Chapter 12).
Once an initial linear estimate of the solution “puts us in the ball park” of the correct solution, it
can often provide nonlinear techniques with a faster solution that has greater likelihood of
converging at the true global minimum. A simple graphic that can help visualize this concept is

shown in Figure 3-9.
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Figure 3-9 This simple graphic displays how a linear estimate of a nonlinear function can provide a rough estimate of the
local/global minimum location, within some margin of error.

Also, it is often possible to simplify the solution space by making initial assumptions. For
example, in near-orthographic imaging scenarios, it is often acceptable to assume the camera
roll and pitch are negligible (~0°), for initial estimation purposes (DeWitt and Wolf 2000).
Additionally, a user could easily obtain an initial estimate of the camera parameters by rotating,
scaling, and translating a model to the approximate orientation and position displayed in the

image.

Unfortunately, due to the inherently nonlinear interactions of the camera pose parameters, a
linear solution will normally be insufficient to provide the required accuracies necessary to
relate a 3D model with an image. In this case, an iterative nonlinear estimation process will
normally be required to arrive at satisfactory results. Due to the proven performance of the
Levenberg-Marquardt Algorithm (LMA) to efficiently and robustly solve for many nonlinear
problems (Hartley and Zisserman 2004), we will utilize it here to solve for the camera pose

parameters.
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The LMA is a hybrid of the Gauss-Newton algorithm (GNA) and the method of gradient decent.
Although it tends to be more robust than GNA when starting far from the minimum, it often
converges more slowly to that minimum (H. Rhody 2009). Additional details regarding the
general implementation of the LMA with specific application to the resectioning of images-to-

models is provided as a reference in Chapter 13.

As in any iterative solution, the key metric to adequately quantify is that which you are
minimizing against. In the case of 2D imagery features and 3D model control points, that metric
is the geometric distance between the 2D features and the projected 3D model control points

into that 2D space.

Minimizgtion min Z d(x;, PX;)? (40)
Equation i

Where P is the projection matrix, PX; is the location of the projected 3D model point onto the
2D image space and x; is the corresponding image feature. The solution is the minimum of the
total (summed) square error over all the points considered. If the measurement errors are

Gaussian, this will be the Maximum Likelihood estimate of P (Hartley and Zisserman 2004).

Specific to the LMA, a damping factor u is applied that weights the direction and step size of the
decent into the minimization valley. When large, this damping term delivers a short step in the
steepest descent direction; which is good if the current iteration is far from the solution.

However, when p is small, it is possible to achieve nearly quadratic final convergence (Madsen,

Nielsen and Tingleff 2004).
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3.2.3 Case Study - Estimating Model Pose from unknown Imagery

This example demonstrates the ability to recover an unknown camera’s pose of a scene, when
it acquired an image of the Center for Imaging Science (CIS) at RIT. In this study, the model
vertices and corresponding image locations (12 GCPs) were selected manually and are visible in

Figure 3-10.

Figure 3-10 On the left is the working image with the same 12 locations selected as on the model; these locations are twice
the number required for resectioning with a model (6 GCPs).

In its attempt to minimize error, LMA took the initial sum of the squared projected geometric
error from 16 million [pix] to 25 [pix], after only 29 iterations. Not only did the total squared
error reduce drastically, the parameter minimization provided good results, which are visible in
Figure 3-11. Here the resectioning is utilized to determine the DLT estimate on the left and the

LMA optimization on the right.
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DLT Estimate — 12pts DLT then LMA — 12pts

Figure 3-11 On the left, the DLT provides a good starting point for LMA to optimize a solution.

This study demonstrates the ability to determine a modeled scene’s pose w.r.t. an image.
Future research in this area will attempt to develop automated techniques to relate the model
and the working image. Key to enabling this would be to automate the matching of model
vertices to corresponding image locations. This could be accomplished by projecting the
vertices onto the image plane and matching them with HCD features, using the distance

matching technique covered in Section 2.2.1.

Another approach is to match the projected model image to the working image, as
demonstrated in the previous case study. This requires accurate modeling of the scene, but,
allows the use of traditional 2D image registration technique to derive correspondences. The
point correspondences can then be utilized to solve for the resectioning parameters directly

from a 2D projective transformation (Seedahmed 2006).

3-18



Additionally, the DLT and LMA techniques covered in Chapter 12 & 13 can be applied to image-
to-image resectioning, instead of image-to-model. Finally, the estimated structure of the scene
can be constrained by the known model facets to limit the projective ambiguity common in

image sparse structure reconstructions.

3.3 SWIR Imagery to SWIR Attributed LIDAR Models
In this section we will explore an interesting example of completely automated 2D imagery to
3D model registration utilizing WASP imagery and LIDAR data (Kucera International Inc. 2010),

as seen in Figure 3-12.

A) WASP SWIR Image B) LIDAR SWIR Model Screendump

Figure 3-12 The figure above show a 2D SWIR image (A) and an image projection of a 3D model that was textured/attributed
using the same LIDAR SWIR intensity returns that were utilized to create the facetized 3D model.

Below, in Figure 3-13, the two datasets were related automatically using techniques developed
in Chapter 2. It is useful to note that, in this example, no sensor viewing orientation was
utilized to estimate the sensor-to-scene view in order to remove the 3D projective effects and a

good registration was still possible.

3-19



Automated Image-to-Model registration using SIFT & RANSAC.
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Figure 3-13 The results of automated registration (using SIFT & RANSAC), between the 2D SWIR image and the 3D LIDAR
model are apparent.

The robustly matched correspondences can be utilized to relate via a 3D Homography in-order
to re-orient the model view (using linear or non-linear techniques) until minimal error exists
with the imaged view of the scene (Section 3.2). Alternatively, if a good 2D planar relationship
can be derived from the matched correspondences, as discussed in Section 3.1.2, the EOPs can
be directly recovered and used to reorient the LIDAR model (Seedahmed 2006). Once
corrected, the model orientation should be suitable for direct archival of the imagery onto the
model via projective texturing.

In the next section we will leverage some of the techniques developed here, since Chapter 4
focuses on the task of deriving coarse 3D models from only 2D imagery. So it should be
apparent that the 3D mathematical projections of models into a related 2D space for

registration provide a critically important mathematical framework for this section.

3-20



4 Deriving Sparse Structure from Images

Using multiple view imagery to derive sparse structure is known in the photogrammetry
community as Bundle Adjustment (BA) and in the computer vision community as Structure from
Motion (SfM). Since the BA technique has been around for decades, why is there such a

current “Buzz” in scientific literature about its application and utility?

This area of research has recently experienced a renaissance, due to its successful application
to several computer/robotic vision projects. The quest to have robots perceive their
surroundings with some degree of 3D knowledge, cheaply and robustly, has innumerable
applications. To accomplish this feat, the computer vision community has turned to
inexpensive cameras and dusted off the photogrammetrist’s technique of BA. However, to
make robots react to an ever changing environment, they needed to “speed up” the
enormously unwieldy BA implementation. To do this efficiently requires sparse matrix

techniques, thus the name Sparse Bundle Adjustment (SBA).

Additionally, the mathematical formalism provided by Hartley and Zisserman’s Multiple View
Geometry (Hartley and Zisserman 2004) text has provided a much needed foundation in this
quickly developing area. Finally, for a robot to “see”, it must be able to efficiently and robustly
extract invariant features from its surroundings via the 2D imagery it has as its source of
perception. With proven feature detection algorithms like SIFT, this now becomes feasible.
But, it is only the parallel breakthroughs in these areas are finally allowing the dream of

rudimentary computer vision to be fulfilled. It is fitting that the remote sensing community



benefit from this as well, especially since the seeds of computer vision were planted over a
generation ago by early photogrammetrists. The basic process for recovering 3D structure from

images is depicted in Figure 4-1.

Recovering 3D Structure from multiple 2D Images (3D from n2D).
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Figure 4-1 This graphic depicts the six basic steps required for relating multiple images to recover sparse structure via the
Bundle Adjustment process. Once invariant features are extracted and matched, a linear estimate of the 3D point set is fed
into a Bundle Adjustment process to simultaneously optimize the model points and camera parameters.
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Two processes for recovering sparse structure will be covered in the following sections. Both
techniques utilize SIFT and SBA to “bookend” the beginning and end of the structure recovery
process. The first method is a combination of epipolar constraints combined with proven
photogrammetric tools, such as the collinearity equation and image rectification to deliver
world coordinate system structure from known camera parameters. The second process is
entirely enabled by multiple view epipolar geometry methods and provides relative local

structure recovery even when most of the camera parameters are unknown.
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4.1 Feature Extraction and Matching

Since both of these approaches use the same technique for image feature extraction and
matching, it will be covered separately to avoid redundancy. It should be noted that the
invariant features used to relate the images for SfM processing are the same features for which

the 3D structure is computed and compose the resulting Sparse Point Cloud (SPC).

As in Chapter 2, invariant feature are extracted from the images of overlapping content. These
features then need to be matched for potential correspondence. Here we will utilize the SIFT
algorithm and its extracted keypoints to match the description vectors that are the closest and
assign them as potential matches in each pair of images. Once this is done, the image sets are
tested for the requisite number of matches, determined by the number of correspondences
necessary to solve for the Fundamental Matrix (7-8 points plus outlier probability) and/or the

2D Homography (4 points plus outlier probability).

The following diagram, adapted from (Hartley and Zisserman 2004), helps depict this epipolar
constraint (Figure 4-2). In this diagram the Fundamental Matrix F, dictates that for a given
model point X on plane m, a ray must pass from the camera center C (a focal length behind the
image plane) through the image location x and this ray will be imaged by the camera C' as an
epipolar line I', passing from the image of the same model point x’ to that cameras epipole €'.

The epipole is the image of the other camera center (which may be off the image). Thus,

Fx=1 (41)

and so, x'TF must be in the left null-space of x and Fx must be in the right null-space of x'.
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x Fx=0 (42)

So, for a given point x, the preliminary match point must lie along the epipolar line I in order

for it to be valid. So, the matches that do not fit this epipolar constraint are then culled.

Figure 4-2 The epipolar relationships of the cameras, image points, and model points.

Even in the presence of several outliers, these relationships can be utilized in concert with
RANSAC (Section 2.5.2) to develop a robust Fundamental Matrix. Once this is accomplished,
the Fundamental Matrix can then be used to constrain the SIFT match set to remove most
outliers. These steps can be accomplished using the ‘7-Point Fundamental Matrix’ algorithm
(Hartley and Zisserman 2004) depicted in Figure 4-3. Unfortunately, it is possible that an
erroneous set of correspondences may still fulfill the Fundamental Matrix constraints, so

additional constraints may be required to further cull the data (4.2.1).



Objective Compute the fundamental matrix between two images.
Algorithm

(i) Interest points: Compute interest points in each image.
(ii) Putative correspondences: Compute a set of intcrest point matches based on proxim-
ity and similarity of their intensity neighbourhood.
(iii) RANSAC robust estimation: Repeat for .\’ samples. where N is determined adap-
tively as in algorithm 4.5(p121):

(a) Select a random sample of 7 cormrespondences and compute the fundamental
matrix F as described in section 11.1.2. There will be one or three real solutions.

(b) Calculate the distance d - for each putative correspondence.

(c) Compute the number of inliers consistent with F by the number ol correspon-
dences for which d_ < t pixels.

(d) If there arc three real solutions for F the number of inlicrs is computed for each
solution, and the solution with most inliers retained.

Choosc the F with the largest number of inliers. In the casc of tics choose the solution

that has the lowest standard deviation of inlicrs.

| (iv) Non-linear estimation: re-estimatc F from all correspondences classified as inliers
by minimizing a cost function. e.g. (11.6). using the Levenberg—Marquardt algorithm
of section A6.2(p600).

(v) Guided matching: Further intcrest point correspondences arc now determined using

i the estimated F to dcfinc a search strip about the cpipolar line.

The last two steps can be iterated until the number of correspondences is stable.

Figure 4-3 Hartley & Zisserman’s 7-Point Fundamental Matrix using RANSAC.

4.2 Modern Photogrammetric Techniques

Automated synthetic scene generation is now becoming feasible with calibrated camera
remote sensing. This section implements computer vision techniques that have recently
become popular to extract “structure from motion” (SfM) of a calibrated camera with respect
to a target. This process is similar to Microsoft’s popular “PhotoSynth” technique (Microsoft,
2009), but, blends photogrammetric with computer vision techniques and applies it to
geographic scenes imaged from an airborne platform. Additionally, it has been augmented
with new features to increase the fidelity of the 3D structure for realistic scene modeling. This
includes the generation of both sparse and dense point clouds useful for synthetic
macro/micro-scene reconstruction.

Although, the quest for computer vision has been an active area of research for decades, it has

recently experienced a renaissance due to a few significant breakthroughs. This section will
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review the developments in mathematical formalism, robust automated point extraction, and
efficient sparse matrix algorithm implementation that have fomented the capability to retrieve
3D structure from multiple aerial images of the same target and apply it to geographical scene
modeling.

Scenes are reconstructed on both a macro and a micro scale. The macro scene reconstruction
implements the scale invariant feature transform to establish initial correspondences, then
extracts a scene coordinate estimate using photogrammetric techniques. The estimates along
with calibrated camera information are fed through a sparse bundle adjustment to extract
refined scene coordinates. The micro scale reconstruction uses a denser correspondence done

on specific targets using the epipolar geometry derived in the macro method.

4.2.1 Approach - Depth Recovery from Overlapping Images

The basic method for implementing the Modern Photogrammetric approach is to:

1. Derive Initial Correspondences utilizing the SIFT Algorithm

2. Cull Outlier Matches for Precise Image Bundle Relationship and 3D Structure
a. Check for agreement with the Fundamental Matrix using RANSAC
b. Check for general agreement with a planar SPC fit using RANSAC

3. Rectify Images by projecting points onto a virtual focal plane

4. Estimate the 3D structure utilizing linear techniques

5. Determine Correspondences with multiple image matches

6. Prepare Match Datasets for Sparse Bundle Adjustment (SBA)

7. Relate SBA results to WCS using Camera info and Back Projection



4.2.1.1 Derive Correspondences

Deriving correspondences is implemented similar to Section 2.2.2, but, here the author has
implemented an image tiling approach that overcomes the self-imposed 2k x 2k limitation of Dr
Lowe’s SIFT implementation currently available from his website (D. Lowe 2005). This
technique provides about 5x the number of invariant features and 3x the correspondences as
the reduced resolution imagery and is implemented as shown in Figure 4-4. Here the Hi-
Resolution and Low-Resolution tiles are layered to provide the proper combination for

multiscale image pyramid analysis within the SIFT algorithm.

4kx4k Full Res WASP Image Pseudo 4kx4k Sifted Image

Half Res
WASP Image

2k x 2k
+ Low Res p—

Figure 4-4 Process for tiling images larger than 2kx2k for SIFT feature extraction and matching.

4.2.1.2 Culling Outliers

First the SIFT correspondences are run through a RANSAC algorithm constrained against the
resulting Fundamental Matrix as in Section 2.5.2. This compares the candidate feature matches
against the epipolar relationships derived from the initial point set. Matches that do not
support this relationship (42) are culled as outliers. Occasionally outliers may still fulfill this

requirement and additional techniques for outlier removal are required.
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Thankfully, additional culling of outlier matches can be applied to most remotely sensed image
bundles, due to the near-planar target terrain. Once the linear estimate of the elevation of
each point in the match set has been obtained, a RANSAC plane fitting technique can often be
utilized to remove any remaining outliers (i.e. +£1 Std of the distribution from the plane or

+30m) as demonstrated in Figure 4-5.

Z Axis

Z Axis

-50 -150

Figure 4-5 Displays the utility of RANSAC plane fitting to SPC terrain data for outlier removal.

4.2.1.3 Rectify Images using the Collinearity Equation

Unless the acquisition platform is accomplishing purely nadir imaging (looking perpendicular to
the earth’s surface) it is necessary to rectify the image or image correspondences to enable
proper linear 3D structure estimation. The approach taken here is to back-project the image
correspondences onto a virtual focal plane that is located at the focal length (f), but, is situated
perpendicular to the earth’s surface as depicted in Figure 4-6. This is a critical correction that

generalizes the linear 3D recovery techniques covered in Section 4.3.2.4.
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Figure 4-6 Rectification of the matches must be performed for accurate 3D estimation of the SPC.

4.2.1.4 Estimate the 3D Structure - Linear Photogrammetric

The basic technique to derive 3D structure from images was derived from a photogrammetric
approach (DeWitt and Wolf 2000). Although this technique is easy to comprehend and
implement, it has severe limitations for use. The reason for this is that it assumes the sensing
platform is performing Nadir Imaging along a flight path that is parallel to one of the image
axes. This essentially means that there is no pitch and roll and the heading is constant w.r.t. the
other images and runs in straight lines. Unfortunately, with airborne platforms this is seldom
the case and corrections must be incorporated for robust performance. The previous section
corrected for the pitch and roll of the sensor, but, we still must accommodate for the deviation

of the image axes from the flight line. This is covered in Section 4.3.2.4 and visible in Figure 4-7.
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Baseline

Figure 4-7 The 3D estimate of structure is dependent on the baseline between the images, so corrections are required that
change the image pixel locations to be aligned with the flight line path. This amounts to a coordinate system conversion of
the matched locations to one that is defined by the axes connecting both camera location at the time of acquisition.

4.2.1.5 Isolate Correspondences with Multiple Matches and Prepare for SBA

Once the 3D estimate of the matches is accomplished, the next step is to group the image
matches into sets, based on location similarity as displayed in Figure 4-8. It should be no
surprise that similar regions are isolated by the SIFT algorithm across multiple images, due to
the gradient nature of the feature mapping. In this way, a set of images may have a few

features that are isolated in every image that has common overlap within the set.

The SBA algorithm of Lourakis and Argyros (Lourakis & Argyros 2004) is optimized for speed and
efficiency and is utilized in Section 4.4 to provide an optimized point cloud w.r.t the camera’s
EOPs/IOPs and 3D point locations. It can easily optimize against several camera variables and

the structure of tens of thousands of 3D points simultaneously to produces an image bundle
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that is mutually self-consistent. However, as with any engineering code, it requires specific

formatting for the input variables and special care when preparing the camera IOPs and EOPs.

The SBA code weights the matches based on the number of correspondences and their
projected covariance. For this reason, a sorting algorithm has been developed and
implemented by the author to extract match sets from the image bundle in a pyramid fashion,
where the 4 match set is extracted from the 3 match set which is in turn extracted from the

most common 2 match set to remove redundancy before sending them into the SBA algorithm.

Regions of Overlap (ROO) for 3 images ROO & Matches for 2 images

ROO & Matches
for 2images

ROO & Matches
for3images

Figure 4-8 The overlapping images above (red & yellow) are registered and have matches that are common to all (cyan).
These common locations can then be utilized for 3D registration or as seeds for the DPC extraction process (Section 4.3.3).
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4.2.1.6 Relate SBA Results to WCS using the Collinearity Equation

Once a good image bundle and SPC is produced using SBA, it can be related back to the WCS
directly by utilizing the camera Exterior Orientation Parameters (EOPs) and Interior Orientation
Parameters (IOPs) which can also be optimized in this process. Additionally, the recovered
height information can be utilized in concert with the Collinearity Equations to re-project into

any given image orientation as shown below in Figure 4-9.

An Image Bundle Mathematical Construct

ROO-Region of Overlap
ROI-Region of Interest

Camera 3 A

(wdkXYZfpk) Camera 2
\ / (wdkXYZfpk)

Caml - Base
(wdkXYZfpk) /

Figure 4-9 Once the image bundle is optimized using SBA, it is possible to relate the images, cameras and 3D point cloud into
a 3D mathematical framework to determine the region of overlan for DPC interrogation and additional nrocessing.

The last step in the image bundle process is to automatically identify the Regions of Overlap
(ROO) of the resulting image relationships (Figure 4-9) for seamless integration of Dense Point
Cloud (DPC) processing (Nilosek, et al. 2009). This process utilizes the Fundamental Matrix
relationship between two matched images and interrogates each pixel of the base image to

develop a correspondence in the working image as shown in Figure 4-10. Since we know that
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for any given pixel in the base image there must be a corresponding pixel (if not occluded)
located in the working image, it is efficient to look along the epipolar line for a match to
constrain the search. Due to intense interest by the computer vision community, active
research is currently ongoing in this field with some promising initial results (Pollefeys, et al.

2004) & (Ma, et al. 2006), but, still with much room for growth and discovery.

(wpkxyzfpk)

Camera Parameters
& Dense Point Cloud

Figure 4-10 The basic process for developing Dense Point Clouds using Epipolar relationships between images.

Even though the epipolar constraint for deriving dense correspondences greatly reduces the
search space, the effects of parallax and occlusion may greatly change the localized region’s
appearance. However, there are some automated techniques like the Affine SIFT (ASIFT)

(Morel & Yu, 2009) or the Log Polar algorithm (Cyganek 2008), that could be utilized to provide
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scale, shift, and rotation invariant approaches for dense correspondence matching and outlier

removal to address this challenging feature matching problem (Nilosek, et al. 2009).

4.3 Case Study - Creating Sparse Structure using Airborne Data

The seeds of computer vision were actually planted by photogrammetrists over 40 years ago,
through the development of “space resectioning” and “bundle adjustment” techniques. But it is
only the parallel breakthroughs, in the previously mentioned areas that have finally allowed the
dream of rudimentary computer vision to be fulfilled in an efficient and robust fashion. Both
areas will benefit from the application of these advancements to geographical synthetic scene
modeling. This section explores the process the authors refer to as Airborne Synthetic Scene

Generation (AeroSynth) process (Walli, Nilosek, et al. 2009).

The AeroSynth technique for recovering 3D structure from images is a blend of the both the
photogrammetric and computer vision approaches. It utilizes the automatic feature
isolation/matching, epipolar relationships and SBA of computer vision and melds it with the
linear 3D point estimation and collinearity relationships of photogrammetry. As a result, the
image bundle and SBA-SPC can be related to the WCS and directly injected into GIS applications

for automatic analysis and comparison to existing archival data.

4.3.1 AeroSynth Introduction
Recovering 3D structure from 2D images requires only that the scene is imaged from two
different viewing geometries and that the same features can be accurately identified. Figure

4-11, depicts a site of interest imaged from multiple views using an airborne sensor; here the
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point of interest is the top of a smokestack that will be imaged with the effects of parallax
displacing it with respect to other features within the scene. This parallax displacement effect
has been used for decades within the photogrammetry community to recover the 3D structure
within a scene (DeWitt and Wolf 2000). Unfortunately, robust automated techniques to match
similar features within a scene have been fairly elusive until very recent breakthroughs in the

area of computer vision (Section 2.2).

Figure 4-11 Example showing the angular diversity required to recover 3D Terrain from Airborne Imagery.

4.3.2 Recovering Sparse Structure from Images
The key to automatically recovering 3D structure from an imaged scene is to identify reliable
invariant features, match these features from images with diverse angular views of the target
and then generate accurate mathematical relationships to relate the images. This information
can then be utilized in concert with the camera external and internal orientation parameters to

derive scene structure that is defined within the World Coordinate System (WCS) of choice.
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4.3.2.1 Airborne Dataset

For this study, the working imagery was obtained from the Rochester Institute of Technology,
Center for Imaging Science’s (RIT/CIS), Wildfire Airborne Sensing Program (WASP) multimodal
sensor suite (Rhody, Van Aardt, Faulring, & McKeown, 2008). This sensor provides 4kx4k Visible
Near-Infrared (VNIR) and 640x512 Shortwave Infrared (SWIR), Midwave Infrared (MWIR), and
Longwave Infrared (LWIR) images. Google Earth (GE) was utilized as the GIS visualization tool,
with a detailed model of the Frank E. VanLare Water Treatment Plant (Pictometry, 2008)
embedded within the standard satellite imagery and 30 [m] terrain elevation maps (Figure 4-11
& Figure 4-14). Additionally, Figure 4-11 shows the region of overlap (outlined in red) of 5

WASP images where the site of interest is contained in the central (base) image.

4.3.2.2 Invariant Feature Detection and Matching

The SIFT technique can consistently isolate thousands of potential invariant features within an
arbitrary image as seen in Figure 4-12. This is extremely useful when attempting to create
sparse structure from matched point correspondences, since any matching features can then
be processed to obtain the 3D structure of the imaged scene. In addition, more recent
independent testing has confirmed that the SIFT feature detector, and its variants, perform
better under varying image conditions than other current feature extraction techniques
(Moreels and Perona 2006) & (Mikolajczyk and Schmid 2005)

The SIFT algorithm utilizes a Difference of Gaussian edge detector of varying widths to isolate
features and define a gradient mapping around them. These gradient maps are then compared

for similarity in another image and matches result from the most likely invariant feature pairs.
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Once potential matches are found, outliers can be culled based on the requisite epipolar
relationships that must exist between two images of the same scene. This has always been
challenging in the past due to the effects of parallax, but, can now be robustly addressed using

techniques highlighted in the next section.

Figure 4-12 Thousands of invariant keypoints generated and matched using the SIFT algorithm.

4.3.2.3 Outlier Removal

To successfully remove erroneous matches derived using the SIFT algorithm, the potential
match set will be processed using the Random Sample Consensus (RANSAC) technique (Fischler
and Bolles 1981), in conjunction with the fundamental matrix relationship between images of
the same scene (Figure 4-12). RANSAC has proven to be a robust technique for outlier removal,
even in the presence of large numbers of incorrect matches (Hartley & Zisserman, 2004). Since
it is not necessary to test all the sets of points for a solution, it can be efficiently utilized with

techniques like SIFT that provide large numbers of automated matches.
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Figure 4-13 Depiction of the Fundamental Matrix constraint between images which is used for outlier removal.

In the diagram above, Figure 4-13, the Fundamental Matrix F dictates that for a given 3D scene
point X, a ray must pass from the camera center C (a focal length behind the image plane)
through the image location x and this ray will be imaged by the camera €’ as an epipolar line F,
passing from the image of the same model point x’ to that cameras epipole e’ (Hartley and
Zisserman 2004). The epipole is the image of the other camera center (which may be off the
image entirely).

Anyone that has worked for any length of time with automatic image registration can attest to
the challenging issues parallax can cause when relating features. The limitation of utilizing a 2D
Projective Homography to relate imagery with large elevation difference between acquisition
stations, can be addressed through the use of the Fundamental Matrix relationship. This
relationship constrains the matches to an epipolar line even under extreme parallax situations
and can be formalized in a mathematical manner as shown below (Hartley and Zisserman

2004).
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Fundamental (43)

ll
Matrix

Fx

So, x’"F must be in the left null-space of x and Fx must be in the right null-space of x”.

Fundamental XTFx =0 (44)
Null Space

Simply stated, for a given point x, the preliminary match point must lie along the epipolar line I’
in order for it to be a valid match. So, the proposed feature matches that do not fit this

epipolar constraint are considered bad matches.

Once the initial matched point set has been obtained using the automated SIFT technique, it is
usually necessary to test for these bad matches or “outliers”. The RANSAC algorithm can be
utilized to iteratively take a random sample of the matches to create a Fundamental Matrix
relationship between the images. Once this is done, the veracity of that relationship can be
tested by comparing the number of resulting inliers against a statistically relevant number of
additional tests. The Fundamental Matrix that produces the most match point inliers is then
accepted as the best mathematical model and any outliers to this model are then removed.
These procedures are detailed in Section 2.5.2 and can produce thousands of good matches,
per image pair. These 2D image correspondences are then processed into 3D points using the

linear techniques described in the next section.

4.3.2.4 Initial Estimate of Sparse Structure

The initial estimation technique that is utilized to derive the 3D scene structure utilizes a simple
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approach that is augmented for more general situations by compensating for the aircraft

motion and image axes misalignment with the flight path. This process can be visualized below

in Figure 4-14.,

ﬁ4 B ﬁ‘g

(Xu:ymzu) (x“’yu’z”)

Figure 4-14 Graphic showing two collection stations of an airborne sensor utilized to recover 3D Structure.

The following equations (DeWitt and Wolf 2000) can then be utilized to derive 3D structure
once the necessary corrections have been accomplished. Here C,; and C; are the longitude and
latitude of the cameras and C;; is the flying height of the base sensor, B is the baseline distance
between sensor locations (the airbase), p; is the pixel distance between matching points (the

distance here is only along the x-axis), and the pixel locations are denoted (x3; y1;) and (X2;, ¥2i).

Baseline D!stance B=Cy, —Cyq (45)
(x-axis)
Focal Plane Di = Pxi = X1 — X3; (46)

Distance (x-axis)
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Figure 4-15 depicts the corrections that are required for any deviation of the flight line from
the coordinate axis of the images and the pitch, yaw, and role of the aircraft. Unless the
acquisition platform is capable of acquiring perfectly nadir imaging on a routine basis, it is

necessary to rectify the image or correspondences to enable linear 3D structure estimation.

A. Pitch, Roll, and Yaw Correction B. Flight Line Correction

v
Y2

Obligue View

Nadir View Virtual FP

Figure 4-15 Corrections are required to compensate for aircraft pitch, yaw, and roll and flight line orientation as discussed
earlier in Section 4.2.1.3. These are done by projecting the matches onto a virtual focal plane and then transforming them to
a coordinate system aligning the x-axis to the flight line connecting the two image centers.
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The approach the author has taken to accomplish this is to project the image correspondences
onto a virtual focal plane that is located at the focal length (f), but, is situated parallel to the
earth’s surface as depicted in Figure 4-15. This can be accomplished by using the image
projection versions of the collinearity equations below (DeWitt and Wolf 2000), where m is the
rotation matrix, (X, Y, Z;) is the camera location, (xo, yo) is the principal point, (x, y) is the

image location and (X, Y, Z) is the object location in the WCS.

Collinearity X —xg=—f My (X — X)) +myp, (Y = Y) + my3(Z = Z)))]
Eq. x-axis o M3y (X — X)) + Mgy (Y — V) +ma3(Z — Z,)) (50)
image proj.
Collinearity = —f My (X —X1) + (Y = V) + my3(Z - Z))] (51)
Eq. y-axis Y= Yo Mg (X — X)) + mgo (Y — V) + ma3(Z — Z,))

image proj.

The flight line corrections can be implemented by generalizing Equations (45) and (46) to
accommodate baselines that are offset from the image axes. It is important to note that the
height estimate (Z;) is dependent on the ratio of the baseline (B) to the pixel distance (p;) of the
match points projected onto the virtual focal plane. This ratio can be corrected to one that is
aligned with the flight line by performing a coordinate system conversion to the aircraft flight
line or by compensating for the relative Baseline distance with respect to the pixel
correspondence distances (Equations (52)-(53)). Finally, the corrected image plane distance
can be calculated by utilizing Equation (53) with the previous modifications. Here, the offset

from the flight line is represented by K.
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Figure 4-16 The interim estimates of the four individual SPC’s can be seen compared to the camera locations.

Interim results can be viewed with their respective camera stations in Figure 4-16, where nearly
20,000 individual point correspondences were automatically recovered from 5 matching images
(4 image pairs) to produce a Sparse Point Cloud (SPC) representation of the scene. Note that
here the results are still in a relative (meter-based) coordinate system centered on the base

camera location.

4.3.2.5 Non-Linear Optimization of Sparse Structure

Many of the problems presented in this research cannot be solved by linear methods alone. In

these cases, it is necessary to apply non-linear estimation techniques to provide accurate
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solutions. Such real-world problems as the resectioning of images to models and the bundle
adjustment (BA) of multiple images, to reconstruct 3D structure, both require nonlinear
minimization solutions. In fact, for BA, these solutions often depend on calculating the
interaction of several thousand variables simultaneously. Due to its stability and speed of
convergence, the Levenberg—Marquardt algorithm (LMA) is one of the most popular
approaches routinely utilized to solve these challenging problems (Lourakis & Argyros, 2004).

When implementing LMA, the computational challenge is to minimize a given cost function.
For applications such as resectioning and BA, this cost function is defined as the sum of the
squared error between image points (actual data) and projected 3D model points (predicted
values) dictated by the current set of parameter (X). The minimization function takes
advantage of the relationship between the estimated 3D structure (X;) and its 2D projection

onto the image plane (X;) as mathematically formalized below (Hartley & Zisserman, 2004).

Projection _
Y. — . 54
Function X = PX; (54)
Projection
= - 55
Matrix P =KR[I'| -] (55)

The projection matrix (P) can then be utilized directly for minimization since it incorporates the
cameras internal calibration parameters (K), and external orientation (R) and position (t). This
minimization equation then takes the following form (Equations (56) and (57)), where d is the

Euclidean distance between the image coordinate X and the projected 3D point X.
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Projection Z d(%, PX,)? (56)
Minimization - ' '

Function

Expanded = ~ - (57)
Minimization Z”fi - X(K,RtX)|

Function =1

The sparse bundle adjustment (SBA) algorithm of Lourakis and Argyros (Lourakis & Argyros,
2004) is optimized for speed and efficiency. It can easily minimize against several camera
variables and the structure of tens of thousands of 3D points simultaneously to produce a
sparse image bundle that is mutually self-consistent. However, as with any engineering code, it
requires specific formatting for the input variables and special care when preparing the
camera’s internal and external orientation parameters. The next section addresses this topic in
order to ensure that accurate global coordinates can be obtained after utilizing this SBA

minimization algorithm.

4.3.2.6 Relating the Results to World Coordinate System

Since the results of the SBA process minimize against a relative coordinate system anchored on
the base camera position, it can be difficult to determine the absolute locations of the 3D
points even though there is good self consistency between the camera locations and the SPC.
In order to recover the absolute location of the 3D points, the collinearity equations (Equations
(58)-(59)) were utilized to re-project the 3D points back into the base image locations of the

initial feature matches as seen in Figure 4-17B.
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Collinearity Eq my1(x — xo) + My (y — ¥o) + m31(—f)

X=X, =0Z-2)
X-component my3(x — x¢) + My3(y — yo) + m33(—f) (58)
World Coord.
Collinearity Eq My, (X — Xo) + My (y — ¥o) + Maa(—f)
Y-component Y-V, = (Z - ZL) Myz(x — xg) + My (Y — yo) + M (—f) (59)
World Coord. 13 0 23~ Yo 5

In this case, only the minimized depth parameter (Z;) retained its absolute coordinate value and
so could be utilized with the camera locations (X, Y, Z;) to determine the world coordinate
latitude (Y;) and longitude (X;) values. The final results are display below in Figure 4-17 showing
the UTM SPC (A), a facetized height map (B), in Google Earth as individual 3D points (C) and re-

projected back into the base image to show how a UV Texture Map can be derived (D).

Final SPC in global UTM. SPC converted into a faceted mesh.

Figure 4-17 Example results of the Sparse Bundle Adjustment process on the Sparse Point Cloud. Here the absolute global
coordinates (A) can be compared to the facetized surface (B), visualized in Google Earth (C), or re-projected back into any
of the images contained within the bundle (D).
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Below, a comparison of the final image derived SC mesh can be compared to a standard 30 [m]

Digital Elevation Map (DEM) and to a hi-fidelity 1 [m] LIDAR Terrain Elevation Map (TEM).

g E
LIDAR Derived Terrain Image Derived Terrain Digital Elevation Map

Figure 4-18 The image derived SPC mesh fidelity can be directly compared to both hi-fidelity ~1 [m] LIDAR terrain and a lo-
fidelity ~30 [m] Digital Elevation Map.

Relating the SBA-SPC to the WCS comes with the understanding that the final product will only
be as accurately positioned as the accuracy of the IMU-GPS information available from the
flight recorder. Since the SPC is minimized against a the position of all the cameras relative to a
base camera position, the results are only as good as the position and orientation accuracy of
your base camera. For a closer look at how these results can be compared and registered to a

LIDAR dataset, see Section 5.1.3.
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4.3.3 Recovering Dense Structure from Images

For completeness and to show the “end game” of recovering detailed scene models solely from
imagery, this section gives a cursory introduction of some of the related work accomplished
with PhD Student Dave Nilosek. Some of his initial work, into the recovery of Dense Point

Clouds from multiview imagery, is represented here.

The key to recovering a Dense Point Cloud (DPC) from matching images lies in the ability to
relate the images on a pixel-to-pixel level (Nilosek, et al. 2009). This is the transition point
between the macro and micro scene reconstructions. Here the micro process requires certain
information derived from the macro process to optimally utilize the derived mathematical
relationships between the images and the SPC. At this point in the scene reconstruction, each
image is already related to a base image of the scene through a fundamental matrix and the
SPC is related to each image using a projection matrix. The macro process has also derived the
regions of overlap for each image with respect to the base image. Each fundamental matrix,
projection matrix and region of overlap is passed off to the micro process with the SPC. Ideally
the micro process would relate every pixel in every overlapping image to the base image;
however, due to computing power restrictions, examples in this paper focus on specific targets

inside the regions of overlap.

4.3.3.1 Dense Correspondence - Relating Images at the Pixel Level
The utility of the fundamental matrix for outlier match removal has already been shown, now
this matrix will be used to help derive a dense set of matches between overlapping regions.

Using this matrix and Equation (41) for every pixel in the base image, an epipolar line that
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contains the corresponding point can be found in each overlapping image. Figure 4-19 shows
how epipolar lines are found in different overlapping regions from a single point in one image

for three different images.

Figure 4-19 Left: Image with single point chosen. Middle/Right: Corresponding epipolar lines in other images.

This property of the fundamental matrix reduces the correspondence search to a one-
dimensional search along epipolar lines. The images are rectified so that the epipolar lines run
along the horizontal and then a normalized cross correlation is computed based on a small area
selected around the target pixel in the base image. The maximum response from the
normalized cross correlation is chosen as the match. This is done for every pixel over the entire
area which results in a very dense correspondence between the multiple views.

The estimate of the dense structure follows the same pipeline as estimating the sparse
structure. First basic photogrammetry is used to extract an initial estimate of the structure.
Then the camera parameters, initial estimate of the structure and correspondences are used in
minimizing the reprojection error between all the images using the SBA method. The
collinearity equations can also be used to place the dense structure in the world coordinate
system. Additionally, the dense structure can be texture mapped with an image of the target as

shown in Figure 4-20.

4-29



Figure 4-20 Left: Initial estimate of the structure of the dense point cloud from three images. Right: Result after SBA, world
coordinate mapping and projective image texturing.

The initial estimate of the structure and the final product is shown in Figure 4-20 after all the
steps are completed. Once the dense structure of a specific target has been acquired, it is
combined with the sparse structure. Figure 4-21 shows the dense structure incorporated into
the sparse structure and overlaid on a map. Also on this map are image-derived, but, manually
generated CAD models of similar structures in the scene (Pictometry, 2008). The automatically
generated dense structure can now be directly compared to the structure of the CAD model for
verification. One very clear issue still remains when working with only nadir imagery and that is
the difficulty in reconstructing the sides of objects. Although oblique imagery can be used to
view the vertical detail of the scene, the severe projective transforms that relate these images

can provides additional correspondence challenges which are discussed below.
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Figure 4-21 Resulting 3D structure recovered from three overlapping images using Dense Point Correspondences
(The model provided by Pictometry is embedded within Google Earth).

4.3.3.2 Matching Oblique Images using ASIFT - Maximizing Angular Diversity

Recently an algorithm has been developed that attempts to describe features as projectively
invariant. This algorithm is called Affine Scale Invariant Feature Transform (Morel & Yu, 2009).
This algorithm builds on the original SIFT algorithm by taking the initial images and simulating
rotations along both the x and y axis. It essentially performs many SIFT operations over these
simulated images in order to find the best matching rotation between the images in order to
remove it. Once the initial matching is found using ASIFT, the same RANSAC process, using the
fundamental matrix as the fitting model, can be used to eliminate the outliers. Figure 11 shows

an example of matching points using ASIFT and then RANSAC.
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Figure 4-22 Matching between a nadir and oblique images using ASIFT and then RANSAC with the Fundamental Matrix as
the fitting model (Images courtesy Pictometry Int. (Pictometry 2010)).
The next step is to utilize the SPC, resulting fundamental matrices and regions of overlap to
extract a DPC of a target area within the scene. Since a projective transformation can greatly
impair the normalized cross-correlation method of point matching, other approaches may be

required for dealing with images that capture significant angular diversity of a target.

4.3.3.3 Growing a Depth Map from Sparse Correspondences

Since an accurate sparse representation of the structure of the scene has already been derived,
this structure can be utilized as a good starting point to ‘grow’ a dense match between images.
(Goesele, Snavely, Curless, Hoppe, & Seitz, 2007). A dense matching is generated around each
sparse match using an optimization method that minimizes the normalized pixel intensity
difference between each overlapping image with respect to the base image. Here each
projected SPC location is utilized as an initial seed and the matched image locations are slowly
grown from the pixels surrounding these points. In this way a dense correspondence mapping

can be obtained between images by constraining the epipolar line search space.
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Figure 4-23 Growing 3D depth maps based on the initial SPC results and epipolar relationships. In the upper left inset, the
3D SPC is projected back onto the base image. For these locations the depth information is already known (upper right)
and can be used to constrain the matching locations in the other images (lower left) to follow a general surface function.

4.3.4 AeroSynth Summary
Due to the fast growth in the computer vision arena, regarding SfM techniques (Chapter 14), it
is fruitful for the photogrammetry community to keep abreast and apply these techniques to
the area of remote sensing. The AeroSynth technique for recovering 3D structure from images
is a blend of both photogrammetric and computer vision approaches. It utilizes the automatic
feature isolation/matching, epipolar relationships and SBA of the computer vision community
and combines it with the linear 3D point estimation and collinearity relationships of
photogrammetry. As a result, the image bundle, SPC, and DPC that is produced can be related
to the WCS and directly injected into GIS applications for automatic analysis and comparison to

existing archival data.
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4.4 Sparse Bundle Adjustment (SBA)

Once the initial estimates for a camera’s EOPs/IOPs and the 3D structure of the image
correspondences have been produced, a Bundle Adjustment (BA) process is commonly used to
bind these results into a self-consistent solution. Since this can be geometrically visualized as a
bundle of rays which piercing the image plane on their path from the 3D object through the
camera lens, it has been commonly referred to as a “Bundle Adjustment”. The “Sparse Bundle
Adjustment” name comes from the sparse nature of the matrices involved in its solution and

not from the Sparse Point Clouds that can be generated through the BA process.

“As an indication of its efficiency, it is noted here that one of the test problems
to which SBA has been applied involved 54 cameras and 5207 3D points that
gave rise to 24609 image projections. The corresponding minimization problem
depended on 15999 variables ... without a sparse implementation of BA, a

problem of this size would simply be intractable.” -(Lourakis and Argyros 2009)

The task presented in the last section, regarding minimization of the unknown parameters, can
become very challenging. This is due to the fact that the 11 X m + 3 X n total parameters
must now be factored in a Jacobian matrix that has (11 Xxm+ 3 xn) X (11 Xxm+ 3 X n)
variables, which becomes impractical without implementing sparse matrix techniques for a
solution. The figures below (Figure 4-24, Figure 4-25, & Figure 4-26), should give the reader an
appreciation of the sparse structure of the solutions space, which is due to the general lack of
interdependence of the variables which are being solved. Please reference Chapter 13, for a
more detailed review of how the SBA is solved using the Levenberg-Marquardt Algorithm

(LMA).
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Figure 4-25 The structure and composition of the normal equations (“Hessian matrix).

For these problems the following equations hold ((Hartley and Zisserman 2004) and are

graphically represented in Figure 4-25.

_ axij T -1 axl-j (60)
-5 0

7 J

4-35



V. = axij T -1 axl’j (61)
T L\ ox; L, X,

(')xl-j r -1 axU
o= 62
vy =(a) 2 (5x) 2

axij>TZ_1 (63)

(
<axi,->TZ_1 (64)

0X;) “xy Y
AXi:Xi_Xi—l (66)

The sparse form of the Hessian becomes very apparent in Figure 4-26, for large numbers of 3D

points and camera parameters.

Figure 4-26 A sparse matrix obtained when solving a modestly sized bundle adjustment problem. This sparsity pattern is of a
992x992 normal equation (i.e. approx. Hessian) matrix, where black regions are nonzero blocks. (Lourakis and Argyros 2009)
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It should be noted that minimizing the linear estimate of our camera projection models ( P;) by
utilizing the matching 2D image point correspondences is exactly the same process involved in
the camera resectioning task of Section 3.2. This is convenient, because some of the
mathematical infrastructure necessary to accomplish our task for BA has already been
developed. Only the 3D estimate for the point cloud (Section 4.2.1.4) and inclusion of the

minimization parameters against those points are required to implement the BA process.

As mentioned earlier in this chapter, the SBA code of Lourakis and Argyros (Lourakis & Argyros
2010) was utilized to accomplish the minimization due to its speedy C++ implementation and
proven performance. This is a good alternative for implementation of potentially large datasets
that could be derived from numerous flights over the same target area. Additionally, a MATLAB
interface is available which was incorporated and modified to be used with the WASP sensor
EOP and IOP flight information. The main drawback is that like any engineering C++ code, it
represents a “black box” solution that can only be partially modified for research. Additionally,
the documentation about how the orientation angles were implemented was noticeably
lacking, although this appears to have been addressed in the most recent version now available.
In hindsight, a purely MATLAB implementation would have been a more flexible tool for

academic use.

In the next chapter, we will again add dimensionality to the data relationship challenge by
relating 3D rigid bodies. Many of the previous concepts will be utilized and expanded to

address the additional requirements of deriving a purely 3D solution for these problems.
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5 Relating Rigid 3D Bodies

To register 3D data, such as a Sparse Point Cloud (SPC) to a Dense Point Cloud (DPC) or Faceted
Model (FM) will require slightly different techniques compared to the previous chapters. Of
primary difference is the process by which we can extract common invariant features and relate
them via 3-D matching techniques. Additionally, the final transform, that will be utilized to
relate the datasets, is no longer constrained to a 2D projection of the 3D model. It is now a

fully 3D transformation that may be constrained to rigid-body solutions.

The potential payoff, for developing sound SPC to DPC/FM registration techniques, is that we
will be able to utilize the global coordinate system of our LIDAR or Model data, to orient our
locally related bundle of images, cameras, and SPC. This is potentially the area of highest
customer interest, since there is currently much growth in both the online FM generation
(Google Sketchup 2009) and local sparse structure development using tools like PhotoSynth
(Microsoft Corporation 2010) and no current way to easily relate the two environments. In
fact, the originators of the PhotoSynth process (Snavely, Seitz and Szeliski, Photo tourism:
Exploring photo collections in 3D 2006), utilized primarily manual processes to relate their

Sparse Structure Bundles (SSB) to terrain maps.

As with the 2D-to-2D and 2D-to-3D registration, the process for 3D-to-3D registration is to:

a. Extract similar invariant features
b. Match these features
C. Utilize these Correspondences to create a Mathematical Relationship
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If this can be done robustly and accurately, the 3D data can be related.

steps for 3D registration in pictorial form.

Figure 5-1 details the
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Figure 5-1 The basic process for relating 3D models and structure using a 3d Conformal transform. As in the previous
sections, the key here is to relate similar features within the two datasets in order develop a mathematical relationship. The
only added complexity is in the additional dimensionality and possible feature disparity of the datasets.

5.1 Sparse to Dense Point Clouds

This section addresses the unique challenge of relating the SPCs developed by an SBA algorithm

and the DPCs that are common to LIDAR data. This challenge is unique, because there is little

current research into the automated matching of SPCs features which is known to the author

beyond the Iterative Closest Point algorithm used with LIDAR DPCs. Additionally, the problem

may be ill-posed if there are no common elements from the datasets. In this case, estimation

may be limited to the statistical analysis of point distributions w.r.t regional densities and their

inter-relationships.
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The SPC will often be the result of an SBA process, similar to the one developed in Chapter 4
and will range from a few hundred points to tens of thousands, depending on the number of
images that were related. The DPC will be the result of a LIDAR data collection or the dense
correspondences resulting from a model reconstruction (Pollefeys, et al. 2004) and will
normally range from hundreds of thousands of points to millions. Examples of an SBA-SPC and

LIDAR-DPC of the Midland, MI power plant can be viewed below in Figure 5-2.

Figure 5-2 The Midland Site SPC (top) resulting from BA of tens of thousands of 3D points compared to the
millions of 3D points embedded within a LIDAR DPC (Bottom).

In either case, the distinction between SPCs and DPCs is rather vague and only used here to
distinguish between the amount of data available for registration. The key is in the

determination of common structure elements, if any exist, between the two datasets.
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5.1.2 Approach

When trying to relate SPCs to other data, the features of interest may have already been
identified; meaning that we may want to initially utilize every point in the sparse structure for
potential correspondence. Additionally, we hope that the DPC has a subset of points that are
common to the SPC that can be culled for matching. So, if 3D point correspondence matching is
feasible, feature extraction may be relegated to an analysis of which features in a DPC (such as
LIDAR data) will correlate to those extracted in the SPC creation process. The following are few

of the techniques implemented by the author.

5.1.2.1 Using Global Coordinates

If the both the SPC and DPC datasets are described in a real-world coordinate system, then a
straightforward implementation of the Iterative Closest Point (ICP) algorithm(Z. Zhang 1992)
can normally provide adequate correspondences for a mathematical description. This entails
minimizing the distance between every SPC point and the nearest n DPC points; where robust

values for n can be gauged based on the volumetric point density (Figure 5-3).

5.1.2.2 Using Relative Coordinates and User Assistance

For every 3D pt in an SPC, a corresponding region within a DPC can be identified with a sphere
encircling several DPC points. Thus when relating the two datasets, it is possible to isolate the
“best” correspondence within a DPC by minimizing the distance among the closest regional
points. This approach is straightforward to implement, since a user can easily identify regions
that an SPC point may relate to in a DPC and wouldn’t have to worry about precise

correspondence determination (Figure 5-3).
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Figure 5-3 Relating the SPC pts to DPC points via an iterative nearest neighbor approach.

A close approximation to this technique is one in which both the SPC and the DPC have been
facetized and the user selects similar locations on the models. This may, or may not, fall in
close proximity to an existing model vertex location. However, the author has found that this
technique is both easy to accomplish and provides good results for relating these very different

types of models. For this reason it was utilized in the case study below.

5.1.3 Case Study
The case study described below provides new research into an area that is sure to get much
attention in the future. This is in the challenging area of relating Sparse Point Cloud Models to

other imagery derived products and especially LIDAR derived Dense Point Cloud models.

SBA-SPC to LIDAR-DPC: The data set used here is the SBA-SPC that was developed in Chapter 4
and a LIDAR-DPC (Kucera International Inc. 2010) of the VanlLare Water Processing Plant,

Rochester, NY that was created using the author’s MATLAB facetization algorithm.
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In this case study, the analysis was performed against the local MegaScene Tile-4 Location and

the initial results of a 3D RMSDE calculation resulted in an average error of ~11 [m].

Table 1 - This table shows the initial error of the faceted SPC results when compared to their matching features in a faceted
LIDAR model of the same location, these matches can be visualized in Figure 5-4.

Control LIDAR Vat CPs Local [m]: SPC Vat CPs Local [m]: Error Calculations [m]
Points | x y z X y z x1-x2 | yl-y2 | z1-z2 | RMSDE
1 853.32 435.81 103.09 | 837.50 | 431.39 111.94 | 15.83 | 4.42 | -8.85 10.78

873.02 463.74 103.13 | 857.76 | 459.92 110.24 | 15.26 | 3.82 | -7.10 9.96
905.22 425.73 99.59 888.79 | 421.18 108.50 | 16.43 | 455 | -8.91 | 11.10
920.54 447.88 99.37 902.77 | 444.07 106.50 | 17.77 | 3.81 | -7.13 | 11.27
936.48 470.39 99.24 919.02 | 465.74 105.00 | 17.46 | 4.66 | -5.76 | 10.95
912.42 387.36 99.59 894.95 | 384.17 108.82 | 17.47 | 3.19 | -9.23 | 11.55
927.74 410.37 99.38 912.19 | 406.52 107.46 | 1555 | 3.84 | -8.08 | 10.36
943.03 432.00 99.45 925.60 | 428.10 10691 | 1743 | 3.89 | -745 | 11.17
958.38 454.78 99.31 943.00 | 450.13 105.64 | 15.38 | 4.66 | -6.32 9.97

O (00 |N | (U | W N

Ave RMSDE [m]: | 16.51 | 4.09 | -7.65 | 10.79

It is important to remember that this is the absolute error, before a simple 3D translation is
implemented (using the X, Y, & Z translation error in Table 1) to obtain the final positions of the
faceted SPC within the WCS. Once this has been accomplished the error analysis is computed

against these new locations as seen below in Table 2.

Table 2 - This table shows how a simple 3D Translation derived from the average error on the 3 axes can be utilized to
correct for any residual error in the SPC WCS location.

LIDAR Vat CPs [m]: SPC Vat CPs [m]: Translated Model CPs [m]:

Control Pt | X Y z X y z X' Y Z' RMSDE [m)]
1 853.32 | 435.81 | 103.09 | 837.50 | 431.39 | 111.94 | 854.00 | 435.48 | 104.30 0.82
2 873.02 | 463.74 | 103.13 | 857.76 | 459.92 | 110.24 | 874.27 | 464.01 | 102.59 0.80
3 905.22 | 425.73 | 99.59 | 888.79 | 421.18 | 108.50 | 905.30 | 425.28 | 100.85 0.77
4 920.54 | 447.88 | 99.37 | 902.77 | 444.07 | 106.50 | 919.27 | 448.16 | 98.85 0.81
5 936.48 | 470.39 | 99.24 | 919.02 | 465.74 | 105.00 | 935.53 | 469.83 97.35 1.26
6 912.42 | 387.36 | 99.59 | 894.95 | 384.17 | 108.82 | 911.46 | 388.26 | 101.17 1.19
7 927.74 | 410.37 | 99.38 | 912.19 | 406.52 | 107.46 | 928.70 | 410.62 99.81 0.62
8 943.03 | 432.00 | 99.45 | 925.60 | 428.10 | 106.91 | 942.11 | 432.20 99.26 0.56
9 958.38 | 454.78 | 99.31 | 943.00 | 450.13 | 105.64 | 959.51 | 454.22 | 97.99 1.06

Transformation: 3D Translation Total Ave RMSDE: 0.88
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Once similar points were associated visually, a 3D translation was implemented from the

resulting transform that moved the SPC model to its final position.

Figure 5-4 The image derived SPC mesh above is compared to a LIDAR derived DPC mesh below for comparison in
Meshlab. The absolute coordinates of the image derived results are only as accurate as the projected location of the base
image, so a final translation, acquired from the matched locations (right), may be necessary.

This new location corresponds nicely to the LIDAR dataset as seen in Figure 5-5 below. Here
the linear 3D Translation (T, = 16.51, T),, = 4.09, T, = —7.65) derived from the averaged
control point error from Table 1 was utilized in conjunction with a nonlinear refinement using

an integrated ICP algorithm within the Meshlab program (Pisa 2010).



Figure 5-5 The results of the linear 3D Translation and Meshlab (Pisa 2010) implemented ICP nonlinear refinement can be
visualized above. Note the general agreement between LIDAR and SPC surfaces as they fight for visibility across the scene.

5.2 Point Cloud to Faceted Model (FM)

The problem addressed in this section is the association of FMs to point clouds. Although the
conformal 3D transformation process used to relate the rigid body data will remain the same,
the challenge once again is to find adequate correspondences between the often dissimilar

datasets.



5.2.1 Approach

Although the correspondence problem is challenging, it is not insurmountable. In fact, the
approach implemented by the author here is quite similar to the approach utilized in the last
section. The first task is to facetize the Point Cloud, whether it is Sparse or Dense, and then to
select similar features correspondences. These features may occur on either related vertices or

within an individual facet plane.

5.2.2 Case Study

This case study illustrates the process utilized to take the hi-fidelity faceted model (Pictometry
2010) of the VanlLare Water Processing plant, created via manual imagery derived techniques,
and relate it to the WCS through a 3D conformal registration with a LIDAR model. All that is
required was to accomplish a robust facetization of the LIDAR Dense Point Cloud (Figure 5-6) by

using the author’s robust facetization code developed in MATLAB.

I O

Create a Facetized Model using a LIDAR DPC

Figure 5-6 This illustrations shows the initial LIDAR DPC with grayscale intensity attributed points on the left. This can be
utilized to produce a clean facetized model utilizing the author’s MATLAB code as shown in the graphic on the right.

Once this is accomplished, the user must select no less than three nonplanar correspondences

(as shown in Figure 5-7) to enable a3D Conformal Rigid body solution to be developed.
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Relating a Faceted Model to LIDAR Data

Figure 5-7 This graphic portrays a manual feature correspondence generation that can be used to relate a Faceted Model to
a LIDAR DPC that has been facetized. Once accomplished, the initial relationship is improved through nonlinear ICP analysis.

This transform is then applied to the hi-fidelity facetized model to properly position it within

the WCS. The following table shows how a simple selection of 4 points from both models can

provide a sub-meter accuracy registration of the local model to the LIDAR Data. It should be

noted here that the coordinates were converted to the local offset of MegaScene Tile-4.

Table 3 —This table shows the Control Points (CPs) from the LIDAR and hi-fidelity FM which were used to develop a 3D
transform to relate the model to the WCS. The New Model CP accuracy is gauged using the 3D RMSDE on right.

LIDAR CPs [m]:

Model CPs[m]:

New Model CPs [m]:

Control Pt Location X Y z X y z X' \4 z' RMSDE [m]
1) SW Vat 853.6 | 435.8 | 103.1 -189.4 1537.5 93.6 853.59 | 435.81 | 102.50 0.34
2) SE Vat 911.8 | 387.7 99.6 -129.7 1583.8 90.6 911.79 | 387.60 99.21 0.23
3) NE Barn Corner | 890.2 | 540.5 | 139.5 -155.8 1431.3 130.8 | 890.40 | 540.69 | 139.76 0.22
4) Smokestack 950.1 | 536.1 97.0 -96.2 1434.6 87.5 949.91 | 535.94 | 97.68 0.42
Total Ave RMSDE Transformation: Conformal 3D Rigid Body 0.30
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The transformed model location can then be placed onto terrain that was also developed from
the “bare-earth” LIDAR returns (Figure 5-8). In this way the LIDAR Surface Elevation Map (SEM)
allowed for a direct relationship with the Faceted Model and then was utilized to create the

terrain for that model.

The Transformed Faceted Model placed on LIDAR a Derived Terrain.

Figure 5-8 The graphic above shows how the Conformally transformed site model can then be placed on the same LIDAR
dataset that was now used to create a bare-earth terrain model.

Although the error analysis was performed from the selected point in Figure 5-7 using the
authors 3D Conformal transformation, the visualizations and implementation of the ICP

algorithm were performed within the Meshlab Software program (Pisa 2010).

5.3 Future Research

Future research into relating automatically relating Sparse Point Clouds to Faceted Models can
take advantage of the fact that the user knows the position of every 3D point w.r.t. its derived
imagery. This fact, combined with the ability to reorient a model to the same vantage point

allows the projected image of that model to be registered to that same imagery (as
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demonstrated in the next chapter). Figure 5-9 helps graphically display this critical concept to

relate SPCs to FMs.

The secondary task is then to minimize the distance from the SPC points to the nearest model
vertices, edges and/or planes. As a bi-product of this approach, the distance error from the
model to the SPC can be utilized to indicate regions of the model that are inaccurate or that
have changed since its creation. Due to the inherently diverse datasets, many solutions in this
area will rely on nonlinear iterative techniques that seek to minimize error metrics both locally

and globally.

It should be highlighted here, that feature matching via the use of facets utilizes geometric
modeling at the facet level. That is, a facet is a geometric object that is at a higher level in the
geometric hierarchy than points and lines. Something like a wall of a building is yet a higher
level entity that could be a portion of a plane resolved from facets. So the general problem is
to address techniques to enable the emergence of higher-level geometric entities from lower
ones by a search and model building process that is supported by point clouds and imagery
data. Of course, one question that will always remain is how a more complex model is

"recognized" in a scene, given lower-level data and models (H. Rhody 2010).
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Figure 5-9 The Bundle Adjusted VanLare Site SPC (top), was projected back into the base image (Middle) and can then be
compared directly with the FM where the base image is used as a UV texture on the terrain (Bottom).
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5.4 Faceted Model to Faceted Model

Here we wish to relate two similar, and in some cases the same, 3D models of a scene. This will
be necessary to relate models within various coordinate systems, both absolute and relative, as
well as ones that may have been indirectly altered due to the effect of the modeling
environment. For example, when a complex model with various components is brought into
Google Earth, each component may be required to “settle” individually on the terrain. This can
have the effect of changing the relative altitude of each component with respect to other

elements of the modeled scene.

5.4.3 Approach
As with a few of the previous approaches, both automated and user assisted techniques are
available to relate the models. However, the model datasets should be more similar, if not

more reliable.

5.4.3.1 Using Distance Similarity

If there is any internal consistency to the model dimensions and relative structure, the 3D
distance metric (similar to the 2D version in Section 2.2.1) can be utilized to automatically
relate model vertices within prescribed error bounds. This could be applied in a regional sense
to create similar feature matches in a localized area to mitigate the terrain “settling” effects
mentioned earlier. In this way it would be possible to detect this terrain effect by comparing
the relative mathematical relationship of individual building vertices compared to that of the

mathematical model relating the whole scene.
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5.4.3.2 Using User Assisted Vertex Matching

Although this approach is not completely automated, it could be made relatively painless by
developing techniques such as a “stick cursor” that would automatically highlight the nearest
vertex to the current cursor location. Only three “good” vertex correspondences are required
to uniquely solve for the seven 3D conformal transform parameters (Scale, Ty, Ty, T, w, &, K).
Of course, as with most of these techniques, additional correspondences can be used to

minimize the effects of noise and model imprecision.

5.4.4 Case Study

This study describes a situation where it was necessary to relate the FM of Vanlare (Pictometry
2010) within the world coordinate system of Google Earth and the same model within the local
coordinate system of the Advanced Analyst Exploitation Environment (AANEE). For this study,
user assisted selection of 12 matching vertices (Figure 5-10) were used to develop a Conformal

3D transform (0), to relate the two models.

In addition to the previously mentioned terrain “settling” of the building in Google Earth, there
is a limited ability to precisely pick global vertex coordinates. This was most notable in
elevation, where the precision was limited to ~1m. The measurement error in the Latitude and
Longitude is estimated at ~0.5m. Finally, due to the 30m terrain and unknown model
placement accuracy, any coordinate transformation within £15m error is probably within the
measurement accuracy and acceptable error bounds of this case study. As seen in Table 4,

good RMSDE results were obtained for most model correspondences, even considering the
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measurement limitations and GE influences. It should be noted that the author enforced a

unity scale factor when applying his Conformal 3D Transform since both models were the same.

Google
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Figure 5-10 The Control Points used to related the GE and AANEE models (top) and the resulting transformation of the
local points into Global UTM coordinates when compared to their matching Google Earth locations (bottom).
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Table 4 The following table provides more explicit evidence of the actual transformation performance of Figure 5-10.

Google Earth Coords [m] AANEE Local Coords [m] AANEE Global Coords [m]
Control Pt Location X Y z X y z X' Y' z' RMSDE [m]
Settling Tank Cross | 290861.0 | 4790341.6 | 97.0 | 294.7 | -62.9 23.3 290863.8 | 4790336.8 | 95.6 3.3
Smoke Stack Top 290719.7 | 4790434.4 | 142.0 | 146.1 | -19.2 -71.0 290718.9 | 4790434.5 | 146.0 2.3
Power Bldg 290571.7 | 4789639.8 | 92.0 23.7 | -65.2 | 727.6 | 290572.8 | 4789639.0 | 82.0 5.8
Eastman Park Bldg 290509.2 | 4790666.6 | 97.0 | -70.8 | -63.1 | -296.7 | 290508.2 | 4790667.8 | 109.2 7.1
Barn Peak 290767.6 | 4790414.7 | 104.5 | 194.5 | -55.1 | -51.4 | 290766.0 | 4790414.3 | 107.2 1.8
NE Bld NE Corner 290926.7 | 4790354.6 | 98.0 | 355.9 | -58.8 2.5 290925.5 | 4790355.8 | 99.2 1.2
Hangar Roof N Peak | 290885.1 | 4790195.0 | 103.8 | 319.6 | -58.5 | 162.9 | 290884.7 | 4790196.2 | 96.6 4.2
Ctr S Rotation Tank | 290754.9 | 4790119.7 | 97.0 | 191.6 | -58.8 | 241.7 | 290754.6 | 4790120.8 | 96.7 0.7
SE Bldg SE Corner 290651.0 | 4790047.1 | 103.0 | 90.1 | -55.6 | 316.3 | 290651.2 | 4790048.9 | 100.1 2.0
Bldg 9 NW Corner 290595.1 | 4790110.5 | 108.5 | 32.1 | -51.9 | 255.6 | 290595.1 | 4790111.3 | 106.4 1.3
Bldg 8 SW Corner 290505.4 | 47901324 | 106.3 | -57.2 | -51.6 | 236.6 | 290506.5 | 4790132.8 | 108.8 1.6
Small Center Pump 290591.7 | 4790249.7 | 103.8 24.8 -56.4 119.3 290591.6 | 4790248.1 | 105.0 1.2
Total Ave RMSDE Transformation: Conformal 3D Rigid Body 2.7

The following 3D Homography was created using the author’s Conformal 3D algorithm using
the matching points. It was then used to transform the AANEE model from its local coordinate

system into a Global UTM coordinate system:

H= 0.9982 -0.0288 0.0180  290571.3807
-0.0283 -1.0017 -0.0243 4790366.9761
-0.0179 -0.0228 1.0432 166.9905
0.0000 0.0000 0.0000 1.0000

5.5 Constraining the Transform - 3D Conformal and Affine
As mentioned in Section 2.4, constraining the transform results can be a powerful tool for
ensuring that minimal corruption occurs to the data during the relational process. This is

important to ensure models retain their internally consistent dimensions and so that the
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process intensive results of our SBA process keep their rigid body relationships. This data
integrity issue is very similar to retaining radiometric accuracy during the resampling of images

during the transformation process.

5.5.1 Conformal 3D Transform
Although 3D ‘rigid body’ transformations traditionally only include translation and rotation

elements (S = 1), it will be referenced here in conjunction with the uniform scaling parameter

(Sx+Sy+Sz)

common to the Conformal Transform; where § = §, = S, = S, or § = . . This
will still preserve the internal geometry of the relative angles and distance ratios.
Conformal X=RSx+T (67)
Transform
Conformal X Ri1 Rz Ri3|[S 0 O01rx T, (68)
Sub-Matrices Y|=|R;1 Ry, Ry [0 S 0 [y] + Ty
Transform 7 R3; R3, Rs3|lo 0 sliz T,
3D Non- SRy1  SRiz  SRyz]px Ty
Homogeneous H3yy = [SRx T]=|SR21 SRy, SRy [)’l + |7y (69)
Transform SR31 SRz, SR33llz T,
3D Rotation ck —sk 0l1[ce O splf1 o0 0
Matrix R = RcR,R, = [SK ck O 0 1 0[0 cw —-sw (70)
0 0 Ul=-sg 0 cpll0 sw cw
Scpck  S(swspck — cwsk) S(cwspck + swsk) Ty (71)
3D Composite Hoo, = Scpsk  S(sws@sk + cwck) S(cwspsk —swek) T,
Homogeneous e —Ss@ Sswce Scwce T,
Transform l 0 0 0 1.
3D Conformal Xl Xz Xi H11 le H13 H14, X1 X X (72)
Parameters & Y, Y, -Y; _ Hy1 Hyy Hy Hoully, v, Y
Control Points Zy 7 Z; Hy; Hyy Hss Hsul||Z1 22 Z;
1 1 1 o o o 11 1 -1
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The three translation parameters can be easily extracted from the 4th column of H, and the 3
rotation and scale parameters can be obtained by utilizing the following equations ((73)-(76)).
In (73), we utilize the property that the sum of the squares of the rows or columns of the

rotation matrix must equal unity (DeWitt and Wolf 2000).

Extract Scale -1 (73)
S = \/(Rﬁ +R%; + R%a)
Extract R, .1 <R13> (74)
@ =sin" |—
S
_ R
Extract R, w = sin"? ( 23 > (75)
Scosp
Extract R, _ R
Kk = sin 1< 12 ) (76)
Scosp

Here, R is the 3x3 rotation matrix containing elements of the rotation about each of the axis
(R, = o, Ry, =w,and R, = k), which are often referred to as “roll”, “pitch”, and “yaw” when in
reference to airborne platform motion. Additionally, care must be taken to avoid division by

zero throughout many of these solutions, however since it is possible to test for this scenario it

can often be avoided.

Equations (67) through (72) should clearly demonstrate the construction of the Conformal 3D
Transform and how it can be applied to image correspondences to relate volumetric datasets.
But, how can we derive the coefficients in such a way that constrains the results. The following
technique was adapted from a 3D Pose Estimation algorithm (Haralick, et al. 1989) and
modified to extract the scaling parameters for use in the 3D Conformal and Affine

Transformations. The basic process is outlined below:
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1. Determine location of both model centers

2. Translate model centers to origin (Demean Models)

3. Utilize point correspondences and Least Squares to derive the transform (Hsys)

4. Extract component Rotation and Scale Matrices using SVD and/or QR Decomposition
5. Rotate and Scale the original center coordinate of the working model

6. Translation is the base model center subtracted from the transformed model center

Once the models have been demeaned, the Translation parameters can be temporarily ignored

and (67) can be simplified to the following:

Demeaned
Models X = RSx (77)
Transform
X1 |Ru1 Riz R[S 0 O
Scale'& Y[=|R;1 Ry, Rys||0 S O }I]
ROtCItiIOI’I 7 R3; R3; Rss|lo o sllz (78)
Matrices
Scale and SRi1 SRiz SRy3| [Hi1 Hiz Hiys
Rotation H3y3 = [SR] = [SRy1 SRy, SRy3|=|Hp1 Hjp; Hjys (79)
Transform SR31 SR3; SRs3| |H31 Hzp Hss
Parameters & X X, X Hy{; Hy ng' X1 Xy X
Control Points Y, Y, --Y|=|Hyy Hy,, Hy [yl Y, ~--yi] (80)
Zy Zy -Z; H3; Hzp Hssflzn 22 %
Pseudo-Inv H=Xx
Solution X (81)
Singular Value [V,D,U] = SVD(H) (82)

Decomposition

Where D is a diagonal matrix containing the singular values and V and U are unitary matrices
suchthatH = V = D % U. Using the resulting decomposition of (82), allows us to retrieve the

Rotation from the following relationship.
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1 0 0
R=V|0 1 0 u’
0 0 det(VUh

(83)
This gives a unique solution for the rotation matrix R provided the rank of H > 1 and

det(VUT) = 1 or rank of H > 1 and the minimum singular value is a simple root. This can be

easily tested for to ensure the integrity of the rotation matrix.

Since the initial pose estimation technique did not require utilizing the singular values
embedded within the D matrix for anything other than R solution validation, it wasn’t utilized
further. However, the author noticed the embedded scaling parameters when utilizing
synthetic data and recalled decomposing the camera projection matrix into the IOPs and EOPs
using QR Decomposition. Recall that the main diagonal of the IOP matrix (K), is related to the
pixel pitch and focal length which provides scaling/magnification. In this way it is possible to
utilize QR Decomposition directly to extract the Scale and Rotation parameters if care is taken
concerning the sign of the retrieved values (negative scale parameters must be injected back

into the rotation elements).

Although it is possible to utilize SVD to extract the Scale parameters, since they are related to
the singular values through the geometric interpretation of the SVD. These axes are orthogonal
eigenvalues and ranked from largest to smallest as in principle component analysis, which is
probably not the diagonal scale component (Sy, Sy, S;) ordering required for direct scale use.
However, the proper scale components (S, Sy, S;) can be determined using the following

equations (84)-(86) or by using QR Decomposition as noted above.
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Scale X-axis -1 (84)
Sy = \/(Rﬁ +R3; + R%l)

Scale Y-axis —1 (85)
S, = \/(R%z + R}, + R%;)

le Z-axi 2 2 2 \1 (86)
Scale Z-axis S, = (R13 + R53 + R33)

For use with the 3D Conformal Transformation the x, y and z scaling parameters can be
averaged for uniform scaling application as an initial linear estimate. In Case Study 5.4.4, since
both models were from the same source they had the same scale (S = 1) and so the identity

matrix could be utilized directly in place of the derived scale parameters.

Finally, the Translation is derived by subtracting the base model center from the transformed
model center using (87),

Ty
T

T,

Translation T =

where X is the base model centroid and X is the transformed model centroid.

By using this process, it is possible to overcome much of the difficulties normally associated
with developing a good linear estimate of the 3D relationship, even with the nonlinear
interaction of the parameters associated with these types of problems in photogrammetry,

geodesy, and remote sensing.

5.5.2 Affine 3D Transform

As with the 2D Affine Transformation, the 3D Affine Transformation includes translation (T),

rotation (R), scale (S), and shear (W).
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3D Affine X=RSWX+T (88)

Transform

However, each of these now contain more parameters due to the additional dimensionality of
volumetric space. Here the uniform scale will be replaced with three independent scale

components (Sx, Sy, and S;), which take the following matrix form.

NonUniform Se 0 O
Scale 0 S 0
Matrix 0 Oy S, (89)

Although the full 3D Affine does not preserve internal angles due to the possible effects of

shear (Egs. (90) to (96)); it does preserve the parallelism of lines and planes.

X Shear X =x+Shyyy + Shy,z (90)
1 0 0 O
Sh, Matrix W, = Shyy 100
Shy,, 0 1 0 (91)
0 0 0 1
Y Shear Y =Sh,,y+y+Sh,,z (92)
[1 Shy, 0 O]
0 0
(93)
Sh, Matrix ~lo Sh 1 ol
l 0 0 1J

Z =Sh,y+Sh,,z+z

Z Shear (94)
1 0 Sh, O
w |0 1 Shy 0
Sh, Matrix oo 1 o0 (95)
0 0 0 1
3D Shear X =Wx
Transform (96)
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3DSh;7ear X, X, X; I[ 1 Shy, Shy O]I X| Xy X
wit
Y. Y, Y| _|Shy 1 Shy, Oflyy ¥, Y;
Control = vee 7. (97)
Points Zy Zy ?i |Sh,, Sh,, 1 0||Z1 2 il

1 1 lo o o 1 1
The same approach utilized for the Conformal 3D Transform will be utilized for the Affine since

it supports the three independent scale parameters and since the shear component will often

be assumed as negligible for our applications.

5.5.3 Homogeneous 15 Parameter Linear Estimate

Of course the simplest way to get a 3D estimate is to utilize the unconstrained 15 parameter
homogenous approach and then utilize the nonlinear minimization and weighting technique of
the next section (5.5.4) to narrow in on the correct solution. The equations below are the 3D

incarnation of the 2D approach covered in Section 2.3.

X1 X X Hy1 Hip Hiz Hygl[xqy xp X
Yo Yy Y| _[Ha1 Hze Hzz Haully, ¥, Y,
Zy Z1 - Z H31 H3p Hsz Hzal||Z1 z2 -z (98)
1 1 1 H41 H42 H43 1 1 1 i 1
_ T
H=Xx (99)

It is important to note that this linear approach solves for 15 DOF and requires 5 non-collinear
3D point correspondences. This is obviously many more than just the 7 parameters required
for a conformal 3D relationship and so may induce undesired, higher order effects like
projection and skew. However, the linear solution must only obtain an estimate within the
capture region of the global minimum through the use of a nonlinear solver such as LMA and

provide a reasonable starting point to minimize against the desired parameters.
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5.5.4 Nonlinear Minimization and Weighting

Since the 3D Conformal transform is nonlinear in its solution for the scale and rotation
parameters, it is necessary to implement a nonlinear optimization method such as LMA to
accurately solve. Once the initial estimate for the rotation angles, translation, and scale have
been accomplished, those same parameters can be prepared to provide a nonlinear
minimization. This process is very similar to Section 13.1, except that the cost function
minimization is compared against the total squared 3D distance error, as opposed to the

projected 2D distance error.

n

A 2
Zlnxl Xi(R,S,6, X (100)
1=

Similar to the technique utilized in 5.5.1, the H,,, matrix can be decomposed into the
Translation (T), Scale (S) and Rotation (R) matrices to obtain the parameter estimates from the

coefficients.

So, how do we optimize for a solution that is only dependant on the desired 7 Conformal
Transform parameters? A useful technique to accomplish this is to start with the results of the
4x4 Homography; it is then possible to induce a weighting function w on the undesired terms

and increase it at every iteration of the cost function computation.

n
ani — xRS, Xa)I2 + w(Sx — S, — S,)% + wShy® + wShy? + wSh,?

=1

(101)
This has the effect of slowly pulling the solution toward the desired constraints, where
Scale = S, =S, =S, and Shear = Sh, = Sh,, = Sh, = 0 . Once they are within a certain
threshold of these constraints, they can be clamped to their desired values for a final
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estimation (Hartley and Zisserman 2004). The LMA implementation is otherwise very similar to
that utilized in Chapter 13. Although this approach was not implemented by the author, it has
been retained in this document for completeness and due to its general application in reducing

the solution space of results, which is often a key aspect of registration accuracy.

In the next chapter, most of the techniques developed in the preceding chapters will be utilized
to enable the challenging area of multimodal registration. Here physical modeling of scene
materials will be implemented to augment the 3D site model. This will allow for simulations in
various modalities of interest while maintaining the proper scene appearance, which is critical

for automated registration.
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6 Multimodal 3D Registration

In the previous sections, essential techniques have been developed to relate images within a 3D
construct, allowing for robust mathematical relationships between the datasets of interest
even in the presence of parallax and occlusion. In this section, we will utilize a 3D “model-
centric” environment to compensate for the viewing parameters of the sensors at the time of
image acquisition. This will allow us to model and mitigate the effects of terrain/building relief,
shadowing effects and occlusion. At the same time, we will utilize the ability of a physics based
simulator, the Digital Imaging and Remote Sensing Image Generator (DIRSIG) program, to
estimate the appearance of various modalities under different lighting/atmospheric conditions

and sensor parameters (Section 6.3), to produce representative simulated imagery (Figure 6-1).

VNIR (RGB) SAR Polarimetric (SO)
= - Q’t N, N

Figure 6-1 Multimodal image synthesis using DIRSIG’s physics based modeling [courtesy Dr. Mike Gartley
(Gartley, et al. 2010)].

If modeled properly, this has the potential to relate even the most diverse datasets, such as

polarimetric, thermal and Synthetic Aperture RADAR (SAR) imagery. By using an inherently 3D



approach to address the viewing geometry effects, coupled with DIRSIG to address the physical

appearance of the scene, robust Multimodal 3D Registration is possible.

The images shown below in Figure 6-2, displayed within Google Earth, visibly show the inverted
contrast of both water (circled) and vegetation when imaging the same site in the visible and
infrared regions of the spectrum. This can frustrate correlation and feature based registration
techniques. However, the edge detail can often still be utilized for common feature generation.
Also, techniques like Maximum Mutual Information have been demonstrated to successfully

relate multimodal imagery (Fan, Rhody and Saber 2008) once the 3D influences are removed.

MWIR LWIR

Figure 6-2 Multimodal imagery registered to GE textured terrain using user assisted GCP selection and overlaid upon the
initial sensor derived (IMU/GPS) global coordinate predictions. The inverted contrast of water in VNIR and Infrared is circled.

6-2



6.1 The ‘Model Centric’ Approach

By orienting a site model to the pose of the sensor it is possible to mitigate the 3D projective
effects of the scene view compared to the image (Walli and Rhody, Automated Image
Registration to 3-D Scene Models 2008). Once this is accomplished, a physics based simulation
of the scene is rendered in order to estimate its modality specific appearance. This ‘model
centric’ approach has the potential to mitigate even the most challenging issues of parallax,
occlusions, shadowing, and diverse multimodal appearance (Van Nevel 2001), which currently
plague automated registration of diverse views imaged from across the electro-magnetic

spectrum (Figure 1-2).

However, once the image and model projection are accurately registered, the process is not
complete until the real image is then mapped back to the site model in order to regain the
depth information that was lost when the image was acquired. The entire modeling,
simulation, mathematical relationship and archival (MSRA) process can be visualized in Figure
6-3. A key thrust here, is an understanding that 3D multimodal registration involves image to
model registration and archival. Once the model and image have been properly related, it is

possible to archive the image as a texture onto the mode as a database of “layers”.



MSRA Approach

Bldg & Terrain
Hi-Res Image Model
A) Model
+
3D Site Model 3D DIRSIG Model
(w/Image Texture) (w/Material Map)
B) Simulate
2D DIRSIG Image Real Imagery
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Figure 6-3 This figure illustrates the MSRA Approach to 3D Multimodal Registration, where A) is the modeling phase, B) is
the physics based simulation phase, C) is the 2D image registration phase, and D) is the Image archival phase onto a model.
6.2 Model - Geometrically

Here, the geometric modeling step will be broken down into 3 separate flavors: Existing/User
Defined, LIDAR Derived, and Multiview Image Derived. These modeling paths have been
further defined into levels of fidelity which relate to increasing degrees of realism/complexity

within the models (Figure 6-4).
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Figure 6-4 This flowchart illustrates three different paths for generating geometric models for DIRSIG simulation. From left-
to-right they are Existing/User Created, LIDAR Derived, and Multiview Image Derived models with varying degrees of fidelity.

6.2.1 Existing/User Created Model
Some of the more realistic geometric models that already exist for a site will be textured with
imagery or photographs, such as the model shown below (Figure 6-5), courtesy Pictometry

International (Pictometry 2010).

6-5



-
2N

b Bl
o :>

Figure 6-5 This Hi-Fidelity model of the VanLare Waste Water Processing plant is representative of an existing geometric
model placed in Google Earth that utilizes UV mapped image textures for added realism (courtesy Pictometry Int.)
Additionally, Figure 6-6 shows the basic modeling approach for utilizing an existing 3D model as
the underlying geometry for a DIRSIG simulation. Here, specific facets of the model are
attributed with real material spectra using field data collected by an Advanced Spectral Devise
(ASD), but, alternatively one could use Hyper Spectral (HS) data collected from an airborne
sensor. This spectral information is used to physically estimate how a simulated target material

should look when viewed from sensors imaging in various spectral ranges and modalities.
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Figure 6-6 This illustration depicts the process of adding spectral reflectance curves to a realistic scene model in DIRSIG
using Hyperspectral or Advanced Spectrometer Data (ASD) to properly simulate material appearance in various spectra.

Alternatively to the traditional technique of mapping specific facets with material spectra
within DIRSIG, it is possible to utilize a texture mapped in the uv plane (UV Texture Map) to
the unwrapped model (Figure 6-7). This process flattens (unwraps) the model into a 2D
representation that allows direct association of the model vertex locations with that of an
image mapped to a normalized uv plane. It should be noted that this image is often a

composite of several images pieces that relate directly to model facets such as walls and roofs.

Not only does this type of texture add realism to the geometric model, it allows for oblique
imagery of a scene to be related to the DIRSIG model, resulting in the sides of buildings
displaying representative features. To use the UV Texture approach within DIRSIG, it is
necessary to associate the uv-mapped texture image with a grayscale lookup table (LUT) to

relate the image textures to specific material spectra. This was accomplished by first
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generating a K-Means segmentation of the texture image within the ENVI Software program,
under the ‘Unsupervised Classification’ algorithms (ITT Visual Information Solutions 2008).
Depending on the results of the automated K-Means clustering technique, some user-assisted

segmentation may be required to clearly define visible material boundaries (Figure 6-8).

Figure 6-7 lllustrates the UV Texturing process: A) The wireframe model, B) The faceted model, C) The UV textured Model,
D) The flattened (unwrapped) model with overlaying image texture, and E) The textured wireframe model.

The resulting material class-map image can then be associated with the texture-map image
within DIRSIG to add both material identification and spatial texture characteristics to regions
within a given model or model facet. For additional details on incorporating UV textured

models into DIRSIG, reference Appendix E in Section 15.2 and Appendix F.

Unless additional information is available to augment the model creation (as in the following

sections), the terrain will most likely be relegated to DTED Elevation Map (DEM) quality; this
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equates to ~30m posting for most areas on the globe. While this fidelity of terrain is good
enough to perceive major topological influences, such as mountains, valleys, and bodies of

water; it is normally not detailed enough to detect building placements, roads, and minor

A. Texture Map

B. Class Map
(K-Means)

C. Material Map

Material LUT
DC Mat ID Description

0 0 Black

136 7129 Glass

187 1012 Tan Mtl @&
224 1021 Green Mtl

255 1004 White Mtl

Figure 6-8 This graphic illustrates the process used to turn a UV Texture map (A), into a material class map LUT (C) by first
segmenting the image with a K-Means classifier (B).

terrain features. Additionally, modeling the 3D influences of trees will probably be constrained
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to the synthetic generation of generic tree models placed using the help of overhead imagery.
While this may be acceptable for many simulation activities, it will generally not be good
enough for image registration, since it is necessary to have accurate bio-mass placement to
accurately remove the 3D effects of viewing geometry on the scene. The utility of have some

3D information available, will be examined in the following two subsections (6.2.2 & 6.2.3).

6.2.2 Hybrid Models - Developing LIDAR Augmented models in DIRSIG
In this section, we will utilize various types of remotely sensed data to create a hi-fidelity
geometric and physical model of a site for use within DIRSIG. The building models are imagery-
derived, but, hand-made (Pictometry 2010); while the terrain and trees were derived from
LIDAR data, and the terrain texture is from CITIPIX imagery (Kodak Global Imaging 2008). The
general process utilized to create a hi-fidelity hybrid simulation in DIRSIG is flowcharted in

Figure 6-9.
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Figure 6-9 This flowchart depicts the process utilized for DIRSIG model creation using hybrid models and imagery.

The first step in developing a 3D model of a real site of interest should entail the use of LIDAR
data, if it is available. The 3D positional information (Latitude, Longitude, & Altitude) that is
available in the LIDAR range information is critical in developing accurate terrain, building
placement, and elevation characteristics of the scene. In fact, even if a site has been accurately
modeled by hand, using real imagery as a template (Section 5.2), the LIDAR data can be used as
an anchor to ensure the model has accurate dimensions and geographic placement.

If the 3D model can be registered to the LIDAR data (using techniques such as in Section 5.2), its
accuracy can be assessed through visual inspection or 3D change detection techniques. In this
way, it is possible to utilize the inherent 3D nature of the LIDAR data synergistically with the
detail rich edge information of the image derived building models. Figure 6-10 shows how this
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process can be utilized to create an accurate hybrid site model that has hi-fidelity LIDAR derived

terrain (~1 [m] postings), registered to the multiview image models from the previous section.

At this point, the hybrid model will contain the modeled buildings and terrain, but, none of the
surrounding foliage. For accurate scene simulations, this may be important to simulate site
obscuration and 3D canopy influences for accurate registration. Although significant research is
being done in the area of tree identification using LIDAR data (Kim, Hinckley and Briggs 2009),
which could be used to grow representative tree types at the correct locations, this often
requires two LIDAR collections utilizing the leaf-on and leaf-off structural characterization.
Additionally, the tree models would need to prescribe to the bio-mass restrictions defined by

the LIDAR collection and although feasible, falls beyond the current scope of this research.
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Model Corrected to LIDAR Terrain  Model Registered to LIDAR Scene

Figure 6-10 This figure illustrates the process utilized to register a site model (A), to a faceted LIDAR dataset (B), to assess
model fidelity and to ensure proper building placement and dimensions (C). Finally the model is placed on the bare earth
LIDAR terrain (D) to create a hybrid scene using both the LIDAR terrain and Image derived building models.

To approximate the biomass influences of a scene’s foliage, a more straightforward approach
was developed and implemented by the author. This approach utilizes the LIDAR information
directly by placing a model facet at the location of each return that is 3m above the terrain,
after removing the building returns. While many possible geometries could be utilized to
represent the foliage 3D character (i.e. boxes, pyramids, or draped wings - Figure 6-11), each
shape has potential benefits and detractors depending on the imaging scenario that is being
simulated. Of primary concern is whether a downward-looking NADIR view or a more side-
looking Oblique view is desired. For near-NADIR imaging situations, the flat square panel would

represent the simplest basic shape, while still approximating the basic view acquired by most

6-13



sensors. Additionally, it still allows for the 3D influence of parallax to be modeled properly
(Figure 6-11a), while allowing for foliage ‘poke through’ imaging of the scene. This would of
course break down as the angular view to the scene approaches more oblique angles and
would necessitate the examination/use of one of the other geometries. It should be noted that
code was generated to automatically convert LIDAR returns into the basic shapes defined in
Figure 6-11a (courtesy Niek Sanders) and Figure 6-11b due to their low facet count (each has 2

facets with 3 vertices/facet due to the triangulation requirements of most model entities).

A) B) C) D)

Figure 6-11 Example geometric shapes that could be used to represent tree foliage when paired with LIDAR point returns.

For the reasons stated above, the basic square model facet was chosen and placed at the
location of each return, with the normal of these facets pointing straight up. This basic shape
allows for a ‘terrain-like” draped texture over every facet within DIRSIG; which, for near-NADIR

imaging simulations is adequate for registration.
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p T B

Figure 6-12 The process by which a LIDAR Return Point Cloud (A), can be transformed into model facets textured with real
imagery of the forested terrain (B). The results of this process can be viewed above in MATLAB (C) or Meshlab (D).

An example of how LIDAR point returns can been converted into tree facets using this process is

shown in Figure 6-12; while the results, when viewed with the building and terrain data in

Blender (Blender Foundation 2010), are shown below in Figure 6-13.
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{1)Vanlare_ground_tiled_

Figure 6-13 The final model of the VanLare site, as viewed in Blender, using manually derived multiview imagery building
models (courtesy Pictometry Int.) and LIDAR derived terrain and tree models.

6.2.3 LIDAR Direct - Developing LIDAR models in DIRSIG
In the previous section, a faceted LIDAR point cloud (Figure 6-10b) was utilized to relate an
existing image derived model to the collected data. In many cases, a model will not exist and

an analyst will be forced to utilize only the data on hand for model creation.
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Figure 6-14 This flowchart depicts the process utilized for DIRSIG model creation using LIDAR data and imagery.

With a decent quality LIDAR dataset (¥1m posting), a good representation of the site is still
possible if the point cloud can be robustly facetized into a model utilizing techniques such as
Delaunay Triangulation (Delaunay 1934). The author created MATLAB routine (Appendix G,
Chapter 17) can read in a LIDAR point clouds directly and convert them into exportable ALIAS
Wavefront ‘OBJ’ files (Bourke 2010), for use by most commercial 3D software packages. This

code can be utilized to bring a coarsely modeled site directly into DIRSIG and has been thus

dubbed ‘LIDAR Direct’ by the author.

6-17

3D Site Model — LIDAR Derived
Geolocation - LIDAR Derived
Terrain - LIDAR Derived
Tree Creation- LIDAR Derived
Texture Maps
a. Terrain, Trees, and Buildings
b. Image Derived (Draped/Projected)
c. LIDAR Derived SWIR
Material Maps
a. Texturelmage Constrained
i User Assigned Surrogate
ii. ImageDerived Surrogate
iii. Hyperspectral/ASD Derived
b. User Defined
DIRSIG Preparation/Linkages (.sim)
a. Convert Model (.obj/.gdb)
b. Model Linkages (.scene)
c. Assign Materials (.ems)
d. Build Sensor Model (.platform)
e. Define Atmosphere (MODTRAN)
Simulated DIRSIG Images



A) LIDAR Point Cloud B) LIDAR Faceted Model C) LIDAR Model w/SWIR

Figure 6-15 This graphics shows the 3 stages in transforming LIDAR data from a Point Cloud (A), to a faceted model (B), and
finally texturing that model with the intensity return of the LIDAR itself (C).

6.2.3.1 Draping Textures and Material Maps over the LIDAR Terrain

Once the facetized model is generated, an associated texture and material map is still required
for realism and material identification in DIRSIG. Since the same region of Rochester’s
MegaScene (Tile-4) was utilized for analysis, LIDAR data (from a collection over VanlLare) was
extracted for only that region. Thus, it was possible to directly associate the CITIPIX (Kodak
Global Imaging 2008) imagery utilized as a texture and material map for that DIRSIG reference

tile.

Now however, it is necessary to attribute the regions of the site that included buildings with the

relevant, albeit potentially surrogate, material spectra. This process was relatively
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straightforward due to the similar construction of many of the site buildings. At VanlLare, the
office buildings have crushed gravel roofs, the storage vats are covered with vinyl caps, and the
pump buildings have white metal roofing. Thus it was a straightforward activity to generate
regular shapes within a graphic arts package and “paint” them with an associated value for
correlations within a LUT to the surrogate material of choice within DIRSIG. This process is

highlighted below in Figure 6-16.

Figure 6-16 The LIDAR Direct process involves utilizing Imagery (A), to create a material map in order to physically describe
the site. Here, automated segmentation of the terrain (B) is used in concert with user assisted ID of site materials (C).

A relevant point is that the material identification process is only necessary for activities that
require DIRSIG simulations. By knowing the dominant materials in a scene it is possible to
physically simulate representative atmospheric and illumination effects as well as various
sensor collection modalities of interest. In Section 6.3.4, we will examine the DIRSIG

simulations results using the LIDAR Direct approach to modeling a site of interest.
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6.2.3.2 Automatic Scene Object Identification Using LIDAR - Future Research

Although not extensively tested by this author, it should be possible to automatically identify
some of the scene’s basic elements by utilizing the 3D spatial information of the LIDAR in
concert with the SWIR return information. Segmentation of the scene into foliage (Kim,
Hinckley and Briggs 2009), buildings (Gurram, et al. 2007), water, asphalt, and grass would
allow a LIDAR developed site model to be directly ingested into DIRSIG with surrogate materials

assigned to those structures.
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Figure 6-17 By using the spatial, brightness, and facetized characteristics of the LIDAR returns, aggregate material
identification for DIRSIG should be possible.
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A general approach to accomplish this activity is provided above in Figure 6-17. Once the
aggregate classification of site materials is accomplished it can be assigned to the designated
DIRSIG emissivity file, or a specific curve in that file, after an analysis of the histograms for each
material characteristic. For instance, a facet designated as grass could be linked to a specific
curve in the grass emissivity file (~400 curves available). This could be done by analyzing and
relating the normalized brightness of all assigned grass facets w.r.t. the normalized distribution
of emissivity curves. One could then assign the closest emissivity curve to the closest bin of

brightness values.

6.2.3.3 Material ID using Hyperspectral Sensing

Finally, if Hyper-Spectral (HS) data from the site is available, it is possible to associate the
resulting spectra directly to LIDAR facets or scene objects for material identification and
physical modeling. This process would be very similar to the last section, where an individual
HS data pixel curve could be associated to a specific LIDAR facet. Additionally, average spectra
taken a region of interest (ROI), such as a rooftop, could be utilized as the material for a facet or
grouping of facets. Of course, initial registration of the spectral data to the LIDAR data or
geometric model would be necessary. By incorporating material identification from the HS data
in concert with object identification from the LIDAR data (Figure 6-17) it would be possible to

automatically perform some of these associations.

6.2.4 Imagery Direct - Developing Multiview Imagery models in DIRSIG
In Section 4.3.2, we examined techniques to recover 3D information solely from multiview
imagery of a site. These techniques are essential for our ‘model centric’ approach to relating

data, when an analyst only has access to 2D imagery. Since LIDAR data collections are still fairly
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uncommon, due in no small part to the cost of current collection systems, the multiview
imagery approach to geometric modeling may be the only avenue for deriving 3D

characteristics of a site.

Although the techniques for depth recovery developed here can provide a relatively sparse
reconstruction of a site compared to the dense reconstruction of LIDAR data, there is great
promise in the ability of multiview imagery to provide high quality models using advanced
reconstruction techniques (Pollefeys, et al. 2004). In order to accomplish this feat, a pixel-to-
pixel mapping of the image overlap areas are required (Section 4.3.3.1). Although this is
challenging to accomplish, due to the effects of occlusion and noise, a ‘model-centric’ archival
of the bundled images may be necessary. In this scenario, an iterative model generation
process could be utilized to self-rectify the images in order to help mitigate the effects of

parallax and to help relate the images properly within a 3D construct.

An example of the relative quality of 3D site models that can be delivered via LIDAR DPCs,

Multiview SPCs, and traditional Digital Elevation Maps (DEMs) is provided in Figure 6-18.

Comparison of Modeled Terrain Quality

\\: - ‘_‘i_ £ S i T
%% <o F\....
”': z b . e 1\'\\.) a'\?"? \’ - “‘\
h B s E——y 2 - ~ AR 3
B, SRR G oF I S e
£ bt s N ¢
. A 48 »=y ||
LIDAR Derived Terrain Image Derived Terrain RADAR Derived DEM

Figure 6-18 The relative quality of terrain information as derived from LIDAR, Multiview Imagery, and RADAR respectively.
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Even the casual observer can see that Multiview Imagery can be utilized to provide terrain
surface models that are much better than commonly available DEMs (~30m postings) and not
much worse than LIDAR derived terrain, even with the ‘first generation’ sparse point clouds
generated automatically using the techniques of Chapter 4. Additionally, even though the
building structures may appear crude when compared to the Hybrid or LIDAR models of the
previous sections, they are geospatially accurate enough to help place handmade models
correctly. Finally, there is also great potential in the ability to use these Surface Elevation Maps
(SEMs) to orthorectify imagery to a much higher accuracy than is now possible with DEMs.
Although not covered here, the registration benefit of post rectified SEM imagery, in-order to
mitigate 3D scene-to-sensor effects and estimate shadows, is an area the author recommends

for high value future research.

Multiview SEM Orthorectification of Imagery

/ WASP VNIR Image

— -
>

o = SEM Orthorectified Image

—
\ Multiview SEM J

Figure 6-19 The ability to use Multiview Imagery derived Surface Elevation Maps to orthorectify an image is shown above.

6-23



6.3 Simulate - Physically (DIRSIG)

As mentioned earlier in this chapter, DIRSIG is the physics based simulator that will be utilized
for capturing the 3D influences of the scene-to-sensor viewing geometry as well as estimating
the multimodal appearance of the remotely sensed imagery. This software program has been
developed over the last 20+ years by the dedicated staff of the Digital Imagery and Remote
Sensing (DIRS) group, within the Center for Imaging Science, at the Rochester Institute of

Technology.

Due to this groups steadfast research into understanding the physical underpinnings of Imaging
Science and hard work by staff and students, DIRSIG’s capabilities have steadily improved over
the years and it is now considered a national asset by many in the field, including both the
commercial and government sponsors. This is due in no small part to its unique ability to

simulate physically accurate images from a variety of imagery sensors.

The following is an extract from the DIRSIG user’s manual (Digital Imaging and Remote Sensing

Laboratory 2006):

“The DIRSIG model is a complex synthetic image generation application which
produces simulated imagery in the visible through thermal infrared regions. The
model is designed to produce broad-band, multi-spectral and hyper-spectral
imagery through the integration of a suite of first principles based radiation
propagation models including the Air Force’s MODerate resolution atmospheric
TRANsmission (MODTRAN) program.

First principles based approaches imply that fundamental physics, chemistry and
mathematical theories are used to predict higher level phenomenologies. For
example, the interaction between light and matter can be described using the
work of Fresnel and others. These theories can be used to predict whether a
photon with a certain wavelength will be absorbed or reflected by a material
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with a specific chemical composition. At a much higher level, the same
interaction might be summarized as the "color" of the material.

Another example of a first principles approach would include the prediction of a
surface temperature using fundamental properties including thermal
conductivity, density, radiational absorption factors, radiational and convective
loadings, etc. These parameters can be used with a set of fundamental governing
equations that describe the flow of energy in and out of the surface to predict the
steady-state temperature.”

As mentioned earlier the DIRSIG model produces imagery using a predictive engine that is built
around this collection of first principles based models and when properly implemented, can
accurately predict physical imagery phenomena. This is the rationale for using DIRSIG as a
multi-modal Rosetta Stone for image registration. A top-level flow chart of DIRSIG’s simulation
process is shown below (Figure 6-20). Additional information on DIRSIG, including the digital

version of the user’s manual is available at: http://dirsig.cis.rit.edu/ .
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Figure 6-20 The physics based simulation process that DIRSIG utilizes for synthetic image generation (Digital Imaging and
Remote Sensing Laboratory 2006).

6.3.1 Simulating WASP Imagery with DIRSIG
In order to compare multimodal imagery from the Wildfire Advanced Sensing Program (WASP)
to simulated DIRSIG imagery, it is essential to model the environment, the imaging system, and
the acquisition conditions properly. This is accomplished in DIRSIG through the use of a
hierarchical file structure that that links different modules of the physical simulation to account
for various elements of the Image Chain Approach (Schott 2007) analysis. A detailed example
of how the DIRSIG files were arranged for the following simulations is captured in Appendix F

(Chapter 16).
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6.3.2 Simulating Materials and their associated Emissivity Curves in DIRSIG
An important consideration when simulating a scene within DIRSIG is in the application of
material emissivity curves for proper physical simulation across multiple modalities. Often, it
will be necessary to pull material emissivity curves from existing spectral libraries when field
data from a spectrometer or hyperspectral data from an imaging sensor is not available. When
a model facet/texture is known to be composed of a specific material, such as a gravel-covered
rooftop, a surrogate spectra from an existing library can often be utilized to physically describe

that object.

However, depending on the number of curves available in the emissivity file the associated
scene texture may or may not be visually noticeable. This is because within a given material,
the variability in texture digital count value (0-255) will be associated to specific curves in the
emissivity file based on the Z-Score of the texture (Scanlan 2003). This concept is illustrated

below in Figure 6-21.
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Figure 6-21 The general process involved when associating emissivity curves to intensity values from an image texture map.
Here a region of interest was extract from the image and compared to the 44 curve emissivity plot (bottom) and the DC
Histogram (right). Ideally, a simulation could link every DC value to a specific emissivity curve (i.e. 256 curves needed here).

So, if only one emissivity curve existed within an emissivity file to describe a material for use
within DIRSIG, that material would appear to be a solid color with no texture variation
appearing in that region of the scene. For the gravel rooftop example, a single “dark” emissivity
curve would appear in the DIRSIG simulation as a solid dark gray color with no texture as seen

below (Figure 6-22).
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Figure 6-22 When only one emissivity curve exists in the material file, all of the image texture intensity values will be
associated with only the singular curve. This will result in no texture information “coming through” in the DIRSIG simulation.

Since the number of curves utilized to represent a given material can have dramatic results in
how well a DIRSIG simulation represent reality, it will often be necessary to take an existing
material file and expand the number of emissivity curves. In essence, this takes the collected
material spectra, taken under various viewing conditions, and increases the intensity diversity

while maintaining the existing spectral character. In this way, it is possible to correlate an
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individual DC intensity value to a specific emissivity curve, if at least 256 curves are generated.
For additional information on the emissivity expansion utility provided with DIRSIG, please
reference the associated documentation (Digital Imaging and Remote Sensing Laboratory
2006). A comparison of the results from an emissivity file (gray gravel) that was expanded from

44 curves to 400 curves is provided below in Figure 6-23.

/ Original Gravel Roof Material Expanded Gravel Roof Material \
44 Emissivity Curves 400 Emissivity Curves

Emissivity

K ? g N ‘ Wave.l‘engt‘f‘*n (p.m) ' ) = i : Waveléngth (uﬁ) ' : /

Figure 6-23 The resulting emissivity expansion of the original gravel roof material from 44 curves to 400.

Finally, a comparison of the DIRSIG results when running the same simulation, but using a
singular emissivity curve versus one with 400 curves for the gravel roof material is shown in

Figure 6-24.
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Original Gravel Roof Material Expanded Gravel Roof Material
Highest Emissivity Curve 400 Emissivity Curves
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Figure 6-24 The simulated DIRSIG images above illustrate the need for material files with numerous emissivity curves to
allow proper reconstruction of image texture within a scene.

6.3.3 Example DIRSIG Simulations of the Hybrid Model
The following figures show the resulting DIRSIG simulations from the hybrid modeling process.
Recall that this process included a hi-fidelity image derived model (Pictometry 2010), LIDAR
Derived terrain and trees, and airborne film based CITIPIX texture maps. First, in Figure 6-25, an
oblique view of the hybrid model shows the detail on the sides of buildings at the VanlLare
Water Processing plant and although the tree creation process described earlier works well
from near-NADIR view angles their horizontal facets reduce in size due to the cosine viewing

effect.
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Oblique View of the VanLare using the Hybrid DIRSIG model

Figure 6-25 The Hybrid DIRSIG model of the VanLare Water Processing Plant shown at an oblique view. From this vantage it
is possible to see the detail on the sides of buildings, but, the tree facets are reduced in size due to the cosine viewing effect.

In Figure 6-26, the Southern and Northern sections are “zoomed in” for a closer look at the

detail of the piping, building textures, and surrounding foliage.

Oblique View of the Southern and Northern sections of the VanLare plant.

Figure 6-26 In the figure above, the Southern (left) and Northern (right) sections of the VanLare plant are again visible at an
oblique angle, but, now in slightly greater detail.

In the figure below (Figure 6-27), the near-NADIR DIRSIG simulation is meant to replicate the

image collected by the WASP imaging system to mitigate the 3D influence of the terrain.
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Near-NADIR View of the VanLare plant taken from WASP and simulated by DIRSIG.

x

Figure 6-27 On the left is a contrast enhanced image of the VanLare plant taken by the WASP imaging system, while on the
right, is similarly enhanced DIRSIG simulation of the same site using the WASP view and the Hybrid model of the site.

By mimicking the same sensor-to-scene viewing geometries, it is possible to remove most of
the 3D parallax effects that normally hinder automated image registration. The Northern

region of the plant can be seen in greater detail in Figure 6-28 below.

The Northern VanLare plant imaged from WASP and simulated by DIRSIG.

Figure 6-28 The Northern portion of the VanLare Plant around the Smokestack and storage vats, imaged by WASP (left) and
simulated by DIRSIG (right).
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Similarly, the Southern section of the plant is shown in greater detail below in Figure 6-29.

Figure 6-29 The Southern portion of the VanLare Plant around the administration buildings, imaged by WASP (left) and
simulated by DIRSIG (right).

Finally, an example of a SWIR image as taken by the WASP sensor and then compared to the
simulated DIRSIG view in the appropriate spectral wavelength (Figure 6-30). Once the model is
accurately generated, both geometrically and physically, it is a straightforward activity to
change the sensor view or imaging characteristics to simulate the site from any angle across a

diverse range of the imaging spectrum.
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The VanlLare Plant: Imaged from WASP in the SWIR and simulated by DIRSIG.

Figure 6-30 On the left is an image of the VanLare plant taken by the WASP SWIR sensor, while on the right, is a DIRSIG
simulation of the site, in the same spectral region, using the WASP view and the Hybrid model of the site.

Note how the surrogate vinyl material used to represent the round storage tanks (upper center
of each image) did not capture the inherent transition of the real material into the SWIR region
of the spectrum. Since the standard vinyl material in the DIRSIG emissivity file database only
has one curve, the author attempted to merge this data with an actual collection ASD
spectrometer collection and then perform an emissivity expansion with only limited results. To
capture the real physical essence of this material (for a better SWIR representation), several
additional field collects would be required without blending in the “stock” database emissivity

curve.

6.3.4 Example DIRSIG Simulations of the LIDAR Direct Model

The following image illustrates the resulting product of the LIDAR Direct approach to scene

modeling and simulation using DIRSIG.
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A) DIRSIG Terrain Map B) Site Material Association C) DIRSIG Simulation

Figure 6-31 The LIDAR Direct process involves utilizing Imagery Textures and Materials Maps (A), with user assisted
identification of dominant site materials (B) for ingestions into DIRSIG to physically simulate the site (C).

A grayscale version of a visible spectrum LIDAR Direct DIRSIG simulation compared to a
grayscale WASP VNIR image is shown below in Figure 6-32. Since automated image registration
still occurs predominantly in the grayscale regime, it is instructive to view the similarities

between the simulated and real images as shown.

A) DIRSIG LIDAR Direct Simulation B) WASP VNIR Image of VanLare

Figure 6-32 The LIDAR Direct DIRSIG simulation’s similarity to real imagery is readily apparent. The ability to relate LIDAR
derived models, textured with archival imagery, to newly acquired images is key to the model centric approach.
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When this same LIDAR Direct model is utilized in a DIRSIG simulation of the SWIR region, the
similarity to real sensed data is evident when compared to an adjacent WASP SWIR image
(Figure 6-33). Of additional interest is a visual comparison of the VNIR simulations (Figure 6-32)
to the SWIR simulations (Figure 6-33), where the contrast reversal of the open water at the

Vanlare site is again evident.

A) DIRSIG SWIR Simulation B) WASP SWIR Image of VanlLare

Figure 6-33 DIRSIG simulated image in the SWIR region (A) compared to an actual image from the WASP sensor acquired in
the same SWIR region and from a similar camera position and orientation.

6.4 Relate - Mathematically

Once a model has been accurately generated, attributed, and physically simulated, it can be
utilized as a “Rosetta Stone” to mathematically relate disparate multimodal datasets at
arbitrary viewing geometries. It is hoped that the modeled scene is similar enough in both
structural and spectral character to automatically relate via correspondence generation and
matching techniques similar to the ones covered in Chapters 2 & 3. Since the DIRSIG modeled
scene can be referenced to the world coordinate system, any datasets that are related in this

manner can then be related to the global grid. The figure below (Figure 6-34) depicts how
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image bundles created from “in-band” or “near-band” data, utilizing the techniques covered in
Chapter 4, could then be related together utilizing this DIRSIG enabled technique, even if they

are derived from disparate modalities.

3D DIRSIG Model

' Infrared

Relate the Image Modalities to
Relate Common Structure & Bundles

Figure 6-34 The basic process for relating multimodal image bundles utilizing DIRSIG. Here the model show various
“colored” cubes that represent the 3D physical model which can be projected into an image of various modalities.
It is important to note that only a relatively small portion of the scene may require DIRSIG
modeling, since only one image needs to be related to the synthetic scene to enable
(potentially large) bundles of images to be related. Also, once accomplished, these images
could form an “in-band” baseline texture for future registration, since the modeled scene can

be used as the archive for registered images. This would allow for registration utilizing any
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number of 3D modeling software or GIS systems (i.e. AANEE, MATLAB, Blender, GE, etc.), since
they would only be utilized to account for the 3D sensor-to-scene viewing of effects and not the

more challenging multi-modal appearance issues.

In the following example cases, the utility of physics based modeling to relate imagery datasets
from the VNIR and SWIR modalities will be explored. First the hi-fidelity Hybrid DIRSIG model
(Section 6.2.2) will be used to accomplish this feat and then the lower-fidelity LIDAR Direct
DIRSIG model (Section 6.2.3) will be shown to have similar capabilities, albeit for the more

restrictive NADIR imaging situations.

6.4.1 Error Analysis

As with most mathematical relationships, it is often of great interest to analyze the resulting
model and understand how well the model fits the data. This is especially true in the area of
image registration where error must often fall within a prescribed value for consideration as a
“good result”. In this field, subpixel registration accuracy is a common “gold standard” for
results even though this criterion is often misunderstood and misapplied. The reason for this is
that when a 2D mathematical model is used to relate images that are projections of 3D scenes,
the best results can only approximate the true relationship. However, since this metric is in
such prevalent use, it is necessary to understand how it is calculated and how it should be
applied to the mathematical registration model of interest. Here we will be primarily
concerned with conformal relationships, since most of the shear and projection effects have

been removed through sensor modeling. Generally speaking, transformations should be
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accomplished with the simplest mathematical relationship possible that is supported by the

data.

6.4.1.1 RMS Distance Error Calculation - Quantitative Error Analysis

The Root Mean Square Distance Error (RMSDE) metric, as discussed briefly in Section 2.5.1,
describes the deviation of selected correspondence feature locations from a 2D mathematical
model, as measured in pixel distance. The matching correspondences are used to develop this
2D mathematical relationship and then each matched feature is tested for consistency with the
model. In this metric (Eg. (102)), accuracy is judged based on the RMS Distance of the match
location in the working image versus the location predicted by the model (which is derived from
the total set of matched points). The average RMSDE of all the matches is used as the singular

metric to define “goodness” of registration accuracy and is defined in Equation (103).

2
RMSDE Metric (x — Xpredicted) + _
actual redicted y y i

For 1 RMSDE}qir = \/ p ( actual predwted) (102)

Matched Pair 2
< RMSDE

RMSDE Metric _ pair
For the Total RMSDEota1 = Z m (103)

Image 1

Although 2D mathematical solutions are only approximations to the 3D registration problem,
there is one important exception to this rule that will be exploited for our analysis. This
exception is for situations when both images have been acquired from precisely the same

position and orientation. In this case, the 3D projections of the scene onto the 2D focal plane
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are the same and now the 3D problem can be solved accurately with a 2D solution. Although in
many “real-world” situations this is an unattainable requirement, the author’s model-centric
approach to registration can take unique advantage of this principle. In other words, it is
perfectly acceptable and probably advisable, to utilize a 2D mathematical model to relate the
simulated image (of a projected model) to a real image since the 3D influences can been

properly accounted for and recreated.

Normally the RMSDE metric can be used as an approximate measure of registration accuracy,

but, it is only truly accurate for image registration in the following three situations:

A) Planar relationship exists in correspondence area (i.e. parking lots, floors, or sides of
buildings), here the mathematical model may only provide a good localized relationship

B) Similar acquisition parameters due to small sensor movement or repeated views from a
stable platform (i.e. video frames or satellite images from same location/orientation)

C) Simulated acquisition similarity using a modeled scene (i.e. DIRSIG Model-Centric approach)

6.4.1.2 The Flicker Test - Qualitative Error Analysis

The “Flicker Test”, where the base image and registered working image are repeatedly overlaid
visually can often give the user a better understanding of how well a registration has
performed, but, this approach is often unquantifiable except through extensive human testing.
However, when done properly (under proper Human Visual System (HVS) testing conditions),
minute changes can be perceived. When using the National Imagery Interpretability Rating
Scale (NIIRS), as little as 1/10 of a NIIRS can be a detected using the Flicker Test (Fiete and

Tantalo 2001).  Unfortunately, although these small visual errors in registration can be
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perceived by most people, it is primarily qualitative and therefore of less value under

IlI

automated situations except as a visual “quality control” measure.

6.4.2 Image Registration to the Hybrid DIRSIG Model
In Section 6.2.2 we developed a hi-fidelity DIRSIG model of the VanLare site in order to allow
multimodal registration of imagery to that physical model from any vantage point. Below is an
example using this DIRSIG model, which was textured using CITIPIX imagery in the visible

region, to automatically register WASP SWIR imagery (Figure 6-35).

The registration and error analysis process begins with utilizing the SIFT algorithm to isolate
scale invariant features within both images and correlating them as initial matches. In the
figures below, SIFT identified 16 possible matches (Figure 6-35a). It is important to remember
that this initial match list only represents similarity in image gradient features, not

mathematical model consistency.

Next we utilize RANSAC in conjunction the Fundamental Matrix to ensure that epipolar
constraints are maintained between the image pair; this results in the culling of 4 initial
matches and we are left with 12 matches (Figure 6-35b). At this point the registration results

already show a subpixel relationship, with the RMSDE = 0.87 [pix] as shown in Table 5.

Occasionally, it is possible to get an errant match that just happens to fall along its related
epipolar line. For this reason, the author often finalizes the outlier removal process by filtering
with RANSAC in conjunctions with the 2D Homography (Figure 6-35c). This can be robustly
implemented in this situation since the 3D scene influences have been removed through
simulation.
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Although subpixel registration accuracy was accomplished after these outlier removal steps, it
may be desirable to remove a few extra matches to improve the accuracy even further. The
refinement process used to accomplish this task is handled via RMSDE error analysis (Walli,
Multisensor Image Registration utilizing the LoG Filter and FWT 2003). This process is
accomplished by iteratively culling the match that has the largest RMSDE and then re-
computing the new model and related match errors. This process terminates when a desired
total RMSDE is achieved for the remaining matches or when there are too few matches to
compute the chosen mathematical model. In Figure 6-35d, only one additional match was
culled to improve the accuracy of the model (Table 6) and to a limited degree, the shape of the
cumulative RMSDE distribution curve (Figure 6-36). The resulting Homography (Conformal 2D

Transformation) can be viewed below.

0.996 0.0018  8.2272
H =1-0.0018 0.996 —33.8784
0.0 0.0 1

Although the trained eye can see that this result demonstrates little influences of rotation and

scale, it is possible to compute these values precisely by using Eqns. (27)-(30) as seen below:
Rotation (@) = 0.0018 [rad]
Scale (S4,.) = 0.996 [pix]
Translation (T,, T,) = (8.321 —34.0008) [pix]

These results are compelling, because they imply that only the effects of translation need to be

removed to adequately relate the two images. This is important because it provides evidence
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that the 3D influences have been accurately mitigated through the 3D modeling approach to
registration, by properly modeling the sensor’s viewing pose. Also, of great practical
importance, is the fact that a simple 2D translation can now be performed to properly archive
the image as a projected texture onto the 3D scene. This is important, because in 3D site
modeling and archival scenarios (such as the AANEE model, Section 1.3) the projected image
corrections can be easily incorporated as a simple Latitude and Longitude shift, instead of a full

3D model pose correction (Section 3.2.3).

Finally, these results can be utilized to infer that the number of matching correspondences is
sufficient for the transformation that is required. With traditional image registration tasks,
where the 3D influences have not been mitigated, dozens of matches would normally be
desired to increase the chances of resolving the most common 2D planar relationship. This is
not required here since we have clearly addressed the 3D effects and are now only concerned
with (at most) a 2D Conformal Transformation Homography. This requires a solution for only 5
parameters (Rotation, Scale,, Scale,, Translation,, and Translation,), which can be
obtain with only three good match correspondences, since we know the [x, y] locations from
each control point. In fact, our results show that only the translation parameters are of great
consequence and so only one good correspondence is necessary to correct the registered
image for final archival. This means that the dozen good correspondences that were

automatically recovered are more than sufficient to solve for this required correction.
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Figure 6-35 The images above show the initial WASP SWIR image paired with its DIRSIG simulation and the initial features
matched using SIFT (A), the outliers removed using RANSAC with the F-Matrix (B), which were supported by using RANSAC
with the M-Matrix (C), and finally where the largest contributing error match was removed using RMSDE analysis.
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Sub-Pixel Accuracy achieved after removal of Match Outliers

Match # | X-Base | Y-Base | X-Work | Y-Work | X-Pred | Y-Pred | X-Error | Y-Error | RMSDE
1 565.70 | 104.29 | 560.45 | 141.10 | 559.21 | 140.25 -1.24 -0.85 1.06
2 254,59 | 403.65 | 246.40 | 439.66 | 247.38 | 439.76 0.98 0.10 0.69
3 391.71 | 297.45 | 384.12 | 333.45 | 384.79 | 333.53 0.67 0.08 0.48
4 266.00 | 399.29 | 257.07 | 437.29 | 258.81 | 435.40 1.74 -1.89 1.81
5 335.02 | 341.04 | 327.12 | 376.66 | 327.98 | 377.13 0.86 0.47 0.69
6 371.85 | 323.97 | 366.32 | 359.45 | 364.88 | 360.07 -1.44 0.62 1.11
7 538.25 | 275.90 | 531.55 | 311.60 | 531.57 | 312.08 0.02 0.48 0.34
8 209.28 | 228.13 | 204.59 | 265.58 | 202.16 | 263.94 -2.43 -1.64 2.07
9 614.94 | 186.07 | 608.12 | 221.94 | 608.45 | 222.19 0.33 0.25 0.29
10 416.04 | 367.33 | 408.42 | 402.84 | 409.09 | 403.53 0.67 0.69 0.68
11 603.39 | 198.47 | 597.04 | 233.89 | 596.87 | 234.60 -0.17 0.71 0.52
12 478.95 | 310.96 | 472.14 | 346.17 | 472.15 | 347.14 0.01 0.97 0.69

Mathematical Model = 2D Conformal Total RMSDE [pix] = 0.87

Table 5 - The table above provides a breakdown of how the RMSDE Metric is computed for the previous example. Here the
largest RMSDE contributor can be easily isolated and is highlighted in yellow.

Refined Accuracy after removal of Largest Error Contributor

Match # | X-Base | Y-Base | X-Work | Y-Work | X-Pred | Y-Pred | X-Error | Y-Error | RMSDE
1 565.70 | 104.29 | 560.45 | 141.10 | 559.48 | 139.72 -0.97 -1.38 1.19
2 254,59 | 403.65 | 246.40 | 439.66 | 246.58 | 439.74 0.18 0.08 0.14
3 391.71 | 297.45 | 384.12 | 333.45 | 384.44 | 333.35 0.32 -0.10 0.24
4 266.00 | 399.29 | 257.07 | 437.29 | 258.04 | 435.38 0.97 -1.91 1.51
5 335.02 | 341.04 | 327.12 | 376.66 | 327.45 | 377.02 0.33 0.36 0.34
6 371.85 | 323.97 | 366.32 | 359.45 | 364.46 | 359.95 -1.86 0.50 1.36
7 538.25 | 275.90 | 531.55 | 311.60 | 531.61 | 311.98 0.06 0.38 0.27
8 614.94 | 186.07 | 608.12 | 221.94 | 608.78 | 221.92 0.66 -0.02 0.46
9 416.04 | 367.33 | 408.42 | 402.84 | 408.75 | 403.56 0.33 0.72 0.56
10 603.39 | 198.47 | 597.04 | 233.89 | 597.16 | 234.35 0.12 0.46 0.34
11 478.95 310.96 472.14 346.17 472.01 347.07 -0.13 0.90 0.65

Mathematical Model = 2D Conformal Total RMSDE [pix] = 0.64

Table 6 - By analyzing which matches contribute most to the RMSDE calculation it is often possible to iteratively cull the
greatest error contributor; then recomputed the mathematical relationship and error to provide better registration results.
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Figure 6-36 In the left plot, the initial RMSDE is plotted w.r.t. the number of good matches. After the largest error
contributor was removed, the data was used to create a new model with error distributed slightly more linearly.

In this example, the 12 good matches (with total RMSDE below 1 [pix]) were automatically
derived and then utilized to transform the DIRSIG simulated image into the same coordinate
system as the WASP image. The results of this operation are visible below (Figure 6-37). In
order to accurately archive these results, it would be necessary to reorient the DIRSIG model

and then projectively texture the model with the WASP image (Section 6.4.4).

WASP SWIR Image Transformed DIRSIG SWIR Simulation
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This example demonstrates the power of physics based modeling, using DIRSIG, to account for
the multimodal appearance differences between visible and infrared images of the same scene.
Specifically, this approach was able to account for the multimodal, pose, temporal, and
platform differences in the WASP and the CITIPIX imagery (used within DIRSIG for scene

texture).

6.4.3 Image Registration to the LIDAR Direct DIRSIG Model
Similar to the process used above, we will now explore the utility of using the LIDAR Direct
DIRSIG Model of the Vanlare site (Section 6.2.3) to relate real multimodal imagery. As
previously mentioned, this method allows an efficient modeling and attribution process within
DIRSIG (hours vs. weeks) for users that have access to LIDAR or DPC multi-view data of a site of
interest. The tradeoff for the inherent ease of modeling is in its more restrictive application to
near-NADIR imaging scenarios. This is due to the lack of detail (texture and material
attribution) on the sides of building models. However, with accurate sensor IMU/GPS
knowledge this limitation could be addressed via projective texturing of a base image set onto

the LIDAR data from various vantage points (i.e. using the Pictometry collection CONOPS).
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Figure 6-38 Here a WASP SWIR image of VanLare can be compared to the LIDAR Direct DIRSIG Simulation of the site.

An example of the LIDAR Direct DIRSIG model of the VanlLare site compared to a WASP SWIR
image of the same is shown in Figure 6-38. The utility for near-NADIR multimodal registration
using the LIDAR Direct DIRSIG model as a multimodal “Rosetta Stone” is shown below (Figure
6-39). Here the registration process is visualized in steps that exemplify the process of
extracting invariant features, relating these features, removing match outliers, and finally

transforming the working image using the derived mathematical model from the good matches.
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WASP SWIR Image
[ A

DIRSIG LIDAR Direct SWIR Image

Figure 6-39 The Sequence above illustrates the features extracted using SIFT (A), outlier removal using RANSAC (B), and the
final transformation using the resulting good matches (C), which resulted in sub-pixel registration accuracy.
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The spreadsheet below (Table 7), illustrates how the RMSDE Metric is computed for a SWIR
WASP Image which was registered to the LIDAR Direct DIRSIG Simulation of the same scene.

These results were from the registration viewed in Figure 6-39.

Match # | X-Base | Y-Base | X-Work | Y-Work | X-Pred Y-Pred | X-Error | Y-Error | RMSDE
1 262.13 | 381.27 | 253.35 418.3 | 255.6502 | 416.8895 | 2.3002 | -1.4105 1.9079
2 363.47 | 299.24 | 356.12 | 335.14 | 357.3235 | 335.0507 | 1.2035 | -0.0893 0.8534
3 565.7 | 104.29 | 559.52 | 140.62 | 560.3047 | 140.4491 | 0.7847 | -0.1709 0.5678
4 254.59 | 403.65 | 246.46 | 439.46 | 248.0406 | 439.2725 | 1.5806 | -0.1875 1.1255
5 383.16 | 329.46 | 376.98 | 364.81 | 376.9514 | 365.357 | -0.0286 0.547 0.3873
6 179.12 | 172.9 | 174.81 | 207.11 | 173.1246 | 208.0695 | -1.6854 | 0.9595 1.3713
7 279.9 | 410.55 | 274.37 | 446.09 | 273.3586 | 446.2495 | -1.0114 | 0.1595 0.724
8 266 | 399.29 | 258.75 | 436.88 | 259.4748 | 434.9393 | 0.7248 | -1.9407 1.4649
9 309.75 | 362.54 302.9 397.9 | 303.3723 | 398.2704 | 0.4723 | 0.3704 0.4245
10 346.27 | 344.62 | 340.92 | 379.72 | 339.9805 | 380.4317 | -0.9395 | 0.7117 0.8335
11 371.85 | 323.97 | 366.15 | 359.47 | 365.6445 | 359.8301 | -0.5055 | 0.3601 0.4389
12 279.37 | 410.31 | 274.37 | 446.09 | 272.8287 | 446.0078 | -1.5413 | -0.0822 1.0914
13 346.07 | 316.45 | 340.22 | 351.97 | 339.8577 | 352.2312 | -0.3623 | 0.2612 0.3158
14 273.32 | 176.38 | 268.16 | 211.65 | 267.4153 | 211.8121 | -0.7447 | 0.1621 0.5389
15 524.63 | 111.85 | 518.87 | 147.37 | 519.1702 | 147.9043 | 0.3002 | 0.5343 0.4333
16 141.99 | 264.79 | 136.25 | 300.14 | 135.7025 | 299.9552 | -0.5475 | -0.1848 0.4086

Mathematical Model = 2D Conformal Total RMSDE [pix] = 0.805438

Table 7 — This spreadsheet provides a breakdown of how the RMSDE Metric is computed for the LIDAR Direct example.

6.4.4 Reorient the Model to Incorporate the Registration Results
The resulting 2d Homographies from both DIRSIG simulations (Section 6.4.2 & 6.4.3) will now
be used as exemplars to show how the resulting 2D transformation homography (Hsxs) can be

utilized to change the pose of the model for proper image texture alignment and archival.

The homography resulting from the 12 good match points of the Hybrid DIRSIG model and the
SWIR WASP image (Table 5) is shown below (note the slight difference to the Homography

presented earlier due to the desire to utilize the unrefined ‘good matches’ in both cases):
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0.9985 0.0009 7.1729
H3,3 = [—0.0009 0.9985 —35.2426
0.0 0.0 1

Ty, = [7.2156 —35.2874]

As mentioned earlier, this transform contains virtually no rotation and shear (upper left 2x2
sub-matrix) and very minor scale influences (the diagonal of the upper left sub-matrix). This is
to be expected, since great effort was placed in accurately modeling these influences in the
DIRSIG model. In fact, utilizing a simulation to remove these effects provides a great deal of

power and flexibility in the automatic registration phase and justifies the modeling process.

The homography resulting from the LIDAR-Direct DIRSIG model and the SWIR WASP image

(Table 7), is shown below with very similar results:

0.9989 0.0027 5.61
H3,3 = [—0.0027 0.9989 -—34.4718
0 0 1

Tyy =[5.3311 —33.4107]

Again, the only transformation required is a shift of the image simulation (by applying the
inverse homography). This is then converted into meters and reinserted into DIRSIG or the
archival software of choice for proper texturing of the image onto the model. Although the 3D
models were constructed using very different techniques, the resulting transformation to relate

the WASP image is quite similar. The overall RMS Error between the two translation results is:

Translation Error gys = \/((7.2156 —5.3311)%2 + (—35.2874 + 33.4107)2) /2 = 1.8806 [pix]
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6.5 Archive - Texturally (Map the Real Image to the Model)
The final phase in the MSRA process is archiving the acquired image to the site model. This is
accomplished by recovering the new 3D pose of the model with respect to the image and

projectively texturing the image onto the model.

6.5.1 Model Pose from Matched Features
It is possible to recover the model pose and position with respect to an image using the
techniques covered in Sections 3.1 & 3.2. However, in this situation we have image-to-image
matches as our input, not image-to-model correspondences. Fortunately, we have the
associated 3D model that was used to create the simulated image from which the
correspondences were derived. This can allow correlation of the closest 3D point once a ray is
cast from the correspondence to the camera center of the simulated image. This concept can

be visualized below in Figure 6-40.

Additionally, it is possible to implement mathematical techniques that link the camera
orientation parameters directly to the 2D Projective Homography (Seedahmed 2006), as
discussed in Section 3.1.2. This technique is especially applicable in this situation due to the
legitimacy of the 2D RMSDE assurance of a good planar model fit to the final solution space.
Using this technique, the image correspondences to the 2D projection of the model can directly
provide the relative camera position and pose. So by keeping the image as the origin, the final

model position and pose is simply the inverse transform derived from this interim solution.
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Figure 6-40 By ray tracing from the camera to the simulated image correspondence location it is possible to isolate the 3D
model location of interest for use in pose estimation.

6.5.2 Projective Texture - Image to Model

In order to archive the newly related imagery to the 3D model, it is necessary to project the
model onto the image and extract the model vertices as “vertex texture” locations for mapping
into the uv plane. This is accomplished in a similar, but opposite manner to the previous
section. Here a projection matrix is utilized to flatten a 3D model onto an image, to simulate a
camera’s view of the scene. Once this accomplished, the 2D projected model vertex locations
can be utilized to directly associate the resulting image pixels as vertex texture locations. This

process can be visualized below in Figure 6-41.
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3D Model Locations to 2D Image Locations

Figure 6-41 To obtain “vertex texture” locations for UV mapping a model to an image starts at the camera and then projects
the 3D model onto a 2D image. The projected model vertex locations on the image are the uv texture locations.

6.5.2.1 Creating UV Texture Maps for SPC Models

The technique for relating SPC Models to images for creating UV Textures is relatively
straightforward. Here the initial correspondences between the base image and the periphery
images will be utilized to generate the Vertex Texture (VT) locations for the final UV Mapping.
Since all the matches occur with the base image, it is only necessary to take these image
locations and relate them to the final 3D model vertices that are derived from the image

matches. This will take on the following format for the “.OBJ” model description:
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Table 8 This table contains the related 3D model vertex and related image UV texture locations in the “.obj” format.

OBJID Model X [m] Model Y [m] Model Z [m]

\ 290610.83 4790142.40 108.86
Vv 290626.79 4790245.10 109.23
Vv 290629.49 4790247.50 108.99
\'% 290652.95 4790279.40 107.50
\' 290645.96 4790306.80 105.19

OBJID Image x [pix] Image y [pix]

VT 1209.39 2755.81
VT 1560.34 2045.48
VT 1585.40 2035.36
VT 1827.59 1858.82
VT 1839.19 1650.06

In the “.0OBJ” UV Texture format, the order is important; here the first vertex that is described
with the letter “V” will be associated with the first vertex texture location described with the
letter “VT”. An extracted subset of five of the SPC model vertices (V), with their associated

WASP image vertex texture locations (VT), is provided above in Table 8.

An example of how this works is shown in Figure 6-42, where the entire set of ~17 thousand
correspondences, generated from the 5 images of the VanLare Processing Plant, were utilized in
Chapter 4 to create a SPC Model of the terrain. These model and image location points were
then related to generate a precise UV Texture Map for the model using the base WASP image.

A closer look at these results is also available for reference in Section 4.3.3.3 (Figure 4-23).
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Figure 6-42 This series of snapshots show how the matches from the base image can be directly related to the 3D SPC model
and then used as the vertex texture locations with the base image to create the model’s UV Texture map.

6.5.2.2 Creating UV Texture Maps for LIDAR and existing Models

Unlike with the previous section, the scene model cannot normally be automatically associated
with known image locations without having to first register the texture image with the
projected model. However, if the model was generated from LIDAR data then a few options for
automated process are available. First the model can utilize the inherent IR intensity return
information to attribute the model. Once this is accomplished this attributed model can be

automatically registered to SWIR imagery and then UV Texture Mapped.
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In order to attribute a LIDAR derived scene model with the SWIR Intensity information from the
pulsed return, the author has developed the following recipe which has been implemented in

MATLAB:

Recipe: IR Attribution for LIDAR Models
1) Analyze the 3 Vertices from each model facet

2) Average the associate LIDAR SWIR DC Returns for all facet triplets

3) Rescale the ave. grayscale returns from integer values of 1 to 255

4) Assign the facet color to the replicated grayscale value [255 255 255]

5) Convert the vertices and vertex color information to “.OBJ” model format:

# Walli09 DIRSIG LIDAR Direct OBJ File:
mtllib VanLare_composite_ROI_VNIR045.mt]l
v 291037.9800004790028.00000076.830000
v 291037.9500004790027.90000076.850000
v 291037.9300004790027.90000076.880000
g0
usemtl 0
f 1 2 3

g 255

usemtl| 255

f 300 301 302

6) Link the material ID’s in the “.OBJ” with their descriptions in the “.MTL" file

# Walli09 DIRSIG LIDAR Direct MTL File:
# mtllib VanLare_composite_ROI_VNIR045.mt|

Material Count: 256

newmtl 0

Ns 0.000000

Ka 0.000000 0.0000000.000000

Kd00o

Ks0.050000 0.0500000.050000

Ni 1.000000d 1.000000

illum 3

newmtl| 255

Ns 0.000000

Ka 0.000000 0.000000 0.000000
Kd1.0 1.0 1.0

Ks 0.0500000.050000 0.050000
Ni 1.000000d 1.000000
illum 3
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This process will result in a 3D model that can be utilized within almost any modeling package
due to the enduring popularity of the common “.0BJ” model standard. An example of a SWIR

attributed LIDAR model can be seen below in Figure 6-43.

Figure 6-43 This figure shows the IR Attributed LIDAR model from a NADIR (right) and an oblique (left) view.

In Section 3.3, the ability to directly register a projected image of this model to an actual SWIR
image (taken by the WASP sensor) was demonstrated. After the image has been registered to
the model, the linear and nonlinear techniques represented in Section 3.2 can be utilized to
reorient the model to align properly with the viewing geometry captured by the image. Once
the accurate EOP have been recovered, they can be utilized with the Projection Matrix (P) to
project the LIDAR model onto the SWIR image. Once this is accomplished the process for UV
texturing is very similar to the one presented in the last section for assigning model vertices to

the image locations.
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6.6 Results Summary - DIRSIG as a Multimodal Rosetta Stone

In this chapter we have addressed the challenging area of multimodal 3D image registration
through the use of physics based modeling. In order to provide nimble access to a variety of
different modalities (VNIR, Infrared, SAR, Polarimetric, and LIDAR) the author has utilized the
CIS Digital Imagery and Remote Sensing Image Generation (DIRSIG) software to physically

model the Vanlare site (Digital Imaging and Remote Sensing Laboratory 2006).

Automated multimodal registration of near-NADIR scenes has been demonstrated and oblique
views should be possible when DIRSIG is used in concert with an accurate and properly oriented
3D scene model. The previous examples should provide sufficient evidence that using DIRSIG as
a physical modeling based “Rosetta Stone” to relate multimodal imagery is not only feasible,
but, advantageous due to its extensibility into various regions of the EMS. The following is a

quick breakdown of these accomplishments into an explicit form.
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DIRSIG as a Multimodal Rosetta Stone
(Proven Approach is Highly Extensible)

+ Have Demonstrated the Following for VNIR & SWIR

— “Multimodal Registration” is possible using DIRSIG
+ Panchromatic to RGB and SWIR

— “Multitemporal Registration” is possible using DIRSIG
+ CITIPIX and WASP imagery taken ~10yrs apart

— “Multiplatform Registration” is possible using DIRSIG
+ CITIPIX: Film based, Panchromatic Sensor
+ WASP: Digital Focal Plane utilizing RGB/SWIR/MWIR/LWIR sensors

— “Multidimensional (3D) Registration” is possible using DIRSIG

+ 3D influence of the terrain and buildings successfully mitigated
+ Extensibility into other Spectral Regimes grows with DIRSIG

— VNIR, SWIR, MWIR, LWIR, Polarimetric, UV, SAR, LIDAR

Figure 6-44 A summary of the DIRSIG Rosetta Stone strengths regarding multimodal image registration.
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7 Relating Results in the World Coordinate System

The fundamental research into relating and combining sparse and faceted structure has just
begun. With the recent commercial interest into SfM and LIDAR products, the ability to relate
the resulting structural products with additional imagery modalities is ripe for research
investment. Additionally, the ability to associate remotely sensed images within a GIS
environment, similar to Section 3.1.2, provides the ability to mathematically relate the entire
multi-view ensembles of camera locations, images and sparse structure (Chapter 4) to a global
scene. The synergy of relating these multimodal image bundles and models, while having the
ability to seamlessly interacting with them in a mathematical manner, will provide a venue for

additional data fusion and derived product research.

Mathematically relating the resulting image bundles to the World Coordinate System (WCS) is
depicted in Figure 7-1, where the 3D structure of the bundle is designated X and the same
structure located within the WCS is X,,. Although the initial structure can be easily related w.r.t.
the WCS once the proper transform parameters are recovered (Chapter 5) via a 3D
Homography (H,x4), automatically correlating this structure to features within a GIS is

nontrivial and is central to the basic research of this overall effort.
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Figure 7-1 Relating the cameras, images, and structure to a World Coordinate System augments the mathematical
relationships developed in Chapter 4, by combining it with the 3D Conformal techniques of Chapter 0 within a GIS construct.

In order to relate localized image bundles, site models, and collected imagery to the real world,
it is first necessary to introduce a few additional mathematical techniques that will help relate
these products within the WCS. Of key interest is incorporating the local 2D and 3D
mathematical relationships within a more global 3D construct. To enable this, the epipolar
geometry techniques introduces in Chapters 2-4, such as the Fundamental Matrix and 2D
Homography will be extended to the WCS, while new concepts such as an epipolar plane &
(Figure 7-1) will be introduced (Hartley and Zisserman 2004). It should be kept in mind that
while F is inherently different than the homography H,;, which can be utilized to directly relate

x and x’ via an epipolar plane 7,
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X = Hpx (104)
we can still relate F and H,; via the following relationship.
F = [e’]xHﬂ (105)

This allows both the homography and the epipolar line or the fundamental matrix to constrain

correspondences as noted below.

i

Il =[e'|«Hx =Fx (106)
To help clarify the relationship between a planar homography H; and the homography H, that
we’ve been employing thus far, it is essential to realize that there is a perspectivity between the
world plane point x,, the first image plane x = H,,, x,; and the second image plane x’ =
H,. x;. The composition of these two perspectivities is a homography (Hartley and Zisserman

2004)

' -1
Now we can relate, x to x’ via Hs,3, X to X using Ps,4, and X to X, with Hy,.4, by using the

following additional equations (Hartley and Zisserman 2004)

Camera
Projection x = PX (108)
Matrix

3D Xo = HypaX

Homography (109)
Transformed Py=P Hle4 (110)
Projection
Matrix

-1
Local & PoXo = PHyaHyuX = PX =x (112)
Global Image

Projection
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It is interesting that the rather simple idea, of relating images to their corresponding world
coordinates systems as expressed in Section 3.1.2, also offers the key to relating all of our
desired modality and dimensionalities. If we can relate these bundles to a GIS environment via
a 2D Homography Hs,s, then relating the GIS viewport image (as in Section 3.1.2) and the base
image of the bundle has profound implications, because it will allow us to directly relate all of
the datasets and have them globally referenced. This framework will allow the combination of
Sparse/Dense Point Clouds, image bundles, multimodal images, and LIDAR datasets to be
referenced and registered in the world coordinate system for truly integrated analysis and

exploitation.

Figure 7-2 The relationships between the 2D/3D Homographies (H), Projection Matrix (P), and Colinearity Equations.



The graphic above depicts the various mathematical methods that can be utilized to relate

various aspects of an image bundle. The reader should note the inclusion of the Colinearity

equations, which have been a cornerstone of Photogrammetric analysis for decades.

Colinearity Eq
x-component
image proj.

Colinearity Eq
y-component
image proj.

Colinearity Eq
X-component
World proj.

Colinearity Eq
Y-component
World proj.

By careful inspection, the similarities can be seen between the Colinearity equations of

mp (X —Xp)+mpY =Y)+miz3(Z—-Z7,)

X=X =~f [m31(X — X)) +mz(Y —Y)+ma3(Z—Z))

My (X — X)) +mp(Y =Y )+ my3(Z—Z))

y=Yo=-f [mgl(x X))+ mp (Y —Y)) + my3(Z — Z1)

X=X,=0Z~-17,)

my1(x — xo) + Ma1(y — y,) + ma1(=f)

Y=Y, =(Z—-Z)

my3(x — xo) + ma3(y — y,) + maz(—f)

M2 (X — xo) + My (¥ — ¥,) + maa(—f)

my3(x — xo) + ma3(y — y,) + maz(—f)

(112)

(113)

(114)

(115)

Equations (112) and (113) and the Camera Projection Matrix (122); here the simplified form of

the I0P matrix (K) is utilized where sk = 0 and f = a,, = a,, as in Chapter 11.

Camera
Projection
Matrix

Proj Matrix
Sub-
Matrices

Projection
Transform

a, sk x]
P=10 a, y,
0O 0 1)
f 0 x
P=10 f vy,
0 0 1

P = KR[I|—t]
Ri1 Riz Ry3
Ry1 Ry Ry3
R31 R3; Rs3

[Ri1 Riz Ri3
Ry1 Ry Rys
|[R31 R3z Rga3

e
- v _ Y
x=PX=P 7

1]
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o oRr —
S O

S RO

=l =]

_ O O

_ o O

(116)

(117)

(118)
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(fRu + X0R31)X + (lez + XoRsz)Y + (m13 + X0R33)Z - (fRn + X0R31)Tx - (lez + X0R32)Ty - (fR13 + X0R33)Tz

E = (fR21 + X0R31)X + (fRzz + XoRsz)Y + (m23 + X0R33)Z - (fR21 + X0R31)Tx - (fRzz + X0R32)Ty - (fRz3 + X0R33)Tz (120)
Ry X + Rg,Y + Ry3Z — Ry Ty, — R32Ty — RyT,

Collect ) [xo (Ras(X =) + Rap(Y = T) + Raz(Z = T,)) + f (Rys (X = T,) + Ryp(Y = T,)) + Ry (Z — TJ)} .
Terms =1V (Ral(X =T+ Ry (Y = T,) + Ry5(Z — Tz)) +f (RZl(X —T) + Ryp(Y = T,) + Rys(Z — TZ))l (121)
L Ros(X = T,) + Ray(Y = T,) + Rz (Z = T}) |
X1 [Xo f(Rll(X_Tx)+R12(Y_Ty)+R13(Z—Tz))
Simplify to - _
Collinearity X = ?l/ = [Yo| t|f (R21(X -Ty+ Rzz(Y - Ty) + Ry3(Z — TZ)) (122)
rorm | Rsy(X =T +Rsp(Y =Ty) +Rs3(Z~T,) |

Except for the sign convention (induced by the camera’s distance, £+ f from the focal plane),
Equation (122) is equivalent to the Colinearity Equations (112) and (113) after division of the x/y

components (rows 1 & 2) by the scaling component (row 3).

Although the Camera Projection Matrix has a compact form and is frequently utilized in
computer vision to provide the 2D projected view of a 3D scene onto the focal plane, the “back-
projection” matrix has the ability to relate the image location to an X-Y position in 3D space, a
given distance (Z) from the camera and is equivalent to the remaining two Colinearity
Equations. The proof of the matrix form of the back projection has been developed by the

author as part of this dissertation proposal in Equations (123) through (132).

N
Projection X =PX=KR[l|—t] 7| = KR|Y|—|T, (123)
Matrix 1 Z T,
X Tx -1
Y|—|Ty =Rk % (124)
Rearrange
Z T,
X T, L
RT=RL Y|—|Ty =R'K [}’] (125)
zl |1, 1



Expand

Invert K

Multiply

Divide
Rowl1 by
Row3

Collinearity Eq
X-component
World proj.

Divide Row2
by Row3

Collinearity Eq
Y-component
World proj.

X -

T -1
X1 [T« Ri1 Riz Ru| [-f 0 x| x
Y[=[Ty[=|Rat Rz Ra3| [0 ~—f 1y, [y (126)
zZl |T,] |Rs1 Ry R3] [0 0 1 1
X T, Ri1 Ry Rsi|[-1/f 0 xO/f
Zl |T,] |Riz Ra3 Rs3f| 0
__R R R * X R * i
11>|<X_ 21*y+ 11 0 21 y0+R31
T f f f '
x —Riz*x Ry *y Rip * X Raz *y
—|1,| = 1f2 -t 0+ F %+ Rs; (128)
T
z _R13 * X R23 *y R13 * X0 R23 * YO
f £t Tt Rs
R11*X+R21 *y—R11*X0—R21*y0—R31 * f
—f
_ _ 129
(Z=T2) Riz * X+ Rp3 ¥y — Ry *Xg — Ry ¥y, — Rgz *f .
—f
Ri1(x —xo) + Ry1(y —y,) + R31(—
X—T,=(Z—-T,) [ 11007 %) * Rar (¥ = ¥) + Roa (20 (130)
R13(X - Xo) + R23(y - yo) + R33(_0
Riz X+ Rop *y — Rig ¥ Xy —Ryp ¥y — Rgp *f
—f
., 131
Z-=T2) Riz* X+ Rz *y — Ryz *Xg —Rag *y; —Rgz * f .
—f
Ri2(x — Xg) + Raz(y — ¥,) + Rs2(—
Y-T,=@Z-T) [ 126 = %0) + Ra(y — ¥o) + Rz (7D (132)
Ry3(x — Xo) + Ry3(y —y,) + R3z(—f)

Thus, from Equation (124) it is easy to see that the following equation (133) represents the Back-

Projection Transform and Equation (134) is the Back-Projection Matrix (B), where X is the non-

homogeneous form of the 3D location.

Back
Projection
Transform

~ -1_.
X=R'K X+t (133)
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Back _1.,,-1
Projection B=R K [I|t] (134)
Matrix

This mathematical proof should illuminate the connection between the Colinearity Equations
traditionally utilized by the photogrammetrist and the Projection Matrix now commonly

implemented by the computer vision community to relate 2D to 3D structure.

It should be of great concern to the modern Photogrammetry community to mathematically
link their proven concepts and techniques to the growing field of computer vision, due to the
incredible leveraging of ideas and techniques that can be accomplished. The author has great
appreciation for the tremendous work done in both these fields to enable much of what was

accomplished in this research.
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8 Research Contributions

The following sections are designed to identify the specific contributions made by the author

with the research included in this thesis.

8.1 Photogrammetric and Epipolar Geometry based Terrain Recovery

The technique developed by the author for 3D terrain recovery from imagery combines modern
methods for 2D image registration, utilizing epipolar geometry constraints and outlier removal,
and combines them with traditional photogrammetric approaches for 3D structure recovery.
This has the added benefit of providing results where the recovered structure is represented in
a global UTM coordinate system as opposed to a locally derived, relative structure. By utilizing
the IOP and EOP of the camera, in this case WASP, the recovered image bundle and 3D point
cloud can be utilized directly with modern GIS applications such as Google Earth to visualize the
related imagery and 3D structure in the scene. The bullets below highlight some of the main

contributions in this area of research:

Indigenous CIS ability to derive structure from multiple images of a scene
e Improvements for GIS Applications (i.e. Planar outlier removal)

e Recovered structure and image bundle linked to WCS (global UTM)

e Allows direct comparison of SBA-SPC results with LIDAR and GIS Models

e Results can be used as a 3D Seed Model for DIRSIG Simulations similar to LIDAR
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8.2 Constrained Conformal and Affine 3D Transformation

The author has developed innovative techniques to recover both the 3D Conformal and Affine
Transformation parameters. Not only are these techniques essential for relating 3D rigid
bodies, but, they help establish similar techniques for the recovery of constrained
multidimensional transformation parameters through the use of SVD and QR decomposition.
Although some of these techniques were borrowed from Multiple View Geometry (Hartley and
Zisserman 2004), they have been reapplied here to address the purely 3D transformation
problem (3D to 3D) that is not addressed in that text. The bullets below highlight some of the

main contributions in this area of research:

e Development of a Constrained 3D Conformal and 3D Affine Transformation
e Application of 2D Multi-View Geometry Techniques to 3D

o SVD Decomposition to recover embedded matrices

o QR Decomposition to recover embedded matrices

o Nonlinear Weighting to diminish unwanted terms

8.3 DIRSIG 3D Multimodal Registration

Although DIRSIG has been utilized for several pieces of fundamental research in the areas of
multimodal analysis (spectral, polarimetric, LIDAR, and SAR), the author does not know of any
attempts to use it to relate these modalities for registration. The key here is to accurately
model the modalities, within a physics based environment, so that the synthetic results are
similar enough to be utilized to automatically register with real data. Not only does this provide
a “Rosetta Stone” to relate the datasets, it is also a testament to the ability of DIRSIG to

replicate realistic results in these modalities and catalyzes the possibility of parallel growth and



research development. The bullets below highlight some of the main contributions in this area

of research:

e Development of Techniques to use DIRSIG as a multimodal ‘Rosetta Stone’
e Test the basic influences of a modeled scene for precise registration
o Influences of the 3D structural model
o Influences of the spectral attribution of model facets
e Development of both Hybrid and LIDAR-Direct modeling approaches within DIRSIG

8.4 Comprehensive Breadth - Multi-Dimensional/Modal Research

The author has not seen the comprehensive breadth of research into 3D multimodal
registration covered in any one source, especially as it is applied to the area of remote sensing
from aerospace platforms. Although several pieces of literature cover specific aspects of 3D
multimodal registration, none of them cover the breadth of techniques and datasets that are

covered here.

e 2D Image Registration in a 3D environment (Hsy3)
e 2D Image Relationship to 3D Model (P3,4 and Colinearity Eqs.)
e 3D Structure to 3D Model Registration (Hays)

e Combined structural and physical models accurate enough to register with real imagery

8.5 Suite of MATLAB Software Tools
A comprehensive table and flowchart of the various tools and applications that were developed
in the process of completing this research will be delivered with the code shortly after the

dissertation defense. However a few of the more important deliverables are highlighted below.

e AeroSynth Sparse Point Cloud Software Toolkit
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2D Image Registration Toolkit that incorporates Epipolar Constraints
LIDAR Processing Toolkit for Reading, Extracting, and Facetizing a Dense Point Cloud
3D Pose Estimation from Imagery code

3D Rigid Body Registration code
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9 Summary
The research covered in this dissertation has focused on developing the essential mathematical
foundation and techniques required to relate multimodal imagery data in 3D. This research has
resulted in new tools/algorithm development and has improved techniques to accurately and

efficiently relate datasets of interest to the remote sensing community.

By developing a ‘model centric’ approach to registration, it is possible to address both the
influences of the 3D scene and the multimodal appearance of an image, which are currently the
most challenging problems in the image registration arena. Geometric modeling of a scene
allows mitigation of parallax, occlusion, and shadowing effects, while physical modeling (via
DIRSIG), makes it possible to account for changes in appearance due to multimodal sensing
effects. Utilized together, both the geometric and physical modeling of a scene allow automatic
registration of images collected in different regions of the EMS, taken from various sensor-to-
scene geometries and lighting conditions. This ‘model centric’ approach is a higher level of
extrapolation than traditional ‘image content’ based approaches, in that it tries to maximize
similarity of the image to the geometric/physical model, register the image to the projection of
the model, and then use that mathematical relationship to correctly archive the image onto the

model as a texture layer.

It is the hope of the author, that by providing several case studies exemplifying various aspects
of data registration, that this research will provide utility in several areas of interest to the
Center for Imaging Science at RIT and the remote sensing community in general. To augment

this goal, the mathematical techniques researched here have being developed using MATLAB

9-1



code (The Mathworks, Inc. 2010) as modular functions for ease of application to a broad range

of remote sensing registration problems and is included as a library of functions.

Finally, it is the hope of the author that this research has adequately addressed the broad goal
of relating various types of multimodal imagery data in 3D and has provided the committee

with credible results for accomplishing this task.
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Appendices

11 APPENDIX A - Camera Calibration

In order to fully understand the capabilities and limitations in relating multimodal datasets, it is
important to mathematically model the sensor’s interaction with the world. For most sensors,
this involves some type of camera calibration to determine its external 3D location/orientation
and internal characteristics. Some of the basic techniques to accomplish this task are covered

below.

11.1 The Camera External Orientation Parameters (EOPs)

This section provides the mathematical representation of a camera’s external orientation
parameters and their application to a homogeneous coordinate system. These parameters are
characterized by the local or global location and orientation of the camera during the image

acquisition. The position vector is contained in a 3-vector such in Equation (135) below.

3D Translation T, (135)
Vector T3x1 = Ty
T,

The 3D Rotation Matrix can be applied individually (136) as roll (w), pitch (¢), and yaw/heading
(k) or as a composite transform as shown below (137); the order of axes rotation is important.

If we assign ¢ = cos and s = sin, then the rotation matrices obtain the following form.

111



3D Rotation [CK —Sk 0] cp 0 s@ [1 0 0 ] (136)

Matrix R=R.R R sk cc Of 0 1 0[]0 cw —sw
“ Lo 0 1l]-s¢ 0 co|l0 sw cw
3D Composite cpck (Sws@Pck — cwsk) (CwsPcK + SwSk) (137)
Rotation R = |cpsk (Ssws@sk + cwck) (CwSPSK — SwWCk)
Transform —5¢ swce cwee
Ri1 Rz Ri3
=|R21 Ry Ry3
R31 R3; Rs3

These vectors and matrices can then be placed into a homogeneous 3D Camera matrix for

manipulation in graphical environments as seen in Equation (138).

3D Camera Ri1 Ry R13 Tx (138)

Description R21 Rzz R23 T

Higm = Y

R31 R3; Rzz T,
0 0 0 1

11.2 The Camera Interior Orientation Parameters (IOPs)
This section provides a brief summary of the general internal calibration parameters for a basic

pinhole camera, where Kis the used to represent the internal calibration matrix.

Internal a, sk xg (139)
Calibration —
Matrix K 0 %y yO
0 0 1

In this description, a, and a, represent the focal length of the camera in terms of pixel
dimensions (x and y pixel pitch) and when combined as a ratio, give the sensor aspect ratio.
Here, sk is the skew and x, and y, represent the focal plane’s principle point. When sk =0

and the image principal points are located at the origin [x,, yo] = [0, 0], then
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Internal a, 0 O (140)
Calibration K=]10 a, 0
Matrix 0 0 1

Since a, = f, my and a, = f, m, where m is the number of pixels per unit length [m]
(m = (pixel pitch)™!) and f is the focal length [m] along the x and y axis, then this can be

simplified to the following form when the pixels are square.

Internal a 0 0 (141)
Calibration K=10 a 0
Matrix 0 0 1

Often, our linear estimate will have very small variations from a perfectly square pixel. In this
case, the overall scale factor can be constrained to square pixels by averaging the results of a,

and a,, (Snavely, Seitz and Szeliski, Photo tourism: Exploring photo collections in 3D 2006), so

that
Internal a; +ay (142)
Calibration 2 0 0
Matrix K = a,+a
0 =XV
l 5 4
0 0 1

11.3 Radial Lens Distortion Parameters

Often camera calibration discussions will be completely devoid of discussing the important
topic of radial lens distortion. While many of today’s low end cameras are affected by this
aberration, it is many times not readily visible in the resulting images. However, when trying to
recover 3D structure from imagery by utilizing techniques like SBA (as in Chapter 4), correcting

for radial lens distortion becomes fundamentally important.

This is especially true when imaging in the longer wavelengths of the infrared spectrum, where

calibration becomes critical to relate multimodal imagery, since the index of refraction of these
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camera lenses are often more dense than traditional “visible” light cameras. This is because the
light rays are bent disproportionately from the image center and a radially increasing effect off
the optical axis is manifested within the imagery as “barrel distortion”.  Once properly
corrected, the image will have a noticeable concave exterior shape that is referred to as the

“pin-cushioning” effect.

Zhang notes that most camera distortion is dominated by radial effects and that the first radial
distortion term is of most significance (Z. Zhang 2000). Here we will utilize the first two radial
distortion terms, where we solve for those terms using point correspondences. Zhang’s concise
treatment of radial distortion correction follows. Let (X,y) represent the radially distorted
(normalized) image coordinates and (x,y) represent the corrected locations. Then the radial

distortion can be expressed as

Radial - _ 2 2 2 22 (143)
Distortion X=xtx [kl(x Ty ) + kz(x +y ) ]
x-component

Radial J=y+ y[kl(xz +2) + ky (a2 + yz)Z] (144)

Distortion
y-component

where, k; and k, represent the two radial distortion coefficients that were previously
mentioned. Since the image principal point (xq,y, ) is the origin of the radial distortion, the
above equations can be modified to more accurately index the pixels from an undistorted
(u, v) location. The radially distorted coordinates (i, ¥), can then be derived from the (%, )

locations through the following relationships.

Radial U=xp+ a,X + sky (145)
Distortion
U-component
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Radial vV=y,+a,y (146)
Distortion
D-component

If we assume skew is insignificant (sk = 0), we can represent this new, centered coordinate

system, in the (u, v) plane as

Radial — 2 147
Disforlgon U= u; + (U = Xo) [kl(xiz + ylz) + kz(xiz + yLZ) ] (147)

U-component

Radial D= v; + (vi _ yo) [kl(xlz + ylz) + kz(xlz + ylz)Z] (148)

Distortion
D-component

Where (u;,v; ) are the undistorted pixel locations of our known model points X;, projected
through a pinhole camera model. In order to arrive at a linear estimate for the radial distortion
coefficients, we can use the following DLT technique, which is explained in greater detail in the

following Appendix (12).

Linear

[ (1 — 2 4,2 _ 2 4 22)?] (149)
Estimate i — Uy o xO)(xl + yl) (uq XO)(xl + y1)
[171 - Vl]

(= ¥)@ +53) (1= ye) (o +52)

Lzl ~ ul] (i = x0) (% +¥7) (i —xo)(xf + in)Z
(v =) (2 +37) (v = y) (o +3?)’]

where the image correspondences can either be the related points in another corrected image,
projected model points, or straight line estimated locations within the same image. Here, we

can again utilize the Pseudo-Inverse to provide a solution to our linear least squares estimate.

Simplified d =Dk (150)
Matrix
Notation
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Pseudo Inverse o nT AT (151)
Solution to LLS k= (D D) D'd

Finally, our Maximum Likelihood Estimate, utilizing a nonlinear optimization technique like LMA
(Chapter 13-Appendix C), will be minimized against the following cost function that directly

incorporates the two radial distortion coefficients.

Nonlinear n _ 2 (152)
Minimization Z”E — Xi(K, k1, ko, R, 6, X))
Equation i=1

where X; is the radially distorted and transformed model location X;, and X; is the

corresponding location within the distorted image.
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12 APPENDIX B - Linear Estimation

Most of the techniques shown here, for relating imagery and models, require nonlinear
methods to obtain an accurate solution. However, it is often useful to seed these methods with
a linear estimate that gets them within the capture range of the global minimum to help avoid

getting “trapped” within local valleys of the solution space.

12.1 The Projection Matrix Revisited

Although the Pseudo-Inverse can be utilized to provide a Linear Least Squares solution for
square matrices (25), it is not suitable for some applications. In particular, the solutions for
resectioning and SBA (Chapters 3 & 4), require a 3x4 matrix of coefficients. Utilizing
homogeneous coordinate systems to represent both the 2D image coordinates and the 3D

model points result in the following equations (Hartley and Zisserman 2004).

Projection x; = PX;
Matrix (153)
Simplified
o X1 Xz X Pyy P12 P13 Py X1 Xy ki
Projection . _ Y. Y, -Y;
Matrix Yi Y2 V| =|Pa Pz Pay Pagl,o 0, (154)
Py Ps, Pas Pa||?t 21 i
Expanded 11 1 31 %32 %33 a4l 1 .1

One alternative to solve this equation is to utilize the vector cross product, where PI is the

transposed 1° row of the projection matrix.

Cross Product x; XPX; =0

Solution (155)
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y,PLX; — P3X;
P1X;— x;PLX;

I =0
\xipgxi — yipfxi

\l
/ (156)

Expanded x; X PX; =

12.2 The Direct Linear Transform (DLT)

The cross product can then be expressed in the following form (157); which has linearly
dependent equations and can then be reduced due to (158). This cross product approach has
made the equations linear in the unknowns (P) and for this reason is commonly called the

Direct Linear Transform (DLT).

0 —X{ YXi |[pir
DLT Derived | Xl-T 0 —xl-X.TI pT|=0
from l T T ' 3T (157)
Cross Product -y iX P iX; 0 P
1T
0 -Xi yX ||P, _o
Reduced DLT x' o —xiX? £3T (158)

In expanded form (for clarity) this equation takes on the following form (Heikkila and Silven

1997),
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—Xl Y1 21 1 0 O 0 0 —X1x1 _lel _lel _xl_ P13
Xy Yy —Ziyn || P

o
o
o
o
i
AN
[

XZ YZ ZZ 1 O 0 O O _szz _szz _szz —x2 P22

Expanded 0 0 0 0 X, YV, Z; 1 —Xoy, —Yo¥2 —Z3y; —y2l|Pas| 0 (159)
DLT P - : : : P[Py
Xi Yl Zi 1 0 0 0 0 —Xl-xi —Yixl- —Zl-xi —Xj P31
L0 0 0 0 X; ¥y Z; 1 =Xy —Yvi —Zyi —yi|Ps
P33
| Py, ]

A popular and proven way to solve this equation and obtain the P coefficients is to use a robust
technique like Singular Value Decomposition (SVD). A solution of AP = 0, subject to
| P|| = 1, is obtained from the singular vector of A corresponding to the smallest singular
value (Hartley and Zisserman 2004). This equates to the last column of V if the diagonal values
of D are in descending order. Below is a representation of the factorized form of A, where U

and V are orthogonal matrices and D is a non-negative diagonal matrix.

Once the P vector is solved for in this form, it should be reshaped back into a 3x4 matrix (as in
Eq. (154)) for implementation as a camera projection matrix. This will then allow projection of
the model points onto the 2D space as viewed from a camera with the location and orientation
embedded within the camera matrix P. At this point the linear estimate, provided by the DLT
algorithm, can be fed into a nonlinear solver (such as Levenberg-Marquardt) as the initial

starting point for a more precise iterative solution (covered in the next Appendix, Chapter 13).
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13 APPENDIX C - Nonlinear Estimation

The Many of the problems presented in this research cannot be solved by linear methods alone.
In these cases, it is necessary to apply non-linear estimation techniques to provide accurate
solutions. Such real world problems as the resectioning of images to models and the Bundle
Adjustment (BA) of multiple images, to reconstruct 3D structure, both require nonlinear
minimization solutions. In fact, for BA, these solutions often depend on calculating the
interaction of several thousand variables simultaneously. Due to its stability and speed of
convergence, the Levenberg —Marquardt Algorithm (LMA) is currently the most popular

approach to solve these challenging problems.

When utilizing LMA, the computational challenge is to minimize a given cost function. For
applications such as resectioning and BA, this cost function is defined as the sum of the squared
error between image points (actual data) and projected 3D model points (predicted values)
dictated by the current set of parameter. The mathematical construct and implementation of

the LMA are covered below.

13.1 The Levenberg-Marquardt Algorithm

The LMA is a hybrid approach to nonlinear estimation that interpolates between the Gauss-
Newton algorithm (inverse Hessian) and the method of steepest (gradient) descent. When the
current solution is far from the correct one, the algorithm behaves like a steepest descent
method: slow, but guaranteed to converge. When the current solution is close to the correct

solution, it becomes a Gauss-Newton method (Lourakis & Argyros 2004). Additionally, the
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practical reliability of the method—the ability to converge promptly from a wider range of

initial guesses than other typical methods—is a factor in its continued popularity (Davis 1993).

The following mathematical summary of the LMA is drafted primarily from Lourakis and Argyros
(Lourakis & Argyros 2004) and Rhody (H. Rhody 2009). Let f be a function that maps a vector

of parameters p to an estimated measurement vector X.

T
Parameter p=1[P1 Pz " Pp]
Vector (160)
Functional P
Parameter flp) =% (161)
Mapping

Now, we can define the difference between the actual measurement x and the estimate X as

the residual, €.

Residual Error £=Xpm — X (162)
Expanded e =[(x; — %), (x, — %), t (Xm — Xp)] (163)

Where, the Mean Squared Error (MSE) is,

Mean Square (164)

15 o2ty _1r
Error MSE = EZ(xm—xm) =§||€|| =§£ £
l:

The basis of the LMA is a linear approximation to f in the neighborhood of p. For a small
change in parameter space ||6,, ||, a Taylor series expansion leads to the following

approximation.
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Taylor Series f(p + 6p) ~ f(p) +]8, (165)
Approx.

where ] is the Jacobian matrix of the function; which is the partial derivative of the function’s

predictions with respect to each of its parameters.

_0f,(p)
. J ==
Jacobian p; (166)
0f,(p) 9f,(p) af  (P)]
op, op, .. 9Py
af ,(p) 9f,(p) af ,(v)
Jacobian J=1 op ap ap,,
Matrix ! : 2 : (167)
of. ) Of, )  Of,®
| dp, dp, ap,, |

So that LMA can iterate toward a minimum, we must find a §,, that minimizes the distance

between our data measurement x and the new estimate X, which is now f(p + 6p), where

Minimize Ix= f(p +8,) || ~ lx = f@) =18, | = lle = J5,| (168)

Distance
Our desired 5,,, is the solution to a linear least-squares problem, since, the minimum is attained

when J§,, — € is orthogonal to the column space of /.
LLS Solution ]T(]gp —&)=0 (169)

It follows that &), can now be considered a solution to an augmented form of the “normal

equations” since,
i T T
LLS Solution Ji ]5p =J¢ (170)

One solution for §,, is through the use of the pseudo-inverse (Section 2.3),
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Pseudo-Inverse Y Nt 3 (171)
Solution 67’ o (] ]) Je=]e

In the case of BA, the &, solution is incorporated into the current iteration of the Camera
Projection Matrix (P) and the residuals are recalculated and analyzed to determine if the total
projected error has increased or decreased w.r.t. the following minimization function.

Minimization
Function

Projection Z d(xi PXl-)Z (172)
i

Expanded L N 2
Minimization 2”961' — Xi(K,R, t,Xi)”
i=1

Function

(173)

The LMA incorporates a unique damping scheme to minimize this error. If we analyze the

normal equation representation and replace J7] with N:

Normal N(S‘p :]Tg (174)
Equation
Substitution

Where the off diagonal elements of N are the same as the corresponding elements of J7J,
except that the diagonal elements have an added damping term u, which explains the
“augmentation” of the normal equations. Levenberg’s contribution was to add this damping

term.

Normal N=pu-1 _|_]T] (175)
Equation

Augmentation

Unfortunately, when the damping factor is large, then N~! is not used at all, since 8,
approaches zero. Marquardt independently realized that if the identity matrix was replaced
with the diagonal of the Hessian matrix, this could be avoided (Ranganathan 2004). Since the

Hessian can be approximated by /7] , as described below.
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Hessian N=pu-I- (]T]) +J77 (176)
Diagonal
Replacement

Hessian N = u(diag(H)) +H (177)

Notation
Here, it is important to discuss some important properties of the Hessian matrix H, since it can

be utilized to help determine the curvature of the nonlinear surface (the curvature matrix of a

function is defined as g).

Hessian Surface

, n (178)
Curvature H=V"f(p) :]T] + Zei Ve
i=1

The last term can be ignored if the curvature of the surface is flat, or the residual error is

approximately a linear function of P, or if the residual error is small.

Hessian Surface H = sz(p) ~JJ (179)
Curvature
Approximation

When using LMA, the damping term is adjusted at each iteration, to ensure a reduction in the
residual error €. One of Marquardt’s insights was that the components of the Hessian matrix,
even if they are not usable in any precise fashion, give some information about the order-of-
magnitude scale of the nonlinear problem (Press, et al. 1992). This can help us understand the

curvature of the parameter function at the current location.

When damping is set to a large value, the N matrix is diagonally dominant and the LMA update
step &, is near the steepest descent direction and the magnitude of 6, is reduced. Damping
also handles situations where the Jacobian is rank deficient and J7] is therefore singular. In

this way, LMA can defensively navigate a region of parameter space in which the model is
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highly nonlinear (Lourakis & Argyros 2004). If the damping is small, LMA approximates the
exact quadratic step appropriate for a fully linear problem, since the damping function

disappears, thus becoming the Gauss-Newton method.

LM is adaptive because it controls its own damping: it raises the damping if a step fails to
reduce &; otherwise it reduces the damping. In this way LMA is able to alternate between a
slow descent approach when far from the minimum and a fast convergence when it’s in the
neighborhood of the minimum. The LMA can be made to terminate when the magnitude of the
gradient drops below a certain threshold (bottom of a valley), the relative change in the

magnitude of the residual drops below a threshold, or a given number of iterations is complete.

It is important to note that one of Marquardt’s improvements ensures that the detection of a
local minimum of the cost function is not forced at each step. His subtle adjustment in the
angle at which the method moves downhill provides quicker convergence because it avoids the
steepest decent propensity to zigzag along a narrow valley, crossing and re-crossing the

minimum before it reaches the bottom (Davis 1993).
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14 APPENDIX D - Epipolar Techniques for Recovering Sparse Models

Unlike Section 4.2, in this appendix we will assume that we do not know the camera EOP/IOP or
the real world coordinates of the image point correspondences. In fact, the final results of this
process will only provide a relative SPC that is self-consistent with the image matches and
derived camera parameters, not an absolute world coordinate solution. However, the power of
this generalized solution is evident by the current popularity of applications such as PhotoSynth
(Microsoft Corporation 2010) that provide this localized and sparse representation of the

imaged scene without ever knowing many of the initial camera IOPs and EOPs.

14.1 Approach

The basic approach inherent to this technique is to relate images using invariant features and
then utilize these correspondences and epipolar relationships to derive the relative
relationships between the images and the imaged scene. Since the derived relationships and
sparse structure are all relative to each other, in a localized coordinate system, this can be

accomplished with little to no knowledge of the cameras and their positions.

Because of these initial conditions, there are two critical tasks that must be addressed in this
appendix. First we must develop an estimate of the internal and external parameters for each
camera. Second, we must provide estimates of the 3D locations for each of our point
correspondences. This is a somewhat challenging task, due to the fact that there are normally
11 parameters for each of m cameras and 3 parameters for each of n 3D points, thus requiring

11 X m + 3 X n total parameter estimates.
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14.2 Develop a Linear Estimate of the Camera Parameters

Of course, the number of camera parameters is often dependent on the number of
assumptions that are being considered and can be as few as 5 or as many as 15 when solving
for the radial distortion coefficients (152). Often the 12 parameters included in the projection

matrix are solved for, due to the ease of minimization against this function within the LMA.

As noted by Wolf and Dewitt (DeWitt and Wolf 2000), for some near-nadir imaging cases, both
the pitch (¢) and roll (w) of the aircraft can be assumed as negligible for initial estimating
purposes. Additionally, both of the skew parameters (sk, & sk,) and the principle point
locations (xq & y,) can be assumed equivalent to zero for most current framing sensors
(Snavely, Seitz and Szeliski, Photo tourism: Exploring photo collections in 3D 2006). Additionally
for framing sensors, the average of the two scaling parameters can be assumed as equivalent to

the focal length (f) as indicated below.

f= (o + ay) (180)
=

So, for the near-nadir imaging case, a minimal set of 5 parameters, 4 EOPs and 1 IOP (X,,Y;, X},
K, f) require initial linear estimates, where (X,,Y;,Z;) represent the camera lens global
location, kappa (k) represents the heading angle, and (f) is the camera’s focal length.
However, the 7 parameter set (that includes Omega and Phi) should be utilized for
minimization when solving the nonlinear case. For more information on the internal camera

calibration parameters please reference Chapter 11.
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14.3 Develop a Linear Estimate of the 3D Points
The following three steps are utilized to estimate the initial guess at the 3D point location

isolated from the correspondences in each image:

1. Derive the Fundamental Matrix F
2. Derive the camera matrix P from F
3. Estimate the 3D coordinates X from P & the 2D points x

Much of this section is covered in various parts of Hartley and Zisserman’s “Multi-View

Geometry” text (Hartley and Zisserman 2004) and can be referenced for additional information.

1. Derive F - The first step is to estimate the Fundamental Matrix F, from the point
correspondences. From a set of n point matches [x to x’, y to y’] we can use Equation (42) to

develop linear equations of the following form,

Xxf1y t XV 4 X fiat VX YV + ¥V foz + xf3 V5, (181)
tf33=0
X'x x'y x' y'x yy y x y 1]f=0 (182)
xllxl X1’y1 xll yl1x1 y’1y1 y,1 X1 y1 1
Af =| : : : : 1 if=0 (183)
X' %0 X'V, Xu ¥ixn Yoy, ¥, %t ¥, 1
where the solution is the generator of the right null-space of A and F is a 3x3 matrix composed

of the 9-element vector f. Specifics of the DLT implementation to solve for F are available in

Chapter 12.
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2. Deriving P from F - For a given 3-vectore’ = [¢’; €', e'5]T itis possible to define a skew

symmetric matrix as follows (Hartley and Zisserman 2004) :

0 —9,3 e -
[er]>< = 813 0 —8’1 (184)
—elz 9’1 0

Proof - The condition that P'" FP is skew symmetric requires XTP'"FPX = 0 for all X. Since

x = P'Xand x = PX, then x'TFx = 0, which defines the fundamental matrix. Now the

following can be expressed,

[ = [e']>< (P'PT) x=Fx (185)
F=[e] PP (186)
H,= P'P! (187)

Additionally, since the fundamental matrix corresponds to a pair of camera matrices and due to

the projection ambiguity, P can be chosen as,

1 0 0 O

188

p=[1|0]=[0 10 0] (188)
0 01 O

and its complement P’ is,
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= [le],F1e] (189)

3. Derive X through P & x - Now, to develop an estimate of the 3D scene structure, we can
utilize the camera matrix and linear triangulation methods. Since, x = PX and x’ = P’X, then

we can combine them into the form AX = 0, which is linear in X.

x X (PX) =0 (190)
x(pIX) = (PIX)=0 (191)
y(p3X) — (p3X) =0 (192)
x(pIX) —y(pIX) =0 (193)

where piTare the rows of P and A which can be represented by,

[xp; — D
RECEE:

1T /T
1

1]
T
7|
p | (194)
lyy — v

A similar approach is utilized when additional views are available; often with more robust
results, since true triangulation can be utilized to improve the estimate. The solution for the 3-
view projection matrix P, from the Trifocal Tensor T, utilizing the trifocal tensor notation,

follows (Hartley and Zisserman 2004),

(' iry Ty T)[k =0 (195)
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Again, due to projective ambiguity, the first camera can be chosen as

P =11]0]

And, since F21 and F31 are known, the second and third cameras are
P' =[T;e"|e]

P = [(e"e"T - I) TiTe’|e"]

Although it will not be addressed here (see Section 11.3), it should be noted that the radial
distortion coefficients can be incorporated into this solution space. A good example of this is

addressed by Zhang (Z. Zhang 2000) and incorporates a linear estimation solution.

14.4 The Essential Matrix

Since we have knowledge of the WASP I0P, the Essential Matrix can also be utilized to estimate
the 3D structure of a scene. The Essential matrix is defined below (Hartley and Zisserman

2004), where E embodies the relative rotation (R) and skew symmetric translation [t]y

between any two images of the same scene.

Essential E = [t]xR
Matrix
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This is because the IOPs (K) Equation (139), can be applied to the camera projection matrix as,

Projection P = K[R|t]
Matrix (204)
to obtain the normalized camera matrix .
Projection Klp = [R|t]
Matrix (205)

Here, the Fundamental Matrix corresponding to two normalized cameras is commonly referred

to as the Essential Matrix. Using the Camera Projection Equation, x = PX, and (205)

Normalized =K lx
Coordinates (206)
then we arrive at the defining equations for the essential matrix .
Defining 2'Ex =0
207
Equation (207)

Additionally, it can be related to the Fundamental Matrix and IOPs via the following

relationship,
€11 €12 €13 -
Essential E =€ €2 e3|=K;iFK, (208)
Matrix €31 €32 €33

where K; and K, are the intrinsic calibration matrices of the two images. This relationship can

be visualized in Figure 14-1 below.
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Figure 14-1 The Essential Matrix relates the two images using a simple 3D translation and rotation of the cameras.

Now we can implement the 3D structure recovery via a technique explained well by Yi Ma (Ma,
et al. 2006). The Essential Matrix can be placed in vector form as follows,

Essential E9 = [ell €21 €31 €12 ey, €32 €13 €3 333]T

Matrix (209)

The Kronecker product (X) of two homogeneous coordinate vectors x =[* ¥ Z]T and

x'=[x" y'" z'l",wherez =z =1is commonly utilized,
Kronecker a=x(X)x'

Product (210)
Coordy a=[xx'" xy xz' yx' yy yz zx' zy' zz'" 211
KronP (211)

Since the epipolar constraint of (207) is linear in the parameters of E, we can rewrite it as the

inner product of a and E? as follows,
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E aTE® =0

KronProd (212)

Now, we can define a matrix X,,,9 of Kronecker Products, such that,

ronprods Yo =01 G2 o anl! (213)
E&X XnaoE” = 0 (214)

This linear equation can now be solved for the vector E° using an eight-point algorithm (Ma,
Soatto, Kosecka, & Sastry, 2006) and the Eigenvector associated with smallest eigenvalue of
XT X generating the values of E; which in turn can be “unstacked” into the 3x3 Essential Matrix.
Now the relative pose (Rotation and Translation), embedded within E can be recovered and
utilized with the image correspondences to retrieve the position of the point in 3D, by
recovering their depths relative to each camera frame. Care must be taken to ensure structure
results with a positive depth constraint and nonzero translation, since up to four possible

results occur with calibrated reconstruction from E (Hartley and Zisserman 2004).

Now, the set of matching coordinates (x,x’) can be utilized with the camera pose results to

estimate structure A, to within a uniform translation scale y, using the following,

Rigid Body AX = RAx+yT (215)
Pose Eq.
Multiply by 0=x X Vx) =x x (RAx +yT) (216)
crossproduct
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AX XRx+yx'XT=0

Rearrange (217)

~ _ I ! Al _
Rearrange Midi =[x x Ry x; X T] [Y] =0 (218)

Now we can solve the linear equation to estimate the depth component (};) of each point

correspondence.

14.5 Case Study - Creating Sparse Structure using Epipolar Geometry

In this case study, 12 images from RIT’s WASP sensor were related into an image bundle to
estimate the 3D terrain surrounding the VanlLare Water Processing Plant. These images were
processed through a SfM process developed primarily by Dr. Noah Snavely (Snavely, Bundler
2010), from the University of Washington, to produce a Sparse Point Cloud (SPC) of 3D points
and relative orientation of the cameras (Snavely, Seitz and Szeliski, Photo tourism: Exploring
photo collections in 3D 2006). This process was then commercialized by Microsoft into an
online application called PhotoSynth (Microsoft Corporation 2010), which allows a user to

upload imagery and view the resulting bundle of images and sparse structure (Figure 14-2).
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Figure 14-2 The graphics above show the results of Microsoft’s PhotoSynth BA process.

These preliminary results show great promise in the ability to extract 3D information from 2D
images, in a completely automated fashion, to produce relative relationships within a localized
coordinate system. While these results are promising, there is currently no built in capability to
export 3D structure or camera pose results in the freely available version. For this reason, the
SBA software of Lourakis and Argyros (Lourakis & Argyros 2004), embedded within the Bundler
code of Snavely (Snavely, Bundler 2010) was utilized to perform a similar recovery of structure
and camera locations. Figure 14-3, shows the resulting point cloud and point cloud mesh

overlaid onto GE terrain and models of the Vanlare site.

14-11



Figure 14-3 The SPC (top) and resulting mesh (bottom) from the Bundler SBA process (Snavely, Bundler 2010) using VNIR
images from the WASP sensor.
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15 APPENDIX E - Model Texture

In order to truly recover the 3rd Dimension from images registered to models, it is necessary to
reapply the images onto the modeled environment. This can be done in a layered fashion,
where the user has the ability to transfer between texture modalities as required or fused into
three band images and viewed as entirely new products. Additionally, scrolling through a time-
based series of images can have great advantage for temporal change analysis. Finally,
products can often have unique characteristics, where the sum of the individual images is more
useful than the individual components considered separately. This is evident in Figure 15-1,
where the registered IR images of VanLare were stacked into a pseudo-color composite image,
which highlights a newly constructed building composed of different building material than the

rest of the plant.

Figure 15-1 An illustrative example of IR image fusion in the form of a pseudo-color image stack. Circled in red is a new
building that was constructed from different material (green metal) than the surrounding brick buildings with gravel roofs.
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The following four techniques for texturing models with images offer distinct advantages and

disadvantages and are largely dependent on the chosen application of interest.

15.1 Image Draping

Image draping is a useful technique to easily provide a rudimentary level of 3D texturing. Its
application to near-nadir imaging was demonstrated in Figure 3-2, where it was utilized for
comparison with similar overhead imagery. Below is an additional example of this technique

from an IDL demo package (ITT Visual Information Solutions 2008).

Figure 15-2 By using a model (left) and related image (middle) it is possible to produce a realistic scene (right), as visualized
using one of the demonstration tutorials within the IDL programming environment (ITT Visual Information Solutions 2008).

Here, an image is projected straight down, from nadir, onto the model surface. If done
accurately, this draping/blanketing approach can provide a realistic model in non-urban areas.
Unfortunately, modeled areas with near vertical features will display a stretched/smeared pixel
appearance due to the way in which the texture is sampled and associated with the model.
However facet surface normals could be used to test for this situation and texture exceptions

could be incorporated to avoid undue smearing on the vertical edges of the model.
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15.2 Facet Texturing and Model Unwrapping

This technique is a very efficient and realistic way to model an environment, thus owing to its
longstanding popularity in the computer graphics industry. Unfortunately it is often a time
consuming endeavor in the initial stages of “unwrapping” the texture and associating it
properly to a model. Since we would like to automatically texture our models with numerous
modalities and temporal updates, this can become an overly onerous option. Figure 15-3

shows the CIS building with multimodal textured facets.

Figure 15-3 These multimodal models have been textured with image segments on each facet (visible-left & thermal-right).

In addition to the CIS model above, the Vanlare site also utilizes this uv texture mapping
approach to create visually realistic representations of the site. This model is embedded in a
Collada format and placed in a Google Earth Keyhole Markup Language (KML) wrapper to

associate the model with the world coordinate system as seen in Figure 15-4 below.
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Figure 15-4 This realistic Pictometry model (Pictometry 2010) utilizes UV mapped oblique imagery to texture its facets and
was then inserted into Google Earth (Google Earth 2010) using a KML description.

Finally, this uv texture mapping technique was utilized within the DIRSIG environment to build
an accurate geometric and physical description of this same site for the purpose of 3D
Multimodal registration. The basic process to accomplish this is again shown in Figure 15-5 for

easy reference and was covered in detail earlier in Section 6.2.1.

Figure 15-5 lllustrates the UV Texturing process: A) The wireframe model, B) The faceted model, C) The UV textured Model,
D) The flattened (uwrapped) model with overlaying image texture, and E) The textured wireframe model.
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15.3 Projective Texturing

The projective texture approach is one that the author highly recommends, since it can use the
camera pose to project each pixel onto the scene accurately (Figure 15-6). Here the Google
Earth’s SketchUp (Google Earth 2010) application was utilized to perform the projective
texturing. This technique could be implemented in such a way that the projected texture is
only applied to surface facets if their normals are within a prescribed angular offset from the
camera viewing direction (i.e. +£45°). This would ensure that only minimal smearing would

occur on the model facets that are parallel to the camera optical axis.

Figure 15-6 Here the same model has been textured using a projection tool in Sketchup (Google Sketchup 2009) and then
imported into Google Earth (Google Earth 2010).

15.4 Volumetric Pixel (Voxel) Texturing
Since voxel techniques allow models to be developed as true volumetric datasets, they offer
substantial benefits for atomic characterization of a scene. Additionally, this representation

may allow the most accurate 3D reconstruction of a scene based off of SPCs and DPCs. The
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ability to attribute each voxel with multimodal data, as seen in Figure 15-7, could also provide
substantial advantages when trying to fuse these datasets. Unfortunately, the graphics industry
has rallied around the faceted model approach, so few synergies of investment and research

can be leveraged at this time.

||||||iiiiii1 ||‘iiiii‘|||||||| ||||||Ili|iii1 ||||||iiiii1
—

Image Attributed Voxel Voxels as Projected
Cube of 2Ds Voxel

Figure 15-7 Volumetric Pixel (Voxel) approach to save data in volumetric space, but attribute as 2D facet.
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16 APPENDIX F - DIRSIG Simulation Setup Primer

Any given simulation in DIRSIG will be encapsulated with a
wraps various components of the simulation into a manageable whole and provides the
essential links to various working directories. Embedded within the SIM file are calls to various

DIRSIG modules describing the scene, atmospheric, sensor, platform, and data acquisition

parameters (Figure 16-1).

4

‘.sim” description file. This file

p
X DIRSIG Simulation Editor o|E
File Tods Window Help
o
D w B
Wallisim
Atmospheric Imaging Fatiom Data -
Eoern Condificrs Faticm Moticn Callection Opiorw

-9 .
Run [ Ao

S
6

4

Figure 16-1 The DIRSIG Simulator Editor provides access to various components of the program.

16.1 DIRSIG’s Scene File Setup

Pushing the Scene Icon in the Simulation Editor window will bring up another GUI which allows
access into several other components within DIRSIG for defining the modeled scene
characteristics. Pressing the “Geometry Tab” (Figure 16-2a) brings up another interface that

allows definition of the Geographic Location, the Geometry List File (“.odb”) and linkages to the

directory where the scene models are stored (Geometry Entity Directory).
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DIRSIG’s Scene Editor
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Figure 16-2 The Geometry tab (A), in the DIRSIG Scene editor, references the model geospatial and directory location, while
the Material tab (B) links to the scene materials description file and emissivity file directory.

The “Materials Tab” (Figure 16-2b), similarly allows definition of a Materials File (“.mat”) and
linkages to the appropriate emissivity, extinction, and absorption folders. The Material File
describes the physical material characteristics used by DIRSIG to simulate scene content and is

a critical component for multimodal registration (Section 6.4).

The “Property Maps Tab” shown below in Figure 16-3, is the workhorse for scene simulations.
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DIRSIG’s Property Map Editor
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Figure 16-3 Within the Scene “Property Map” tab there are links (left panel) to the Material Map descriptions for the site (C)
and Texture Maps (D). These “Property Maps” are tightly coupled within DIRSIG for physical scene description.
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The window on the left pane allows the user to open additional interfaces into the “Material
Maps” and associated “Texture Maps” sections of the application, which allow a user to define
characteristics for the scene. The “Map Projection” section of both these interfaces allows for
designation of localized offsets and the Geographic Sampling Distance (GSD) of both the
Material and Texture Maps. In both graphics within Figure 16-3, the offset is referenced from

the origin of MegaScene Tile-1 via the Insert Point text field in the Map Projection area.

Additionally, the “Material Map” interface (Figure 16-3c) allows the user to designate a specific
model element in the “Assigned to” field. In the example above, ID = 100 is used to identify a
terrain “Material ID” within DIRISIG. It is important to remember that for every
“Material/Texture Map” pair used in the simulation, a unique identifier must be generated to
insure DIRSIG properly associates the maps and materials. The “Pixel DC to Material ID
Assignments” section allows the user to assign a Look-Up-Table (LUT) that associates a discrete
grayscale values to specific scene material characteristics via the DIRSIG Material File (“.mat”).
These grayscale values are the Digital Count (DC) values of an image (“.pgm”) that has been

segmented w.r.t. different scene materials and is designated in the “PGM Filename” field.

The associated “Texture Map” information is similarly accessed in the left window of the
“Property Maps” tab by highlighting the appropriate Texture Map link (Figure 16-3d). The main
difference between this and the previous interface is that the “Assigned to” field now contains
the materials identified earlier in the “Material Map” assignments LUT and the user can

designate the spectral bandpass and file linkage for the associated “Texture Map”.
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16.2 DIRSIG’s Sensor File Setup

By selecting the Imaging Platform icon from the DIRSIG simulation menu (top of Figure 16-4,
highlight in red), the user can access several function that control the imaging sensor
characteristics, as well as the platform and mount location and orientation.
interface can be accessed by selecting the mount link from the left pane of the System
Components menu. This allows access to a handy tool for viewing the relative pointing of the

platform and so it is possible to utilize the mount interface to insert the Pitch, Yaw, and Roll of

The mount

the aircraft if the actual mount orientation is negligible or is incorporated into these values.

DIRSIG’s Mount Editor
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Figure 16-4 The Sensor Editor has links to a Mount Editor (A) and the Imaging Camera in the Left Panel. As seen here, the
Mount interface was utilized to capture the sensor viewing angles which were retrieved from an Inertial Measurement Unit.
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So, the sensor viewing angles can be injected into DIRSIG using either the sensor mount
interface or the platform interface. In the figure above (Figure 16-4), the reader can see how
the WASP Inertial Measurement Unit (IMU) data was converted to radians and inserted into the

DIRSIG “Mount interface”.

In order to access the “Instrument Editor”, the user must highlight the last link on the left
window pane in the “System Components” section (Figure 16-5). Here the user can insert
additional mount offsets and orientations for multiple camera systems like WASP if desired.
Additionally, the focal length of the camera can be edited within this interface and the user can
access the camera’s focal plane editor by highlighting the desired sensor in the “Focal Plane”
section and then pressing the “Edit” button (Figure 16-5b). The “Focal Plane Editor” will

describe the sensor’s “Array Dimensions”, “Pixel Pitch” and the “Spectral Response/Range”.

DIRSIG’s Sensor Editor
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Figure 16-5 Within the Camera Instrument editor, there is an “edit” button for the Focal Plane (B). Pressing this button will
bring up the Focal Plan Edit menu with additional buttons for editing the Detector Array (C) and the Response Curve (D).
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These parameters can in-turn be accessed and changed by pressing the corresponding “Edit”

button in the “Detector Array Geometry” and “Detector Array Response” panes Figure 16-6).

DIRSIG’s Focal Plane Editor
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Figure 16-6 The Focal Plane editor buttons bring up the Detector Array editor (C) and Detector Spectral Response editor (D)
windows, which allow a great deal of flexibility in defining the sensor specific design characteristics.
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16.3 DIRSIG’s Platform File Setup

The Platform File editor provides a convenient description of the vehicle (satellite, airplane or
terrestrial) that transports the imaging sensor. Through this interface, it is possible to define
the coordinates and orientation of the imaging platform and even the rotation order (Figure

16-7).

DIRSIG’s Platform File Editor
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Figure 16-7 The Platform Editor allows for the designation of geospatial position information, such as Latitude, Longitude,
Altitude and the orientation information of the sensors External Orientation Parameters, such as Pitch, Yaw & Roll.

There are a few things that should be noted when entering the WASP platform information into
DIRSIG. First, the DIRSIG MegaScene Tiles were all based off of a local coordinate system,
where the lower left corner of Tile-1 is regarded as the origin. Tile-4 has an origin that is
located at UTM Coordinates Longitude = 289,826 [m] and Latitude = 4,789,892 [m] (Zone 18T),

with local MegaScene coordinates of Longitude = 1291 [m] and Latitude = 2330 [m]. In order to
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compare the DIRSIG simulation results to real imagery, it is necessary to convert between the

global UTM coordinates of the WASP flight data and this local coordinate system (Figure 16-8).

Converting WASP Flight Data into DIRSIG Platform Parameters

Flying Alt [m] Geoid focal length
Longitude [m] Latitude [m] (above Geoid) Delta[m] [mm]

WASP VNIR045 UTM 290,707.26  4,790,203.71 879.42 35.85
Tile-4 Origin UTM 289,826.0  4,789,892.0
Local Offset 881.26 311.71
Tile-4 Offset 1,290.60 2,329.80
DIRSIG Input 2,171.86 2,641.51

VNIR045 Degrees Radians 879.42 915.27 55mm
Omega 449152 0.078391812
Phi 0.10469 0.001827185
Kappa 17.19189 0.300055085

SWIR078 Degrees Radians 879.596 915.446 25.2965
Omega 3.88848 0.067866779
Phi -0.055 -0.000959931
Kappa 16.30377 0.284554467

Figure 16-8 In order to properly inject the WASP GPS/IMU data into DIRSIG it is essential to convert for any local coordinate
translations, sensor angles and Geoid offsets. For the Vanlare site, this offset accounts for 36 [m] higher flying altitude.

Secondly, as mentioned earlier, the sensor’s view angles (EOPs) were captured in DIRSIG using
the Sensor Mount Interface after a Degrees-to-Radians conversion of the flight data was
performed. For this reason, the orientation parameters are included as null offsets in the

platform file editor interface.

Finally, due to the localized error from the Geoid model height, it may be necessary to account
for this offset within DIRSIG. Since the WASP GPS sensor delivers flying height above the Geoid

in its flight data, localized variation in the terrain should be incorporated if available to ensure
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the simulated imagery scale is as close to “truth” as possible. This becomes especially
important when deriving the 3D scene geometry from hi-resolution WASP VNIR images. The

local DIRSIG coordinates for the original five MegaScene Tiles is shown below in Figure 16-9.

DIRSIG’s 5 MegaScene Tiles

4142.10 4142.10

347235
- 3232.80

=2329.80

Northing [m]

1157.55 g

000 = S 0.00
0.00 1290.60 2346.60

Easting [m]

Figure 16-9 DIRSIG’s 5 MegaScene Tiles (courtesy Mike Presnar) cover a swath of Northern Rochester and include a variety
of environmental settings, including residential, agricultural, industrial, and lake frontage. The VanlLare test site is in Tile-4.
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16.4 DIRSIG’s Atmospheric Conditions Setup

The Atmospheric Conditions editor within DIRSIG has two tabs which allow input of the
weather conditions at the time of simulation and specifics regarding the radiation transport of
the photons through the atmosphere. The radiation transport tab provides links to the
MODTRAN Tape-5 file and the atmospheric database file that is generated at the beginning of a
DIRSIG simulation, providing essential atmospheric LUT parameters. This user interface is

visible below in Figure 16-10.

DIRSIG’s Atmospheric Conditions Editor

]
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Figure 16-10 The Atmospheric Conditions Editor allow for designation of the Weather conditions at the time of the collection
and the designation of Radiation Transport parameters via MODTRAN Tape-5 files.

16.5 DIRSIG’s Data Collection Setup
The DIRSIG Data Collection GUI can be utilized to specify single frame or multi-frame (video)

output. Additionally, the user can specify an instantaneous image capture of the modeled
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scene or an integrated exposure over time. Finally, the time of image capture can be specified.
This is a very important feature for simulating real imagery collections for registration, since it
makes it possible to estimate the scene shadowing correctly w.r.t. the solar zenith angle. This

DIRSIG user interface is visible below in Figure 16-11.

DIRSIG’s Data Collection Editor

B (74 B cow
Relererce Dale/Sms
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Sirgle Frame 1 Hame Srghe Frame 1

Description Haw Task Descriphon

Task Typs

& Fwisniarecus caphue a1 8 given e
() Confiruus capiure cver a fime wirdow

Sirge caphute e 0

.+Aui'l'uhllabohbruk

Figure 16-11 The Data Collection Editor allows the user to designate the day and time of collection; this is essential for
properly casting shadows onto the scene from the correct solar position.
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17 APPENDIX G - MATLAB Software Flowchart and Index

The included MATLAB (The Mathworks, Inc. 2010) programs contain many helpful tools that
can allow the user to integrate various aspects of this research into their daily registration
workflow. These programs are available upon request to either the author or members of the

dissertation committee.

17.1 Image Registration
The following flowchart shows the hierarchy of program execution and basic components for

image registration using the provided MATLAB tools and case study data.

Image Registration Programs & Files

Image Registration

image _reg.m

J

Feature Matching

Outlier Removal

Graphical Results

Mathematical Results

Data

siftWin32.exe

SIFT RANSAC Plot Matches Parameter Recovery DIRSIG & WASP Images
sift.m ransacfitfundmatrix.m plotmatches.m RST2.m LIDARdirect_DIRSIG.tif
match2.m ransacfithomography.m Hybrid_DIRSIG jpg

SWIRD78eq.jpe

Figure 17-1 This flowchart provides a snapshot of the tools provided for image registration and the related file structure
(programs highlighted in yellow were not written by the author).
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17.2 Sparse Point Cloud Generation
The following flowchart shows the hierarchy of program execution and basic components for

Sparse Point Cloud generation and depth-map recovery using the provided MATLAB tools and

case study data.

Sparse Point Cloud Programs & Files

3D Depth Recovery
x2X_estimator.m

J

Feature Matching
SIFT

Outlier Removal
RANSAC

Pre-Processing
Correct for Pitch/Roll

Linear 3D Estimate
Point Depth Recovery

SBAPre-Processing
Prepare data for SBA

Data
WASP Images & Matches

sift.m
matchbig.m
siftwin32.exe

ransacfitfundmatrix.m
ransacfithomography.m

collinearity_XY.m
pteloud_display.m
intgen.m

lin3dpts.m
angle2Points.m

sbha_ptprep2.m
sba_match2.m
sba_match3.m
shba_matchd.m

VNIR044,045,046,033,057
match45-44, match45-46
matchd5-33, match45-57

Figure 17-2 This flowchart provides a snapshot of the tools provided for SPC Generation and the related file structure
(programs highlighted in yellow were not written by the author).
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17.3 Model Registration & Pose Estimation
The following flowchart shows the hierarchy of program execution and basic components for a
Pose Estimation of a 3D model as viewed from an image using the provided MATLAB tools and

case study data.

Model Pose Estimation Programs & Files

Pose Estimation

DLT test.m
Direct Linear Transform Pre-Processing Graphical Results Mathematical Results Data
DLTsvd.m normalise2dpts.m carlson_show.m vgg_KR_from_P.m carlson_rhyno.obj
normalise3dpts.m readObj.m

Figure 17-3 This flowchart provides a snapshot of the tools provided for Pose Estimation and the related file structure
(programs highlighted in yellow were not written by the author).

Additionally, a similar graphic is available for 3D Model Registration using the authors 3D
Conformal Transform (rigid body) and case study data used to relate the AANEE model to the

World Coordinate System using Google Earth (Google Earth 2010).

Model Registration Programs & Files

3D Model Reg
AANEE2GE Test.m

{

3D Conformal Transform Data
RST3.m embedded

Figure 17-4 This flowchart provides a snapshot of the tools provided for Model Registration and the related file structure.
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17.4 LIDAR Data Processing

The following flowchart shows the hierarchy of program execution and basic components for
processing of LIDAR data to extract Regions of Interest (ROI) from a “.las” formatted file. Once
accomplished, this 3D Dense Point Cloud ROI can be used as the basis for a facetized model

using the provided MATLAB tools and case study data.

LIDAR Data Processing Programs & Files

LIDAR Pt Cloud LIDAR Models
LASRead test.m SEM.m
OBIJ Output Data
Binary Reader SEM20BJ.m VanLare_ROL.las
LASRead.m SEM20BJmtl.m VanLare ROl Smokestack. txt

Figure 17-5 This flowchart provides a snapshot of the tools provided for LIDAR Processing and the related file structure
(programs highlighted in yellow were not written by the author).
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